i

—

=

Semantic Da

A

° ° ° ‘\\Qly /

Vector Processing Applications ;%Q&
O VPA Characteristics:

%E... .l.%ﬁ Memory-intensive

Vector Databases

.a‘ . ,"]‘ Perform many
o e ! vector operations
i [|1
— - CHATGPT = ., = Use Accelerators
Simulations Large Language Models P

Image Credits: ONERA, U.S. DOT, Pinecone, OpenAl, Flaticon.com
CRSS CONFIDENTIAL 2

PS
Problem: Pressure on the Memory Hierarchy \&k\\%!
CRSS
Application b Accelerator
/ ot tn g oot U
t Scale o XPU B
\» ./ [T 1
Manoj Wadekar, Meta [FMS’24]
Needs large memory capacity Wants high memory bandwidth

Issue: application working set >> accelerator memory capacity

CRSS CONFIDENTIAL 3

Potential Solution: Memory Expansion \Mg

Application e Manage additional memory with
N software-based memory tiering

i | More Bandwidth o TPP[ASPLOS23], Nimble [ASPLOS'19],

1 *® HeMem [SOSP’21], TMTS [ASPLOS’23]

Page Page -

Migration Classification

Data
Promotion,
Demotion
Access
- -

- More Capacity

CRSS CONFIDENTIAL

gl

° ° ° o ° ,\k\ %\ﬁ | A
Limitations of Memory Tiering Lo

CRSS
e Data Amplification: AIFM [OSDI’20], DiLoS [Eurosys’23]
e Memory Thrashing: TPP [ASPLOS’23], Nomad [OSDI’24] .
e |naccurate Classification: TMTS [ASPLOS 23]

Transparent Semantics Aware

Placement Placement

CRSS CONFIDENTIAL 5

-

=\
=
=

)

Research Question

X L
) =
(7]

What is the impact of a semantics-aware tiered memory system
on resource utilization and application performance in
heterogeneous systems?

CRSS CONFIDENTIAL 6

gl
° i \\\gﬁy /
Proposal: Semantic Data Placement i
CRSS
Vector Processing Application Hardware
=
]
=
Runtime
Allocator Tracking Migration SemSlab
e Lasttime e New Research
o Idea: Tiering for VPAs o Refined ideas and system design

o Work towards prototype
o Identifying research challenges

CRSS CONFIDENTIAL 7

Research Challenges 1}

e How can application semantics be used to reduce memory bandwidth
consumption and improve memory goodput?

e What effect does semantic data placement have on application performance and
memory utilization?

e How can we organize metadata for hotness tracking and other management
functions to improve scalability?

CRSS CONFIDENTIAL 8

System Architecture Overview b

Our Proposed E<DE/D

Syste m ° Application Allocation API
[)
° Allocator Tracking Migration
Mnemonic
T JIJ I | o i | 'i"::ii::ii::i ,,,,
o i ek : A
Memory Tiers | st s s S|

(M2T)

CRSS CONFIDENTIAL 9

>, |
-

s
A

X

%

=

M2T’s Memory Allocation API: mnalloc

(@)

“Mnemonic Allocator”

=

mnalloc(size, PlacementDirective) - MemRef<T>

e Encodes application semantics to the system

o Captures characteristics of a program from the perspective of its data
e Similar approaches common in industry

o Google: TMTS [ASPLOS’23], Meta: TPP [ASPLOS 23]

CRSS CONFIDENTIAL 10

“

O,
Y4l
=y
=,

)

g

M2T’s Memory Organization

o)
%
7p

e Adopt Twizzler’s Memory Model [ACT’20]
o Twizzler uses invariant pointers to memory objects as globally valid logical
references
o Software intercepts memory allocations and initial dereference only
e Semantic Slabs (SemSlabs)
o Twizzler Memory Objects containing data allocated using mnalloc

Object A Object B

[«— Foreign Object Table

Object ID | Offset ‘

Invariant Pointer

CRSS CONFIDENTIAL 11

Tracking and Migration at SemSlab Granularity

CRSS CONFIDENTIAL

Accesses

SemSlab

C

1
LI

Promotion,
Demotion

—-
-

s
Y
7

Ow”

N

-

==

V=
1N
A

>l

77—

Application Integration i
CRSS
Library Memory Application
S \. M2T Runtime
| A |
Objects Map/Unmap Logical Ref API
| 4 i
] s A
Operating System :: mapping, topology . / \
Y
Sh ' ¢
Map/Unmap Topology Merirc?r?y \
Applications link to Data Structure interface
the M2T runtime remains the same

CRSS CONFIDENTIAL 13

Example: Scaling RAG Pipelines

N

D
@)

Q7=
0
2.

(&)

—

(

/ ANNS Index

(candidate array)

£

AN
S ~

Embedding Query
& < @
/ T~
Vector Database
LLM(s)
\ Relevant Data

g ——

Retrieval Augmented Generation

.......
...........
.............

overall_score
Reference Response (end-to-end)

BT

Image Credits: https://gradientflow.com/techniques-challenges-and-future-of-augmented-language-models/

CRSS CONFIDENTIAL

Transparent
Memory Tiering:

Increased Capacity
Avoids Disk I/0
Memory Thrashing (=
Profiling Overhead =

14

O 7=
@Y

)

—

=

Example: Scaling RAG Pipelines

> KC
O

Application Code:

A
(candidate array) A let carr = mnalloc(Placement: :None);
let root = mnalloc(Placement: :Hot);
B let root_data = mnalloc(Placement: :Hot);
let root_neighbor = mnalloc(Placement: :Hot);
B let root_neighbor = mnalloc(Placement: :Hot);
let leaf =
X 17 C mnalloc(Placement: :LatencyInsensitive);
5 o . let leaf_data =
Tlerlng with M2T: mnalloc(Placement: :LatencyInsensitive);
, Increased Capacity
C (> Avoids Disk I/0
w Less Memory Thrashing &
Q.ess Profiling &)

CRSS CONFIDENTIAL 15

What semantics can we express? &ﬂ««!
CRSS

% Developers use mnalloc to steer how M2T places data
% Memory objects placed based on associated semantics
> Temperature > Hot, Cold
> Objects are “related”: NextTo(r)
> Performance Insensitive - Latencylnsensitive, BwInsenstive
% PlacementDirective could be determined automatically
> compiler techniques: Mira [SOSP’23], TrackFM [ASPLOS’24]
> analyzing the call stack: TMC [SoCC’23], 2PP [PACT’15]

CRSS CONFIDENTIAL 16

(&)

O,
YNl

=
)

“

=

Goals for 2024-2025

X L
(V)]
(7))

e Implement a proof-of-concept M2T runtime
e Modify applications to use mnalloc

o Initial focus on vector indexes and Vector DB’s

o Applicable to HPC, simulation, graph processing, DBMS, and kv-stores
e Evaluate the impact of semantic data placement

o On application performance?

o Onmemory utilization?

CRSS CONFIDENTIAL 17

>, |

D=
I
A

D

>l

=4
=)

Conclusion

2

)
o)
%
7p

e Vector Processing Applications need robust system architectures
o to manage their growing memory footprint efficiently
o CXL memory expansion provides a path forward
e Semantic data placement potentially impacts
o application performance
o system resource utilization

Vector Processing Application Hardware

L 11
O . - o
{/ 1T <_’-

Runtime

SemSlab

Allocator Tracking Migration

CRSS CONFIDENTIAL 18

Thank You

CRSS CONFIDENTIAL

Allen Aboytes
aaboytes@ucsc.edu

Questions?

-

s
=

2 1k

O

19

=

O 7=
0 ‘i

%

y

Thank you to our sponsors!

arm »»Qo Cerabyte

IW' MARVELL

NUTANIX

W O

Backup Slides

21

CRSS CONFIDENTIAL

Simple Example: Using M2T to build a Linked List

struct Node {
next: InvPtr<Node>,

data: u64
}
let mut a =
*a

let mut b = mnalloc::<Node>(Placement: :NextTo(a));

mnalloc: :<Node>(Placement: :None) ;

= Node::new(42);

*b = Node::new(101);

a.next.assign(b);

CRSS CONFIDENTIAL

2>,
-

D=
I
y

N 2 i

D

(

CRS

22

>, |
V|

>l

Use Case: DLRM Inference Embedding Offload | 7
CRSS
let itemEmbedding =
mnalloc(size, LowLatency)
4= Compute
Feature Intem:tlon 4= Communication
= Me"’;{,ﬁfﬁ;‘,‘;’:}f}:ﬁ let userEmbedding =
W \ e I ______ -] _______ ‘ mnalloc(size,BwInsenstive)
Dense | Spase : ; Sparse 4= |nputs from network

Image Credits: Nishant Kumar, “Deep Learning Recommendation Models (DLRM): A Deep Dive”. Medium.

CRSS CONFIDENTIAL

>, |

=
I,
A

>l

Towards Low Overhead Tracking LY

10000 i ,
1000
W 100 FGIGA - & Fet
E e
S 10 +-
,{_/
E 1 o
+ R
0.1 e

0.01 2 j:‘ ..Al*ul,g.'-‘."}';'i-l-.-.'iri‘“"!‘",-—f_l | il
0.01 0.1 1 10 100

Mapped memory size [TB]

Figure 3: Page table scan time.

Amanda Raybuck, et al HeMem: Scalable Tiered Memory Management for Big Data Applications and Real NVM. SOSP 2021.
24

CRSS CONFIDENTIAL

