
CRSS CONFIDENTIAL

Obliviate: portable, efficient, and crash-consistent
secure deletion enforced using the Rust compiler

Eugene Chou, Leo Conrad-Shah
Ethan Miller, Darrell Long, Andrew Quinn

CRSS CONFIDENTIAL

Systems need to provide secure deletion

❖ Secure deletion renders data irrecoverable either physically or computationally

➢ Adversaries cannot recovery securely deleted (erased data)

➢ Even with direct access to the storage media

❖ Motivated by data autonomy…

➢ Users should have control over their own data (how itʼs shared, stored, removed etc.)

❖ And by modern-day data privacy regulations

➢ GDPR, CCPA, GDPA, etc.

2

CRSS CONFIDENTIAL

❖ A system for fine-grained secure deletion on arbitrary storage media

➢ All data deletion (including truncates and overwrites) is securely deleted without undue delay

❖ Sole requirement: erasable storage for a small, bounded amount of encryption keys

❖ Designed to be a portable* interposition layer

➢ Equip any application with transparent secure deletion

❖ Achieves efficient crash consistency using novel principles around encryption key usage

❖ The first formally-verified secure delete system**

Obliviate

3

* across POSIX-compliant systems
** when completed

CRSS CONFIDENTIAL

The rest of the talk

❖ What weʼve done

➢ Background on secure delete systems

➢ Obliviateʼs original design principles

❖ What weʼre working on

➢ Addressing Obliviateʼs performance with new design principles

❖ Whatʼs coming next

➢ Lightweight methods for formally verifying Obliviate

4

CRSS CONFIDENTIAL

State-art-of-the-art: Large erasable memory[1]

❖ Hierarchical application of cryptographic erasure

➢ Deletes cause O(log n) change to the key hierarchy

➢ Changes to the hierarchy are commonly batched into epochs[2,3]

❖ Secure deletion only requires the ability to erase the root key

➢ Only the root key needs to be stored in truly erasable storage

❖ A key management scheme (KMS) implements large erasable memory

5

[1] Di Crescenzo et. al., “How to Forget a Secret.” (STACS ‘99)
[2] Reardon et. al., “Secure Data Deletion From Persistent Media.” (CCS ‘13)
[3] Ratliff et. al., “Holepunch: Fast, Secure File Deletion with Crash Consistency (IEEE S&P ‘24)

CRSS CONFIDENTIAL

Overwrite requires atomic data and KMS update

❖ Encrypted overwrite of data d with key derived from KMS K

➢ End result should be data dʼ with key derived from KMS Kʼ

➢ Possible on-disk crash states:

1. KMS, Enc(KMS, d)

2. KMS ,̓ Enc(KMS, d) (data corruption!)

3. KMS, Enc(KMS ,̓ dʼ) (data corruption!)

4. KMS ,̓ Enc(KMS ,̓ d)

❖ Existing state-of-the-art secure delete systems resort to journaling for atomicity[1]

➢ Or donʼt support secure delete for overwrites[2]

6

[1] Reardon et. al., “Secure Data Deletion From Persistent Media.” (CCS ‘13)
[2] Ratliff et. al., “Holepunch: Fast, Secure File Deletion with Crash Consistency (IEEE S&P ‘24)

CRSS CONFIDENTIAL

Stability prevents data corruption

❖ Stable key management scheme principle

➢ A KMSʼ key space doesnʼt change during an epoch

❖ Just requires a unique, public IV to be atomically written for each write

➢ This prevents key-reuse attacks

7

Crash states without stability
1. KMS, Enc(KMS, d)

2. KMS ,̓ Enc(KMS, d) (data corruption!)

3. KMS, Enc(KMS ,̓ dʼ) (data corruption!)

4. KMS ,̓ Enc(KMS ,̓ d)

Crash states with stability
1. KMS, Enc(KMS, d)

2. KMS, Enc(KMS, d)

3. KMS, Enc(KMS, dʼ)

4. KMS ,̓ Enc(KMS ,̓ dʼ)

CRSS CONFIDENTIAL

Atomic sector packing

❖ Atomic sector writes are portable across systems[1]

➢ Not guaranteed by specifications, but observed to be true

❖ Idea: logically structure sectors to pack data and metadata together

❖ Obliviate packs 16B of IV for every 496B of encrypted data

➢ Packing isnʼt very amenable for use in the Linux block IO layer

8

[1] Pillai et. al., “All File Systems Are Not Created Equal: On the Complexity of Crafting Crash-Consistent Applications.” (OSDI ‘14)

CRSS CONFIDENTIAL

Stability comes at a cost due to overwrites

❖ Overwrites during an epoch require re-encryption to uphold secure delete guarantees

➢ Example:

1. Block b is written with key k and IV s

2. Block b is overwritten with key k and IV sʼ

➢ Overwritten contents of b are still accessible using k (IVs are public)

■ Must re-encrypt b with a new key kʼ

❖ With stability, epochs incur up to 2x write amplification

9

CRSS CONFIDENTIAL 10

Latency caused by epochs
performed over the network

CRSS CONFIDENTIAL

The rest of the talk

❖ What weʼve done

➢ Background on secure delete systems

➢ Obliviateʼs original design principles

❖ What weʼre working on

➢ Addressing Obliviateʼs performance with new design principles

❖ Whatʼs coming next

➢ Lightweight methods for formally verifying Obliviate

11

CRSS CONFIDENTIAL

Combining stability with single-use keys

❖ Insight: re-encryption during epoch isnʼt needed if keys are used exactly once

➢ Single-use key principle

❖ Obliviate realizes the single-key use principle using a userspace buffer cache

➢ The buffer cache merges writes to sectors

➢ This prevents epochs from occurring on each sector overwrite

❖ Why a userspace buffer cache?

➢ Obliviate is implemented as a userspace interposition layer

➢ Storage layers below the VFS donʼt have enough information for secure deletion

■ To some extent, only applications have enough information

12

CRSS CONFIDENTIAL

The rest of the talk

❖ What weʼve done

➢ Background on secure delete systems

➢ Obliviateʼs original design principles

❖ What weʼre working on

➢ Addressing Obliviateʼs performance with new design principles

❖ Whatʼs coming next

➢ Lightweight methods for formally verifying Obliviate

13

CRSS CONFIDENTIAL

How do we know Obliviate is correct?

❖ Problem: computationally intractable to determine if data has been securely deleted

➢ Black-box testing canʼt be done

➢ We donʼt know if the implementation matches a correct specification

❖ Idea: provide correctness by construction

➢ Step 1: proof-of-concept leveraging strong typing for assurances

➢ Step 2: more powerful formal methods

14

CRSS CONFIDENTIAL

Enforcing correct key usage with types

❖ Rustʼs type system can be used to encode the run-time state of an object in its type

➢ This is the typestate pattern

➢ Incurs no run-time overhead due to Rustʼs promise of zero-cost abstractions

❖ Goal: use typestate as a lightweight method to verify key components of secure deletion

➢ The Rust compiler can guarantee compile-time correctness of things like:

■ Only encrypting data using a key that hasnʼt been used

■ Only writing encrypted data

■ Disallowing copying of keys that havenʼt been used

15

CRSS CONFIDENTIAL 16

CRSS CONFIDENTIAL 17

zero-sized state types for an AffineKey

CRSS CONFIDENTIAL 18

zero-sized state types for an AffineKey

only keys that have been used can be cloned/copied

CRSS CONFIDENTIAL 19

zero-sized state types for an AffineKey

only keys that have been used can be cloned/copied

generic over S and KEY_SIZE
PhantomData is zero-sized and allows for logical association of a type

CRSS CONFIDENTIAL 20

zero-sized state types for an AffineKey

only keys that have been used can be cloned/copied

generic over S and KEY_SIZE
PhantomData is zero-sized and allows for logical association of a type

can only construct keys using cryptographically-secure PRNGs

CRSS CONFIDENTIAL 21

zero-sized state types for an AffineKey

only keys that have been used can be cloned/copied

generic over S and KEY_SIZE
PhantomData is zero-sized and allows for logical association of a type

can only construct keys using cryptographically-secure PRNGs

takes ownership of the key and returns it as UsedOnce
(this is optimized out by the compiler)

CRSS CONFIDENTIAL 22

generic over KEY_SIZE and IV_SIZE
must have an associated error type tha

CRSS CONFIDENTIAL 23

generic over KEY_SIZE and IV_SIZE
must have an associated error type thageneric over KEY_SIZE

must have an associated error type

CRSS CONFIDENTIAL 24

generic over KEY_SIZE and IV_SIZE
must have an associated error type thageneric over KEY_SIZE

must have an associated error type

takes ownership of a key that hasn’t been used
encrypts data, returns the “consumed” key

CRSS CONFIDENTIAL 25

generic over KEY_SIZE and IV_SIZE
must have an associated error type thageneric over KEY_SIZE

must have an associated error type

takes ownership of a key that hasn’t been used
encrypts data, returns the “consumed” key

decrypts data using a “consumed” key

CRSS CONFIDENTIAL

Empirical results of using typestate (as of now)

❖ Caught a logic error when placing data into the buffer cache

➢ Forgot to decrypt sector before buffering it

➢ Manifested as a compiler error reporting mismatched types

■ E.g., expected Sector<Plaintext>, found Sector<Ciphertext>

❖ Type-driven design of key management scheme update

➢ Obliviate KMS: copy-on-write B+-tree

➢ Batch update was designed to enforce that updated nodes are only paged to disk once

■ A natural consequence of having single-use keys

26

CRSS CONFIDENTIAL

Covering the “proof gap”

❖ Typestate cannot enforce correctness of all aspects of Obliviate

➢ But it does provide a lot of coverage

❖ Kani (https://github.com/model-checking/kani)

➢ Model-checking to see if functions meet their intended specification

❖ Verus (https://github.com/verus-lang/verus)

➢ For more complex theorem proving

❖ Goal: minimize the proof gap needed to be covered by Kani/Verus

27

CRSS CONFIDENTIAL

Goals for 2024 - 2025

❖ Submissions to:

➢ ATC ʻ25

➢ ???

❖ Future work:

➢ Applying model checking and proof checking to Obliviate

➢ Potential application of Obliviate to single-level stores

28

CRSS CONFIDENTIAL

CRSS Confidential

Conclusion
❖ Obliviate is a system for portable fine-grained secure deletion

➢ All data deletion (including truncates and overwrites) is securely deleted

➢ Works on any application, and on any storage media

❖ Sole requirement: erasable storage for a small, bounded amount of encryption keys

❖ Achieves efficient crash consistency using novel principles around key usage

❖ The (hopefully soon-to-be) first formally-verified secure delete system

29

CRSS CONFIDENTIAL

CRSS Confidential

Thanks for listening!

30

Questions?
email: euchou@ucsc.edu

And thanks to all the sponsors!

