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With LLMs becoming ubiquitous, using LLMs to answer questions on your own data has
become the most common application in the era of Gen Al. Fine-tuning / Re-training being
costly, RAG has become the most common method. The “Retrieval” part of RAG consists of
retrieving tokens similar to a query from a vector database using Approximate Nearest Neighbor
algorithms. Since, vector search algorithms run inside the same GPU clusters as model
inference / training, vector search engines should be able to leverage the GPUs embarrassingly
parallel capabilities to speed up ANN searches. Vector searches should be accelerated as much
as possible as they sit on the critical path in RAG applications.

When the size of the embeddings dataset fits inside the GPU memory, GPUs have been found
to beat high-end CPUs for ANN searches. But, when datasets contain billions of vectors, and do
not fit inside GPU memory anymore, GPUs use their Unified memory (UM) feature, where the
CPU’s memory is used to extend the available memory to a CUDA kernel. Although UM allows
running larger than memory workloads on the GPU, since it uses page faults to move data
between the CPU and the GPU, the performance degrades exponentially. Even in modern
architectures such as Grace Hopper that use System-managed memory (instead of Unified
memory), the slow down is still quite significant.

To better understand and tackle this problem, we are working on characterizing the performance
of vector search algorithms such as HNSW and IVF-Flat on modern CPUs (Intel Xeon Golds,
Grace), GPUs (H100), and CPU-GPU systems such as Grace Hopper (GH200), exploring how
distance calculations can be modeled to leverage the processing units efficiently, and looking for
ways to accelerate the performance using intelligent prefetching and memory management
techniques.



