En4S: Enabling SLOs in Serverless Storage Systems

Minghao Xie, Chen Qian, Heiner Litz Center for Research in Systems and Storage University of California, Santa Cruz

Center for Research in Systems and Storage

CRSS CONFIDENTIAL

ACM Symposium on Cloud Computing

SOCC

Serverless Computing

Requires statelessness!

- Hard to develop entirely stateless applications
- > Introduces performance overheads
- > Serverless (Ephemeral) Storage:

Easy to allocate, cheap, low-latency, extremely short-lived storage

SCALE

Challenges in Serverless Storage

Serverless Environment

- Thousands of very short-lived jobs
- Bursty access pattern becomes normal
- Performance predictability improves
- performance and saves costs

*Data Evenly Sharded

Why Flash-based Serverless Storage?

CRSS CONFIDENTIAL

Capacity Cost

The Scaling Problems in Flash Storage **Disaggregation in Serverless Environment**

Limited Scheduler Scalability

Challenges in Managing Bursty Tenants

Service Differentiation Failures at Scale

I - Limited Scheduler Scalability

Existing QoS scheduler does not scale to thousands of SLOs

II - Challenges in Managing Bursty Tenants 500 LC G1 100 1000 LC G0 _ 2ms) 2ms) IOPS SLO 80 V V , 60 60 0 0 0 0 0 0 40 Goodput (KIOPS, <u>GO</u>SLO 20 G1 SIO -42.9% 0 30 40 50 17.510 20 15.010.012.5 Burst Allowance (%) Time (seconds)

CRSS CONFIDENTIAL

Low burst allowance is not work-conserving in the presence of bursty traffic

Service differentiation between LC and BE tenants diminishes at scale

En4S: Redesigning QoS Scheduler for Serverless Storage Systems

Evaluation Methodology

Baselines:

- ReFlex: Pocket's NVMe SSD Tier
- > Jiffy: DRAM-based ephemeral storage
- > S3: AWS cloud-native storage system

Applications:

- Serverless ETL Pipelines
- Serverless Sort (Stream)
- > ML Analytics

Server	EC2	Cap	4K Thpt	Cost (\$)
Function	Instance	(TB)	(KIOPS)	at Full sp
En4S	i3.l	.475	100	4.33×10^{-10}
Storage	i3.xl	0.95	200	4.33×10^{-10}
Candidates	i3.2xl	1.90	236	7.34×10^{-10}
Controller ³	m5.2xl	0	200*16	1.67×1
Jiffy	m5.16xl	.256	600	1.42×1

Table 2: Different AWS EC2 instances used for Jiffy and **En4S clusters in US-West region**

Scheduler Scalability

Tenants categorized into four groups based on their SLO criticality and average read ratio, LC Tenant Group 1 (LC G0) at 100%, LC Tenant Group 1 (LC G1) at 80%, BE Tenant Group 0 (BE G0) at 95%, and BE Tenant (BE G1) at 25%.

Performance and Cost Improvement

Cumulative IO Time of End-to-End Application Performance and Corresponding Normalized Costs for Running Equivalent Workloads.

Summary

- We introduce En4S, a high-performance, flash-based storage system designed for data-intensive serverless applications:
 - Flash disaggregation with cloud-native interfaces;
 - Performance isolation for LC/BE and both compliant and malicious tenants;
 - Scalable SLO guarantees for thousands of tenants;
- Source code available at <u>https://github.com/mhxie/En4S</u>

Status and Future Work

Status:

- En4S published at SoCC'24
- Benchmark: New findings on AWS EC2 Instance Storage
- **Based Serverless Applications**

Next Steps:

Submit the Control Plane and Benchmark Papers to the target conferences

Control Plane Extension: From SLO-Enforced Storage to Performance Gains in DAG-

14

References

- AWS Simple Object Store, <u>https://aws.amazon.com/s3/</u>
- Klimovic, A., Wang, Y., Stuedi, P., Trivedi, A., Pfefferle, J., & Kozyrakis, C. (2018). Pocket: Elastic 2. ephemeral storage for serverless analytics. In 13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18) (pp. 427-444).
- Khandelwal, A., Tang, Y., Agarwal, R., Akella, A., & Stoica, I. (2022, March). Jiffy: Elastic far-memory for 3. stateful serverless analytics. In Proceedings of the Seventeenth European Conference on Computer *Systems* (pp. 697-713).
- Klimovic, A., Litz, H., & Kozyrakis, C. (2017). Reflex: Remote flash≈ local flash. ACM SIGARCH 4. Computer Architecture News, 45(1), 345-359.
- Dean, J., & Barroso, L. A. (2013). The tail at scale. Communications of the ACM, 56(2), 74-80. 5.
- Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea. 2002. Aliquem: a novel DRR implementation to 6. achieve better latency and fairness at O (1) complexity. In IEEE 2002 Tenth IEEE International Workshop on Quality of Service (Cat. No. 02EX564). IEEE, 77–86
- Klimovic, Ana, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle, and Animesh Trivedi. 7. "Understanding ephemeral storage for serverless analytics." In 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18), pp. 789-794. 2018.

Minghao Xie Contact: mhxie@ucsc.edu

CRSS CONFIDENTIAL

Thanks!

Backup Slides

CRSS CONFIDENTIAL

17

En4S in a glance

Design Principles:

- Performance
- Predictability
- Cost Efficiency
- Key Designs
 - Ephemeral Metadata Store
 - Distributed Control Plane
 - SLO-enforced Data Plane

Data Plane

Control Plane

Enforcement at Scale - I

Enforcement at Scale - II

OSS Sub-repositories

- Flash Storage Disaggregation as Ephemeral Storage: <u>mhxie/ESReFlex</u>
 - High-performance TCP-based networked storage stack
- Asynchronous ReFlex Client Library: <u>mhxie/asyncreflex</u>
 - Optimized the storage driver on AWS lambda python runtime w/ Cython
- Ephemeral Storage Cluster: <u>mhxie/LESS-cluster</u>
 - SLO Registration & Flow Control Implementation
 - Efficient Control Channel RPC
 - Scheduler & Metadata Module & AutoScaler
- Ephemeral Storage Benchmark: <u>mhxie/esbench</u>
 - Includes synthetic workloads & real-world workloads

22

Ephemeral Metadata

Available APIs

	Table 1: Available A
invoke(handler, func_to_contexts)	Invokes stateful funct
put / get / update(handler, id, data)	Puts, gets, or updates
exit(handler)	Handler closes connect that job. Flushes all th
enter(handler, flow_hints)	Handler optionally re The controller will ve
allocate / free(handler, job_ctx)	Explicitly allocates or allocates storage resor
init(controller, context)	Initiates or loads a con
Client APIs	Descriptions

- ntext with EMD, returning a handler.
- frees a job with capacity, with job-level SLO hints. urces, must called for each new job.
- gisters or updates a flow with latency/IOPS/(rw_ratio) SLO.
- erify job limits and then return the connection to storage nodes.
- ctions to nodes and deregisters the flow for the connection in ne EMD for all shared mutable objects to the store in the controller.
- an object to assigned nodes, returning an object future.
- tions with encoded contexts and EMD in the payload.

APIs in En4S Client Library

