
CRSS CONFIDENTIAL
1

Outback: Fast and Communication-efficient Index
for Key-Value Store on Disaggregated Memory

Yi Liu, Minghao Xie
Prof. Chen Qian, Prof. Heiner Litz, Prof. Yuanchao Xu
Center for Research in Systems and Storage
University of California, Santa Cruz

CRSS CONFIDENTIAL

Disaggregated KV Store with Far Memory

2

❖ Disaggregated architecture decouples the compute and memory resources into

independent and distributed resource pools connected by RDMA/CXL, etc,.

[1] FORD: Fast One-sided RDMA-based Distributed Transactions for Disaggregated Persistent Memory

CRSS CONFIDENTIAL

RDMA RPC based KV store

4

Cell (ATC’16, B tree)

[1] Fast {RDMA-based} Ordered {Key-Value} Store using Remote Learned Cache.

Memory nodeCompute node

CRSS CONFIDENTIAL

Microbenchmark

❖ Normalized CPU time for data query with:

➢ Hash table/B-tree/Learned index/Dummy

5

64M KV pairs

1,2,4-thread

Normalized

CPU time=1

CRSS CONFIDENTIAL

RDMA RPC based KV store

6

Cell (ATC’16, B tree)

FaSST (OSDI’16, Hash table)

Computation on server side->Latency

[1] Fast {RDMA-based} Ordered {Key-Value} Store using Remote Learned Cache.

Memory nodeCompute node

CRSS CONFIDENTIAL

❖ Cuckoo Hashing / Learned Index only

returns a range of possible locations

❖ Minimal perfect hashing (MPH) returns the

exact location

7

Bucket

s

Hash(keyi, s)

key2key1key4key3

key4key3key2key1

Brute-force to
find a seed

Range Lookup v.s. Point Lookup

v

3

7

6

12

…

s1

s2

sn

Hash0(k)

Hash1(k)

Query(key)

We get the exact value!

k1, v1 k2, v2 k3, v3 k4, v4
Hash0(k)

Hash1(k)

Query(key)

k5, v5 k6, v6 k7, v7 k8, v8

8 possible cells!

B. MPH in Ludo HashingA. (2, 4)-Cuckoo Hash Table

CRSS CONFIDENTIAL

Ludo Hashing: a disaggregation fit!

8

Ludo Hashing Lookup Algorithm

CRSS CONFIDENTIAL

DESIGN

9

Compute nodes Memory nodes

bucket
locator

MPH buckets TableSeeds

CRSS CONFIDENTIAL

DESIGN

10

Compute Pool

Compute Nodes Shard

Compute Node1

Bucket locator
& Seeds

seed
update

Memory Pool

Memory Node Shard

Memory Node

Seeds

MPH buckets
Table

Overflow
Cache

KV Data Area

RDMA RPC

Data
operations

Compute Node2

Bucket locator
& Seeds

Index part

Value part

CRSS CONFIDENTIAL

Lookup Operation

11

Seeds array

Memory node

1 0A

1 0B

hashA(k)

hashB(k)

Get the
#bucket s

Get the #slot

bucket locator

Addr

Pair
<#bkt, #slot>

RPC

Directly go to
targeted slot to
get data addr

Get data back

Access
data

Data back

MPH bucket KV Data Area

N
e
tw

o
rk

❷

❶

❹

❸

Compute node

Pair
<#bkt, #slot>

❼

❻

❺

Data back

Query k

CRSS CONFIDENTIAL

Performance Evaluation

❖ YCSB A/B/C/D/F workloads, E is not included because this work is not

optimized for data scan.

❖ Client threads number: 8->64, and keeps #server threads=4 and running on

only 4 cores.

12

A B C FD

CRSS CONFIDENTIAL

Overhead Evaluation

❖ Increased #Coroutines/thread does not increase the performance unlike

increased #threads

❖ Memory cost: one-sided RDMA solutions cost 5x of MBs or more on each

compute node for index caching

❖ Capacity impact is trivial on dataset of Facebook and Open Street Map

13

Coroutine Impact Memory Cost Capacity Impact

CRSS CONFIDENTIAL

Project Status

❖ Update since last IAB Meeting

➢ Enhanced Experiments: Re-ran experiments on high-performance hardware,

showing Outback’s scalability and throughput across varied workloads.

➢ Broadened Applicability: Demonstrated Outback’s use with other data structures,

supporting range queries and offloading compute tasks for devices

➢ Improved Concurrency: Implemented bucket-level locking, clarified extendible

hashing resizing, ensuring efficient load balancing and shard distribution.

➢ Paper accepted by VLDB ’25, open-sourced at https://github.com/yliu634/outback

14

https://github.com/yliu634/outback

CRSS CONFIDENTIAL

Thanks for Listening
liuyi@ucsc.edu

15

CRSS CONFIDENTIAL

Backup

16

1 0A
1 0B

s

Get the
#slot

Othello arrays and
seeds array

Addr

Tuple<key,
#bkt, #slot>

Write
data

Status back

MPH buckets, overflowed cache
and data

N
e
tw

o
r

k

RPC

❶

Tuple<key,
#bkt, #slot>

Status back

❸Write slot
value

❷

❹

cache

Write in cache
if the slot is occupied

Memory nodeCompute node

1 0A
1 0B

s Addr

Tuple<key,
#bkt, #slot>

RPC

Access addr
stored in slot Check key and

update/delete
data

Status
back

MPH buckets and data area

N
e
tw

o
r

k

❶ ❷

Tuple<key,
#bkt, #slot>

Status
back

❸

Othello arrays and
seeds array

Memory nodeCompute node

Get the
#slot

CRSS CONFIDENTIAL

MPH Resizing

❖ How to enlarge the MPH table and without stop serving data requests on the

server side?

17

s
s

s

s

Memory NodeCompute Nodes

1
2
3

Seeds and Othello

Clients request to insert 𝑘𝑡

Cache is almost full after inserting
𝑘𝑡

❷

❸

❶

data
insert

data
query

RDMA_READ the Othello
arrays and seeds

s

Stale MPH

buckets

Nclien

t

Len

❹

Polling until Nclient is
greater than zero

1 0A
1 0B

	Slide 1
	Slide 2: Disaggregated KV Store with Far Memory
	Slide 4: RDMA RPC based KV store
	Slide 5: Microbenchmark
	Slide 6: RDMA RPC based KV store
	Slide 7: Range Lookup v.s. Point Lookup
	Slide 8: Ludo Hashing: a disaggregation fit!
	Slide 9: DESIGN
	Slide 10: DESIGN
	Slide 11: Lookup Operation
	Slide 12: Performance Evaluation
	Slide 13: Overhead Evaluation
	Slide 14: Project Status
	Slide 15: Thanks for Listening liuyi@ucsc.edu
	Slide 16: Backup
	Slide 17: MPH Resizing

