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Disaggregated KV Store with Far Memory
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❖ Disaggregated architecture decouples the compute and memory resources into 

independent and distributed resource pools connected by RDMA/CXL, etc,.

[1] FORD: Fast One-sided RDMA-based Distributed Transactions for Disaggregated Persistent Memory
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RDMA RPC based KV store
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Cell (ATC’16, B tree)

[1] Fast {RDMA-based} Ordered {Key-Value} Store using Remote Learned Cache.

Memory nodeCompute node
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Microbenchmark

❖ Normalized CPU time for data query with:

➢ Hash table/B-tree/Learned index/Dummy
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RDMA RPC based KV store
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Cell (ATC’16, B tree)

FaSST (OSDI’16, Hash table)

Computation on server side->Latency

[1] Fast {RDMA-based} Ordered {Key-Value} Store using Remote Learned Cache.

Memory nodeCompute node
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❖ Cuckoo Hashing / Learned Index only 

returns a range of possible locations

❖ Minimal perfect hashing (MPH) returns the 

exact location 
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Ludo Hashing: a disaggregation fit!
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Ludo Hashing Lookup Algorithm
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DESIGN
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DESIGN
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Lookup Operation
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Performance Evaluation

❖ YCSB A/B/C/D/F workloads, E is not included because this work is not 

optimized for data scan.

❖ Client threads number: 8->64, and keeps #server threads=4 and running on 

only 4 cores. 
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A B C FD
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Overhead Evaluation

❖ Increased #Coroutines/thread does not increase the performance unlike 

increased #threads

❖ Memory cost: one-sided RDMA solutions cost 5x of MBs or more on each 

compute node for index caching

❖ Capacity impact is trivial on dataset of Facebook and Open Street Map

13

Coroutine Impact                                   Memory Cost                                           Capacity Impact
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Project Status

❖ Update since last IAB Meeting

➢ Enhanced Experiments: Re-ran experiments on high-performance hardware, 

showing Outback’s scalability and throughput across varied workloads.

➢ Broadened Applicability: Demonstrated Outback’s use with other data structures, 

supporting range queries and offloading compute tasks for devices

➢ Improved Concurrency: Implemented bucket-level locking, clarified extendible 

hashing resizing, ensuring efficient load balancing and shard distribution.

➢ Paper accepted by VLDB ’25, open-sourced at https://github.com/yliu634/outback
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https://github.com/yliu634/outback
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Thanks for Listening
liuyi@ucsc.edu
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Backup
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MPH Resizing

❖ How to enlarge the MPH table and without stop serving data requests on the 

server side?
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