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Abstract advantages compared to traditional, tangible publishing
methods such as books, magazines, and films. Digital data
Many archival storage systems rely on keyed encryptimoften much easier and cheaper to transport and store
to ensure privacy. A data object in such a system is éx-comparison to traditional mediums such as paper and
posed once the key used to encrypt the data is comprge based printing. In many cases, digital content is also
mised. When storing data for as long as a few decadsg®aper to produce. Many forms of traditional content
or centuries, the use of keyed encryption becomes a rgalivery such as books and magazines are already created
concern. The exposure of a key is bounded by compuéad edited as digital data; thus the production of a hard-
tion effort and management of encryption keys becomespy simply adds additional costs.
as much of a.problem as the mar_1agement of the Fiata thﬁ)espite the advantages of digital content, tangible hard-
key is protecting. POTSHARDS is a secure, distribute pies of data do offer at least one major advantage over

very long-term archivz_;\I storage system that eliminate_s_t fgital data. Archivists have, over many years, developed
use of keyed encryption through the use of unconditiof-g; ese set of strategies for preserving hard-copies of
ally secure secret Sha””g-(‘i’“v n) uncolnd|t|onz?1||y SECUre jata. Additionally, archivists have become very adept at
sec_:ret sharing spheme _spllts an object up rmlsh.ares, judging degradation of hard-copy media through empiri-

which provably gives no information about the object, UH&’;\I observation and testing. The relative newness of com-
lessm of the shares collaborate.

puter data presents many challenges as digital archivists

POTSHARDS separates security and redundancy ¥ e|op the tools and techniques to preserve digital data.
utilizing two levels of secret sharing. This allows for

secure reconstruction upon failure and more flexible stor-1 "€ access patterns of archival storage are distinctly
age patterns. The data structures used in POTSHARBEerent from general purpose storage. ~Archival stor-
are organized in such a way that an unauthorized u8@€ is heavily write-centric—information is written to an
attempting to collect shares will not go unnoticed since3{chive and it may be a long time, if ever, before that data
is very difficult to launch a targeted attack on the systef§. 2ccessed from the archive. An example of this would
A malicious user would have a difficult time findindoe a collection of business documents that must be pre-
the shares for a particular file in a timely or efficienterved for legal reasons even though they are rarely, if
manner. Since POTSHARDS provides secure stora‘q@r’ requested. This is the exact opposite of the model
for arbitrarily long periods of time, its data structureQ! Shared storage for a distributed application or content
include built-in support for consistency checking and daistribution in which the access patterns would be heav-
migration. This enables reliable data churning and tH¥ Skewed towards reading or editing data For example,
movement of data between storage devices. a web page may be written once to a storage s_y;tem but
read many times by many different clients. Additionally,
Keywords : Data Security, Distributed Storage, Secufchival storage is less concerned with throughput and la-
Storage, Survivable Storage tency than it is with ensuring data persistence, integrity
and security.

This paper introduces the POTSHARDS (Protection
1 Introduction Over Time, Securely Harboring And Reliably Distribut-
ing Stuff) project, an archival storage system designed
In today’s computing environment, more and more datafee a computing environment where relatively static data
being migrated from hard copy to digital form. This trenchust be preserved for an indefinite period of time. POT-
is catalyzed by a number of motivations revolving arourBHARDS separates data redundancy and data secrecy and
economic efficiency. Digital data offers many economigilizes a geographically distributed array of network at-



tached storage devices, callatthives. The first phase 2 Related Work
of data storage involves the use of a secret sharing algo-

rithm to ensure data secrecy. This avoids the problem in-

troduced by keyed cryptography where the key represehfi€ design concepts and motivation of the POTSHARDS
a single point of failure which could render data recoveRfoJect borrow from various research projects. These
infeasible. This also helps avoid the problem of preseR/CI€Cts range from general purpose distributed stor-
ing historic keys associated with an archive of encrypt@d® Systéms, to distributed content delivery systems, to
files. The second phase of data storage in POTSHARB§IVal systems designed for very specific uses.
utilizes a data redundancy algorithm to ensure data perA number of systems such as OceanStale [5], Far-
sistence. The longevity of the data within the system $ite [1], and PASTIIR] rely on the explicit use of keyed en-
ensured through the redundancy inherent to secret shatfgption to provide file secrecy. While this may work rea-
schemes and to aggressive consistency checking. sonably well for short-term file secrecy it is less than ideal
In order to understand the methods we propose to Jgrethevery long-term storgge problem that POTSHA_RDS
: . iS5 addressing. Further evidence that POTSHARDS is de-
in POTSHARDS, an elementary understanding of secret . S .
T S|8ned for a different application can be found in the de-
sharing is necessary. Although we chose to not boun .
. : . sign choices made by the authors of the systems men-
POTSHARDS to use any single secret sharing algonth[n ; ) :
. . . : Idned previously. For example, in OceanStore straight
two popular algorithms will be quickly explained. We as-__ =~ *© : S
: 4 replication was chosen in favor of erasure coding in order
sume that POTSHARDS will be equipped to use any sg- )
cret sharing scheme 0 p.rowde for b_etter read performance. .In f:pntrast, the
' design emphasis on POTSHARDS is reliability for very
A rather simple approach to sharinghbebit secret long-term storage.
data block is to generate— 1 randomb-bit blocks and

Another class of storage projects that use distributed
XOR the blocks to the secret data block as follows=

storage techniques but rely on keyed encryption for file
rand; rand> @ - --@randn-1 P secret. Then—1rand  gecrecy do not provide any method for insuring long-term
blocks and the resuR could be distributed amongpar- e persistence. These systems, such as Glagier [4] and
ticipants and thesecret block could be tossed away. INgrgenet[[B] are designed to deal with the specific needs
this case, an attacker would needrablocks in order o ¢ content delivery as opposed to to the requirements of
reconstruct the secret. Any number of the blocks less tnaﬂg—term storage. An archival storage system must ex-

n will not reveal anything about the secret. This schemgciyy address the problem of insuring the persistence of
works very well for security-centered storage. the system’s contents.

Shamir's secret sharing scheme is often called ananother class of systems is aimed at long-term storage
(m, n)-threshold schemé&1P} 8], since< n of the origi- put with the explicit goal of open content. Systems such as
naln shares are needed to reconstruct the secret, wheneoCKSS [7], and Intermemory]2] are designed around
is chosen when the shares are created. Shamir's schengdServing digital data for libraries and archive where file
based on polynomial generation and interpolation. Firstgansistency and accessibility are paramount. These sys-
random polynomial of degree— 1 is created by generattems are developed around the central idea of very long-

ing m— 1 random coefficients, C2,...,cm-1 and placing term access for public information and thus file secrecy is
the secret at coefficier in the polynomial. m partici-  explicitly not part of the design.

pants can collaborate to generate the interpolation poly- . . .
nomial Pm_1(X). The secret is revealed by evaluatin The PASIS architecturé [13] and the work of Subbiah

Pm-1(0). If fewer thanm participants collaborate, then th nd Bloughl[11] avoids the use of keyed encryption by us-

secret will not be revealed. since at leasof the shares M9 secret sharing threshold schemes. While this prevents
are required to reconstruct’the secret the introduction of the singular point of failure that keyed

encryption introduces to a system, the design of these sys-

As of now, the first level of splitting requires a setem only use one level of secret sharing. In effect this
cret sharing scheme similar to the two schemes coveredmbines the secrecy and redundancy aspects of the sys-
The second level of splitting can be use any form of reems. While related, these two elements of security are, in
dundancy, such as Reed-Solomon encoding or Shaminany respects, orthogonal to one another. Combining the
scheme. Obviously, using the XOR-based secret shargggrecy and redundancy aspects of the system also has the
scheme would not be sufficient for the second level pbssible effect of introducing compromises into the sys-
splitting. As we will show, each object written to POTtem by restricting the choices of secret sharing schemes.
SHARDS is subject to two levels of splitting, whdrag- By separating secrecy and redundancy, an implementation
ments are created at the first, secure split #hdrdsare a of POTSHARDS is able to utilize a security mechanism
product of splittingfragments for redundancy. optimized for redundancy or secrecy.



3 Design Goals might include catastrophic failure of part of the system or
Byzantine failures caused by a comprised component of

3.1 Assumptions the system.

The fourth assumption is that POTSHARDS is de-
One of the motivating ideas of the POTSHARDS projegigned expressively for use as an archival storage system
is the need for secure, very long-term storage. To thiad thus places its design emphasis upon longevity and
end certain assumptions are made out of the understagiturity. It is not designed for interactive use as a low-
ing that very long-term storage must take into account adtency file server. The design of POTSHARDS largely
vances in computing technology. These advances in tegbnsiders performance in the interactive time-scale a moot
nology are difficult to predict, but POTSHARDS is madgoint. A likely usage scenario could include a user re-
immune to them by specifying policy as opposed to mecuesting a file to be delivered at a later time when pro-
anism. Five key policies are outlined below along with thgessing has completed. When faced with a design com-
assumptions related to the mechanisms that enforce pheémise POTSHARDS will opt in favor or longevity and
policy. security over throughput speed.

The first policy is related to authentication. POT- Finally, data may be exposed if all or a subset of the
SHARDS assumes that authentication is provided by thechives collude. In the case that all of the archives col-
host system. The mechanism for this policy may be Rgie, it is possible to expose all of the information stored
simple as a security guard that verifies the identity ofty POTSHARDS. The archive collusion property is both
user or it may be a much more advanced authenticatiggcessary and potentially dangerous. When an authorized
system using cryptographic primitives. By specifying pokubject requests a particular object, the archives holding
icy instead of mechanism this detail is left to the implahe shards for that object must collude, which must result
mentation. Part of the advantage of assuming that the siyisa properly reconstructed object. On the other hand, it
tem includes correct authentication is that, in a very longould be unfavorable to have archives unexpectedly col-
term storage system, the file lifetimes may be far longgide. In the case of unexpected collusion, we assume
than the effective lifetime of a user account. For examan archives main interest is colluding only when an au-
ple, an employee of a company may store an importaRbrized subject requests an object. In other words, an

documentin POTSHARDS, but it is unlikely that the usefrchive would gain very little by fulfilling unauthorized
will still be a valid employee decades later. In this sceequests.

nario, file ownership runs the risk of becoming little more
than a historical side-note of file origins. The contents of
POTSHARDS are designed to be protected through seguo Security and Replication
rity policies that designate security clearance. Thisnalo
much of the problem of file access to encapsulated in 8&ring data securely is one of the most important aspects
authentication layer. of a long-term archival storage system, and keyed encryp-
The second policy is related to network traffic. POTion is a common method of storing data securely. Unfor-
SHARDS assumes that all communication between nodesately, given the lifetime of the data being stored in an
in the system is secure. While keyed encryption is a wealehival storage system, keyed encryption may not be suf-
ness for long-term file storage, encryption is very effaxtificient, due to the single point of failure introduced when
for securing network traffic; network traffic might be seencrypting with a key. Keyed encryption relies on the
cured through the use of session keys as is done in S8umputational effort required to determine the key. Given
The nature of keyed encryption makes it very useful fenough time and computing power, an adversary might
short-term security of replaceable data. For examplebi able to compute the key for a given set of data. Often
the session keys of a secured communication are lostjrites advances in technology drastically reduce the time it
is a relatively straightforward procedure to generate néakes to obtain the encryption key. For example while the
keys and restart the communication. In contrast, if the dDES standard using a 56-bit key was considered secure in
cryption keys for an encrypted file are lost it may not bE977 it was only 22 years later that a cooperative effort
possible to recover the file in a timely manner. managed to locate a decryption key in less than twenty-
The third assumption is based on the nature of comptitree hours[[10] Even 128-256 bit symmetric keys might,
ing technology. POTSHARDS assumes that failures wif some future time, be trivial to break using as-yet undis-
occur in the system. While most systems take into cogevered algorithms, quantum computers, or biologically-
sideration some level of disaster recovery, the very lorlgased computers, among other possibilities.
term nature of POTSHARDS and unpredictable growth of Some may argue that new encryption algorithms may
technology dictate that the system must be designed tolae-applied as the old ones are broken. Unfortunately, ev-
commodate the failure of any of its subsystems. Failuresy time a new algorithm is applied, all data in the system



File Root Fragment Nodes Shard Nodes structure such as the one shown in figdre 3. Each node in

Hash | shard 1,1 LastChecked the list would have two outgoing links and two incoming
Sl e ‘\\ — links, which connect to two neighbors. Thus, if a node in
TS R [ [svwnm oo ™[ toncheces the structure is compromised, then the only information
Hash | Fragment2 o] o exposed is that of its two neighbors. With this structure,
\ Fash | shard @) @)oo it would be beneficial to enforce a policy that neighbor
e nodes not be related. An object can be reassembled by
[ton [ o]~ assigning a name to each shard, which allows an autho-
Figure 1: Shard information such as integrity dataand zed entity to collect the correct shards and reconstruct
location stored in a tree data-structure. the object.

must be re-encrypted, which is a potential housekeepfﬁig4 Data Migration

nightmare. We assume directed attacks will eventually occur within a

In contrast, it is possible to provably store the data S§gng-term archival storage system. To make the task of re-
curely using secret sharing. Instead of relying on comssembling the shards more difficult, we can make use of
putational effort and the latest encryption algorithms, Wyr data structures to churn the shards. Since the physical
canrely on the fact that an adversary would need to collgs¢ation of the shards does not affect object reconstruc-
all of (or a subset of) the shares. In addition, shares G@h, we can randomly migrate shards throughout the list.
be distributed such that an adversary would have troukjgch migration not only creates difficulties for directed
effectively finding all of the shares and would not go ungttacks, but it can also be used as a load balancing mecha-
noticed while launching an attack on the storage systemism, Migrating shards such that no single point of failure

Systems such as PASIS_[13] combine security and gists for an object would also be beneficial, but may be
dundancy using general threshold schemes. In this casficult to accomplish without exposing too much infor-
an object will be split intan shares, which are then givermation about the shards. A possible solution would be to
out ton shareholders. If angn shares are recovered, th@ssign a system-wide failure group to each shard, which is
original object can be reconstructed. Thus, security diecked upon insertion into the system’s data structures.
accomplished by handing the sharesnttrusted share- These problems will be covered in subsequent sections.
holders and data redundancy is accomplished by requiringn addition to slowly churning the shards, such a system
only mof then shares for reconstruction. In contrast, Wgould also need to support the migration of data from one
aim to separate security and redundancy into two sepafgien of storage to another. As previously stated, migra-
StepS. SUCh a SCheme W|” a”OW for the l’eCOHStrUCtion %n between different Storage devices is pivota' in POT-
an object during failure without requiring knowledge o§HARDS. We assume that failures will eventually occur
all shares created while encoding for security. Such segad current storage technologies will one day be replaced,
ration also enables a system to parameterize the threshgig it would be to our advantage to ensure that data can
for security and redundancy independently. be moved between any storage medium.

3.3 Data Structures 3.5 Malicious Attack Survivability

The shares of an object can be organized hierarchicallydirkey element to POTSHARDS survivability is its dis-
a tree-like structure, as shown in figlile 1, which fits nattributed nature. To ensure the survivability of the corgent
rally into a two level splitting scheme. However on closef the system, two key design elements related to the dis-
inspection this introduces several problems. For examptihuted nature of POTSHARDS must be enforced. These
in a tree-like structure an object can link to its secrecywo design features relate to malicious attacks on the sys-
centric fragments, which are in turn each linked to theigm.
redundancy-centric shards. In this scheme, the amount of he first design feature that must be present is that it
information obtained is dependent on what level is comust be very difficult to launch a targeted attack against
promised. If a fragment is compromised, then all of iIBOTSHARDS. This feature entails several aspects and is
shards are compromised. If the object root is comprieaportant as protection from unauthorized data access.
mised, then it is very possible that an adversary can #n assumption made in this area is that activity in the
construct the original object. system is being monitored and strange behavior can be
We would like to organize the data such that its positiatetected and acted upon. If a malicious user is attempting
in the data structure will not expose any information abotat access data for which they are not authorized, the at-
its origin. This can be easily accomplished using a linetack strategies available to the attacker should take a suffi



ciently long time that an alarm would be raised. For exam- | file |
ple, a brute force attack where the malicious user attacks 1
each storage node could be detected and the attacker iso-

Secret

lated before sufficient shares are obtained to reconstruct
data. Thus, the design of POTSHARDS should make it splitting
difficult to launch a time-efficient targeted attack on the
system. |

The second design feature that must be present is that | | |
the distributed nature of POTSHARDS must not introduce
a single point of failure into the system. Any such sin-
gle element would introduce a vulnerability to denial of
service attacks into the system. Each of POTSHARDS \—\
subsystems and the system as a whole must be robust in
design and implementation to resist an attack on any sin-

fragment 1 fragment2 | -------- fragment m

. : Redundancy
gle point which could prevent access to the contents of the Encoding
system.
4 Preliminary Design l
shard 1 shard2 | ----eennnn shard n

The POTSHARDS design is still in the early stages of dgiqyre 2: Splitting an object into fragments using se-

velopment. Even though we have not thoroughly coverggkt splitting and fragments into shards using redun-
all design aspects of the system, we have some ideajghcy encoding.

how the data will be organized. This section will cover

techniques for splitting the data into storage units called

shards, writing objects to the system, retrieving objedtdformation about the contents of the original file and can

from the system and some of the basic data structures ugedised to regenerate and redistribute the shards. Since

for data management. the contents of the file are not exposed in this process it
could potentially be done automatically without the need

" for user intervention.
4.1 Securely Splitting the Data Hserimervent

The POTSHARDS system stores files as a series of fix¢®  Fragment Identifier Lists

sized data blocks. These blocks of data are produced

through two levels of data processing: the first tuned forlist of fragment identifiers is created when an object

security and the second for redundancy. The productigfadded to the system. This fragment identifier list is

the first level of splitting is a set diragments. These constructed during the first level of splitting. A fragment

fragments are hashed to form a unique fragment ideri@ientifier is added to an object's fragment identifier list

fier. Each fragment is then split into a setshfrds, with When a fragment is created for the object. In addition, as

each shard holding its source fragment's identifier. Thighown in FigurdR, a fragment identifier is concatenated

a set of shards can be used to reconstruct a fragment wéh @ shard when the shard is created during the second

a failure occurs. This process is illustrated in Fidire 2. level of splitting. Such placement of the fragment iden-
Using two levels of Sp||tt|ng provides a number of intiﬁers allows one to |dent|fy the shards needed to recon-

teresting and useful properties. First, each object to $guct the fragments for a given object. The use of the

stored by the System can be tuned for a particu|ar Stgﬂn(?atenated fragment identifier is eXpIained in the next

age strategy. For example, a file that can be reprodu&&gtion.

with relative ease but contains content that must be secure

can be _t_ur_led for_maximum secrecy while s_aving spage3 Storing the Shards

by sacrificing a bit of redundancy. Second, in the event

of a failure, an individual fragment for a file can be reéWe propose to organize data in a distributed, circular,

constructed without exposing any additional informatiahoubly-linked list. An example of the basic structure is

about the original file. This can be very useful for onlingiven in FigurdB. As shown in Figuké 4, each node in the

consistency checkers. If a number of shards are fouisd contains a pointer to its predecessor, a pointer to its

to be corrupt, the remaining shards can be used to regamecessor, a unique identifier, a shard, and a list of frag-

erate the fragment. This fragment does not expose amgnt identifiers representing fragments constructed using



Archive 1 the fragment identifier with the fragment before perform-
ing the second level of splitting. If the shards are cre-
ated with the fragment identifier embedded, verification
can occur on the fragment level. A process can collect the

&
(=)

¥ Archive 2

~ shards for a randomly chosen fragment by searching the
T T, T . . . e .
O . list for a particular fragmentidentifier. The fragmentieen
H : tifier constructed after combining the shards would then
. : simply be compared to the search key used when collect-
: ¥ Archive n ing the shards. Note that by randomly reconstructing frag-
: @ (0 U ) - - ments for verification purposes, no information about any
: N : of the objects is revealed, since a fragment only represents
) SRR R R R LR LR a single piece of many needed to actually reconstruct the
Figure 3: Data structure for organizing shares on a set object.
of archives.
4.4 Creating Objects in the System
1 v | Y
D {shard D {shard D isha As stated in the previous section, two levels of splitting
prev L next prev L next prev L next . . . .
e e e will break an object up into many pieces, called shards.
l A l A L We must now concern ourselves with how to store these
Figure 4: Individual nodes of the list containing the Pieces in an efficient manner. Simply storing the shards
shards. created in the second level of splitting can provide an effi-

cient and straightforward storage solution. With refegenc

the contained shard. Each node in the list contains a fistFigure2, the fragments are thrown away and the shards
of fragment identifiers, because we would like to reusad their respective fragment identifiers are handed off to
shards to conserve space. Thus, it is possible for a shifnel storage layer of the system. The shards are then in-
to be shared between two distinct fragments. Rememiserted into the distributed, doubly-linked list in a proba-
to note that the shards are essentially random, thus shakiitigtic manner.
shards between fragments does not reveal any informatioAccess to the original contents of an object will re-
about the object. The unique identifier is currently a crypuire all of the fragments generated in the first level of
tographic hash of the shard. Note that the cryptograpkiditting. Since only the fragment identifiers and shards
hash is used for verification at the shard level. are stored, the fragments must be reconstructed from the

As shown in Figur€l3, each archive holds a fraction 6hards. Thus, authorization to first obtain the fragment
the list locally, where the last node on the local list pointgentifier list of an object is necessary along with the au-
to another list on a different archive. Each node in the ligtorization for the system to reconstruct a fragment using
contains a shard generated through the two-level splittidgch fragment identifier. Without authorization, an adver-
process, a unique identifier and a list of fragment idengiary can only guess which fragments are used to create
fiers. The contents of the list are probabilistically churnéin object. Such a search of the system would not only
periodically to ensure that the nodes are distributed as uigiquire a great deal of time and computing power, but it
formly as possible throughout the list. The contents of theould also be easy to detect.
nodes can be churned by specialized processes and dur-
ing normal operations (i.e. searches, inserts, etc.). It4'55
assumed that all operations performed on an archive are
properly authenticated. Thus, in order to traverse the e implied from the structure illustrated in the previous
tire list, the subject traversing the list will have to auttie sections, the only piece of information necessary for im-
cate with every archive in the system multiple times, oneeediate object reconstruction is the fragment identifier
for each shard. Since the shards are periodically churnkst, As of now, we are unsure how the actual fragment
it would be very difficult for an adversary to efficientlyidentifier list will be stored. We assume a subject will re-
reconstruct any of the objects. The details involving thgiest an object, which will require some form of authenti-
functionality of each archive is left to future work. cation. If the subject is authorized to access the objeet, th

Given the structure of the data within the system, thesgstem will retrieve the fragment identifier list and issue
are currently two methods of verification. First, since afragment reconstruction request for each fragment iden-
node’s identifier is a hash of the shard, it can be usedtifter. Since each shard is stored with a list of the frag-
verify the contents of each node in the list. A more pownent identifiers that use the shard, a traversal of the en-
erful method of verification involves the concatenation dife distributed list is required for each fragment ideatifi

Retrieving Objects from the System



Depending on the chosen storage policies for an objegtiecks enough shards so that the fragment could be regen-

a fragment is reconstructed after alh{n)-scheme) or a erated.

subset (m,n)-scheme) of the shards for the given frag- A promising area of consistency checking could be the

ment are found. The fragments are then used to recage of algebraic signatures such as those described by

struct the object. Litwin and Schwarz[[5]. These structures could be used
to optimize the consistency checking within the system
compared to traditional hashing algorithms.

5 Open Problems and Future Work

The POTSHARDS project s still at a relatively early stage.3 ~ Archive Recovery

and thus many of its design elements are still in their for- o )

mative stages. In fact, none of the aspects of the POTi€ distributed nature of POTSHARDS introduces the
SHARDS are at a stage where their design can be con§l@ssibility of a failed storage device. Since the system
ered finalized for even the initial implementation. Ther@ designed to provide storage for decades or longer, the
are still many questions that, while identified, have yet {gilure of one storage devices or even an entire archive

be examined in greater detail. Some of the more pressignevitable. Further pressing the need for reliable dis-

issues that we identified are listed below. aster recovery is the doubly linked list structure used in
POTSHARDS as shown in FiguEé 3. Since all the stor-
age devices are connected, the loss of one device must

5.1 Data Structures not render the list irreparable. POTSHARDS must have a

We expect POTSHARDS data structures to change as E)eu“rable way to recover from the simultaneous failures of

. multiple storage archives.

design of the system as a whole matures. Currently, we " , ) )

are designing the system with doubly-linked lists in mind. In addition to stralghtforwar\]rd ls;otr)agebollewcedfalllure.sr,]

An early sketch of the system used tree structures wh POTSHARDS system should be able to deal wit

may have improved performance but presented too mugygantine fal_Iures wher_e a dey|ce may be_ acting mali-

of a security risk. ciously. While the projected implementation of POT-
Aside from the fundamental data structures, the coﬁ.'-_m‘RDS wguld consist of a controlled network of dis-

tents of each node are subject to change as well. 50%“‘80' devices, as opposed to a federated storage sys-

possibilities for changes to the structure of the nodes f§m such as FARSITE1], Fhe possibility St.'” eX'St.S Fhat a
clude fields to indicate status of the node. This migﬁPmpromlsed storage device could be acting maliciously.

include fields used by garbage collection or fields which
identify the nodes as being of a part_|cular data type. They Naming
latter example could be useful if multiple types of data are
stored in the list besides shards such as naming informa@the present time the naming of shards within the sys-
tion or object metadata. tem has not been finalized. There are a number of pos-
sibilities that are being examined ranging from randomly
generated names, hames based on cryptographic hashes
of the shards contents, or magic nhumbers generated by
A critical aspect of very long-term storage is insuring thabme deterministic process. Hash based naming has the
file consistency is maintained. Malicious users, degrad@ivantage that the naming and consistency information
tion and faulty writes can all cause trouble for a systeisione and the same. If a malicious user has the ability
aimed at maintaining data for an extended period of tinie; change shard data then there are two possible attack
such a system must provide a proactive solution to insgeenarios. In the first, a malicious user changes the data
ing that the integrity of its contents is protected. Orfaut not the name. In this case regenerating the name re-
method of ensuring this in POTSHARDS is through theeals the change. In the second scenario a malicious user
use of active consistency checking. changes the data and the name. In this case a search for
One straightforward method of active consisten@shard by name then the search simply returns a negative
checking would be to check the integrity of the systemesult.
contents at regular times. This would require securelyThe issue of naming extends beyond shards to other el-
recording consistency information, such as a hash valagjents in the system. The methods and role of naming in
for each shard. This method could be optimized by thratealing with fragments and objects is another area to be
tling these integrity operations to reduce overhead duriagamined. The distributed nature of POTSHARDS also
times of high activity. Further optimization might involvesuggests that the naming of components is an important
smart checking that does not check each shard but ratissue as well.

5.2 Consistency Checking



5.5 Storage Protocol collection strategy would have to be secure against a ma-

) ) licious user. For example, if a straightforward strategy of
In the current discussion of POTSHARDS, the actual siQkterence counting was used, the data structures must be

age QeV|ces are referenced in rat.her g(_aneral terms. @8 re from a malicious user that attempts to artificially
mentioned p_rewously,_ the system is designed to be halrgduce the reference count in order to trigger a clean-up.
ware agnostic so that it can accommodate future advangeg ain shards are used for the regeneration of more than

in computing technology. None the less, the capabilitige file, as previously suggested, this sort of attack could
and high level storage protocols must be defined so tha ery damaging.

implementation can make adequate hardware deCiSionS'Storage efficiency might also be accomplished by

reusing preexisting shards to limit the amount of storage
5.6 Migration overhead needed. In this strategy, instead of generating
all the shards for a given fragment, it might be possible
As POTSHARDS is designed for very long-term storagg use a mixture of pre-existing and randomly generated
migration is an important consideration. The distributeghards. The implications of this strategy would be that
nature of the system suggests that archives will be comigigme shards would be used in the regeneration of more
on-line as well as leaving the system. A method of safalyan one file. This could have the desired effect of reduc-
moving shards off of the archive that is scheduled to lﬂﬁJ the total amount of storage overhead imposed by the
removed from the system is therefore very important. Reecret splitting and redundancy encoding.
lated to graceful removal of archives from the system is a
method of dealing with catastrophic failure of a archive.
For archives that come on line after the initial start @ Conclusions
the system, a method of normalizing population across all
the archives in the system will be important. This may iGurrent systems do not address the needs of a system that
volve placing more shards on new archives, moving exigtust store files securely for a very long period of time.
ing shards to new archives or a hybrid of both approach@gnen storing files for spans of time measured in decades,
Another area of migration that is being considered faany of the common conventions used in storage intro-
the idea of data churning. Data churning would involvguce unacceptable weaknesses. Keyed encryption intro-
the automatic movement of shards within the system. Thiigces a single point of failure and is only computationally
has the possible benefit of making targeted attacks meegind; history has shown that this approach often fails
difficult. One possible difficulty is that any churning stratover time. Similarly, user accounts and file ownership
egy would need to ensure that all of the shards needggy be shorter lived than the files when dealing with data
to reconstruct an object are not inadvertently moved #gat must survive longer than the users that created it.
the same archive. If the churning strategy is based on amhe POTSHARDS project aims to provide file secu-
even probablllty diStribUtion,the chances of this OC(n.gTi r|ty for very |0ng-term Storage through the use of se-
should be acceptably low. Even with a low probability afret sharing. Objects that are to be stored in the system
shard consolidation within a single archive, we would Stﬂre Sp]it into fragments ina security |ayer and shards in
prefer to not take any chances. We are considering p@lie redundancy layer. These shards are stored within a
cies to bound the number of single-object shards placgdtributed storage environment in a linked list structure
on an archive. For inStanCG, some fractibmof the to- Since Computing techno|ogy has the potentia| to drasti-
tal number of shards for an object will place a firm uppeally change over several decades the POTSHARDS sys-
bound on shard consolidation within a single archive. tem is designed with a modular structure that allows for
components to be upgraded over time.
; Moving forward, the primary focus for the POT-
5.7 Managing Storage Growth SHARDS system is to continue to revise and formalize the
If the growth of storage is not properly addressed, it #fesign, with the goal of producing a working prototype. A
obvious that POTSHARDS may incur a great deal of stdestable prototype should further force the revision of the
age overhead, which is the cost for long-term data prdesigns described in this paper and provide some evidence
tection and integrity. While the POTSHARDS system?®r the scalability and feasibility of the system.
distributed nature allows for easy installation of additib
storage, efficient use of existing storage might be achieved
through the use of garbage collection and shard reuse.ACknOW|edg ments
A possible problem with garbage collection would be
designing a strategy that does not violate any of the POhe authors would like to thank Owen Hofmann, Carl
SHARDS design principles. Specifically, any garbadéscheske, Kristal Pollack, Deepavali Bhagwat, Lawrence



You, and Darrell Long for their help in early discus{11] A. Subbiah and D. M. Blough. An approach for fault tol-
sions on the POTSHARDS design. Other members of

the Storage Systems Research Center were also helpful.
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