
Using Comprehensive Analysis for Performance Debugging in Distributed
Storage Systems

Andrew W. Leung Eric Lalonde Jacob Telleen James Davis Carlos Maltzahn
University of California, Santa Cruz

{aleung,elalonde,jtelleen,davis,carlosm}@cs.ucsc.edu

Abstract

Achieving performance, reliability, and scalability
presents a unique set of challenges for large distributed
storage. To identify problem areas, there must be a way
for developers to have a comprehensive view of the entire
storage system. That is, users must be able to understand
both node specific behavior and complex relationships be-
tween nodes. We present a distributed file system profiling
method that supports such analysis. Our approach is based
on combining node-specific metrics into a single cohesive
system image. This affords users two views of the storage
system: a micro, per-node view, as well as, a macro, multi-
node view, allowing both node-specific and complex inter-
nodal problems to be debugged. We visualize the storage
system by displaying nodes and intuitively animating their
metrics and behavior allowing easy analysis of complex
problems.

1. Introduction

The complex nature of distributed storage increases
debugging complexity. Distributed storage performance
problems have two classifications: node-specific issues
(problems either occurring at, or relevant to, a single node)
and inter-node issues (problems caused by relationships
with other nodes). Debugging node-specific problems has
been researched for many years with much success [2, 9,
11]. Understanding inter-node problems has become an in-
teresting challenge explored more recently [3, 6, 8, 11, 12,
16]. The key problem facing current approaches is an in-
ability to achieve comprehensive understanding of theen-
tire storage system. More specifically, a complete view of
the storage system includes node-specific events, as well as
complex inter-node events.

Understanding inter-node problems has proven difficult
because these problems are: (1) distributed, the source of a
problem may be far removed from where its effect is ob-

served, (2) opaque, the number of nodes obfuscates the
problem source, and (3) sporadic, the problem may only
occur on a few nodes or only under specific workloads.
We assert that in order to fully understand and debug dis-
tributed storage, both node-specific and inter-node events
must be analyzed.

The current standard for visualizing system perfor-
mance is to log and graph relevant performance counters.
This is appropriate when seeking knowledge of individual
metrics, but as system size grows, the usefulness of these
techniques diminishes. For example, users can easily view
the throughput of any single node as a graph and be satis-
fied, but the log and graph approach fails when the goal is
to convey more complex concepts such as how an individ-
ual node failure impacts overall resource availability.

We take a comprehensive approach to profiling and ana-
lyzing both micro and macro behavior, and offering a more
robust view of the system than standard log and graph tech-
niques. We profile the system by running avisualization
client on each node. The client is responsible for collect-
ing node-specific instrumentation data and local machine
statistics. Data is forwarded to a cluster ofvisualization
serverswhich use timestamp information to serialize data
from all nodes into a single, cohesive stream of system
events. This serialization enables cause and effect analysis
of distributed performance problems. The ordered stream
is then fed into avisualization applicationwhich uses com-
puter animation to intuitively represent system activity and
behavior in real time.

We have implemented our profiler in the Ceph petascale,
distributed file system [17] along with a prototype visual-
ization application. Our prototype visualizes storage be-
havior by animating all nodes in the system and their vari-
ous system metrics and activities. For example, we animate
CPU utilization as a changing color scale and characterize
metadata operations via pie charts. By viewing multiple
nodes at once, users can easily understand complex inter-
node relationships. Evaluations of our profiler indicate a
very limited overhead, with scalability in storage systems



over 1,000 nodes. Using our visualization we uncovered
several important performance issues in Ceph.

2. Related Work

Profiling and benchmarking storage systems presents
many unexplored challenges. While significant inroads
have been made in profiling local file systems which re-
side on a single machine [2, 9, 11], more current work is
exploring general distributed systems. These areas include
profiling black-box systems [1, 5, 11], fine-grained profil-
ing [11], end-to-end request tracing [3, 16], and model
checking [6, 7, 13, 14]. Each of these tools is effective for
locating and determining bugs and performance problems
in distributed systems. We argue for a simpler approach
to identifying performance problems in distributed storage.
We believe visualizing storage system nodes, events, and
operations allows users to easily identify problems. This is
particularly true for inter-node problems, which are more
difficult to identify with previous solutions. We believe
a simple debugging strategy, such as system visualization,
will become even more important as systems become larger
and more complicated.

We rely on animation to visualize system data because
it can take raw data and manipulate it so that recogniz-
able patterns begin to emerge, which makes management
of resources and trend analysis easier. This allows the user
to see subtle interactions that can easily be overlooked by
other methods of data exploration. Visualization can also
be used for prediction and intuitive troubleshooting. A
number of systems use call-graphs to build the path taken
by requests through the system [1, 3, 14, 16]. This approach
is useful for identifying inefficient software components
and slow nodes in a network. Unfortunately, it only pro-
vides information for a single path in the system and un-
derstanding the interaction of many correlated paths can be
difficult. Previous systems have also relied on visualization
to aide in debugging distributed systems [4, 10, 12, 15]. A
key difference between these solutions and ours is these so-
lutions are aimed at more general distributed systems. Our
work is aimed at analyzing both low- and high-level met-
rics across a large number of storage nodes.

3. Methodology

To achieve our design goals, we take a distributed ap-
proach to profiling. Each node in the file system runs a
localvisualization client, which is responsible for profiling
the local storage system and machine information. Peri-
odically, each visualization client updates avisualization
serverwith recent changes to the local node. The server
is responsible for chronologically ordering the data to pro-
duce a single, serialized stream of system events from all

nodes and sending this serialized sequence to avisual-
ization application. The visualization application visually
represents nodes in the system and displays or animates
their metrics and behavior. This provides an intuitive in-
terface where both node-specific and complex inter-node
behavior are easily understood. We discuss this process in
detail throughout this section.

3.1. Visualization Client

The visualization client is implemented as a user-space
process which collects instrumentation data and machine
statistics. This design provides two key benefits. First, the
client does not add overhead to critical paths because it re-
lies only on instrumentation data and can reside outside of
the storage system. This improves development time and
ensures that the client does not interfere with system per-
formance. Second, by only requiring instrumentation data,
the client can profile any instrumented part of the storage
system. This greatly improves portability and allows pro-
filing of components in user and kernel space.

We have implemented the visualization client as a Java
RMI client. The client profiles the local node by using two
methods of data collection. The first method is concerned
with metrics which are common to all nodes in the storage
system, such as system load and network utilization. This
node-agnostic method is performed by a thread which peri-
odically polls local OS resources like/proc/loadavg.
The second method is node-specific, and depends on the
role that the node plays in the storage system (e.g., client or
server). These events are captured from instrumented code
in the storage system itself. The visualization client stores
collected metrics in a local database. Periodically, a sepa-
rate communication thread polls this database to aggregate
events that occurred during the previous poll interval. This
aggregation is then time stamped and sent to the visualiza-
tion server over RMI. The communication period is kept
short to ensure that information sent to the visualization
server is fresh.

3.2. Visualization Server

In order to achieve a complete view of the system, met-
rics from all nodes must be aggregated to a common loca-
tion. A cluster of visualization servers is responsible for
receiving and organizing data from all nodes in the system
and for passing a serialized ordering of system events to the
visualization application. In order to visualize and under-
stand the many cause-and-effect relationships of events in
a distributed storage system the visualization servers tryto
organize and forward system metrics as a cohesive, time-
ordered stream.

However, ordering a continual stream of events by time



stamps poses an inherent trade-off between timeliness and
global event ordering. Events are batched at the server
before sending them to the visualization application. By
batching for a short period (less than a second) the server
can receive and order a number of events, ensuring that all
events received within the window are passed to the visu-
alization client in the correct order. Long windows cause
a large number of events to be correctly ordered, but also
imply that the visualization application will receive updates
less frequently. The merits of this tradeoff varies between
systems, depending on how important event ordering is.

With a clustered visualization server each server can-
not create a complete ordering of events for a buffer win-
dow because visualization clients may communicate with
any server. To address this, servers communicate all infor-
mation for a specific time interval to a specific server who
is the authority for that interval. For example, all servers
may forward data that is timestamped between logical time
1500 and1600 to a specific server where all events for
that period can be correctly ordered. Authority for a time
interval may be calculated via a simple hash, mapping in-
tervals to servers.

An important scalability issue is the amount of data that
is forwarded to the visualization server. If each client col-
lects and forwards a large amount of data, a system with a
large number of nodes will overwhelm even a reasonably
sized visualization server cluster. To alleviate this, thevi-
sualization server limits the amount of data sent by each
client to values of interest which correspond to specifica-
tions provided by the visualization application. For exam-
ple, when the visualization application is only analyzing
storage device performance, the amount of data collected
from storage system clients can be reduced.

We have implemented the visualization server as a Java
RMI server. Before passing events to the visualization ap-
plication the server applies a filter. The filter serves to limit
the amount of data passed to the application. For example,
if the user has chosen to focus the visualization application
on a subset of system nodes, the server only needs to pass
data for those nodes being displayed.

3.3. Visualization Application

We have implemented an initial visualization prototype
in C++ using the OpenGL 1.5 library. While our proto-
type is rudimentary, it serves as a proof-of-concept refer-
ence. The visualization application may or may not reside
on the same node as the visualization server. As such, the
server may stream metrics to the visualization application
via IPC, sockets or a shared file. Nodes are animated by
glyphs corresponding to the role of the node in the system
(e.g., client or file server). All collected metrics and mea-
surements correspond to animations which are displayed

relative to their node glyph. For example, a file server’s I/O
characterization may be shown as a dynamically changing
histogram adjacent to the glyph. Users can view any subset
of nodes or metrics in order to improve comprehension of
large-scale systems.

4. Implementation Details

We have implemented our performance debugging sys-
tem in the Ceph petascale, distributed file system [17]. We
chose Ceph because it is large-scale (designed for petabytes
of data and tens of thousands of nodes), supports high per-
formance computing workloads, has several unique design
features, and is currently in prototype status. Prototype sta-
tus indicates problems are likely abundant and analysis is
helpful to current designers.

Ceph is designed as an object-based, parallel file sys-
tem. These systems generally consist of three main com-
ponents: the client, a metadata server cluster (MDS), and
a cluster of object storage devices (OSD). These systems
achieve scalability and performance by separating the con-
trol and data paths. Clients communicate all namespace op-
erations, such asopen() andstat(), to the MDS and
all file I/O operations, such asread() andwrite(), to
the storage devices. Large-scale systems may contain tens
of thousands of clients and storage devices and hundreds of
metadata servers.

In our visualization application users are able to toggle
the metrics being displayed and which nodes are in focus.
Figure 1 shows a screenshot of the visualization applica-
tion with numeric labels and descriptions added. Clients
are represented on top, with MDSs following, and OSDs
on the bottom. Network traffic, labeled 2, is shown as tri-
angles pointing in and out, which grow and shrink as traffic
varies. System load average, labeled 3, changes from blue
to red, indicating low and high load respectively, as the load
changes. Each MDS has a pie chart, labeled 1, showing a
breakdown of the number ofopen() (blue),readdir()
(red), andstat() (green) operations received. Each OSD
shows a breakdown of I/O by type and size, labeled 6, with
a kilobyte acting as the cutoff between large and small I/O.
Below the I/O breakdown, labeled 5, is the moving aver-
age of large and small write latencies, respectively. Disk
utilization, labeled 4, is shown above each OSD as the to-
tal percentage of free space used. The menu on the right
of Figure 1 allows users to toggle the nodes and metrics in
view.

5. Visualizing the Ceph File System

We conducted a study on Ceph to evaluate the ability of
our profiling and visualization techniques to aid in debug-



Figure 1. A labeled screenshot of the visualization applica tion.

ging performance. Our experiments focus on the visualiza-
tion application’s ability to reveal inter-node performance
problems. For each performance issue revealed, we vali-
date our observation through additional experiments. We
used a 25 node cluster with 4 OSDs and a varying number
of MDSs and clients. A single visualization server was run
on a separate node with the visualization application also
residing on that node. To save page space, the figures in
our analysis only include the key portions of our visualiza-
tion.

Our profile consisted of examining the effects various
workload types have on performance. We began by run-
ning a workload consisting only of metadata operations
where 50 clients each created a large tree of directories
and files, and then walked and read the entire tree. We
observed a large number of small writes being written to
the OSDs, depicted in Figure 2(a). Upon further investiga-
tion we discovered the MDS’s metadata journal was being
synchronously flushed to the OSDs on every metadata op-
eration to ensure the logs reliability. Then we introduced
a second workload where 20 clients ran I/O heavy oper-
ations, in which each client wrote a gigabyte to a unique
file. The only metadata operations issued were to open
and close the files. Our visualization of the OSDs under
both workloads in Figure 2(b) shows a much higher load
on each OSD, and latency for small write operations (the
journal flushes) significantly increased. To validate our ob-
servation and analyze the impact of the high latency journal

flushes, we compared the time required to run the metadata
only workload with and without the additional 20 clients
performing I/O. Our results are shown in Figure 3. The
metadata workload is over 60% slower when there are ad-
ditional clients performing I/O. This overhead is due to the
added latency of journal flushes slowing the performance of
metadata operations. This is surprising because it conflicts
with the general intuition that metadata and data operations
are decoupled in parallel file systems. This dependency
can be eliminated by bypassing the MDS’s need to store
the journal on the OSDs, perhaps via reliable NVRAM or a
separate journal store. This experiment demonstrates how
a comprehensive view of the entire system allows problems
with seemingly remote causes to be identified.

Ceph employs an advanced metadata load balancing
scheme called Dynamic Subtree Partitioning [18]. DSP al-
lows a MDS node to dynamically share responsibility for a
hot or popular portion of the namespace with another, less
loaded, MDS node. We tested Ceph’s implementation of
this strategy using a flash crowd and 3 MDS nodes. The
flash crowd consisted of over 11,000 total open requests
from 2,000 clients. Figure 4 shows the MDS load distribu-
tion as depicted by our visualization. The pie chart next
to the first two MDSs indicate each node only received
open requests, while the third MDS has not received any
requests. We immediately see one MDS is far more loaded
than the other two. We investigate further by measuring the
number of requests received by each OSD, shown in Fig-



(a) OSD activity with a metadata-only workload running.

(b) OSD activity running a metadata workload and a I/O workload which issues large writes.

Figure 2. Increased load and latency on OSDs show I/O and meta data workloads interfering.

Client ID 

0 10 20 30 40 50

W
or

kl
oa

d 
R

un
tim

e 
(s

)

0

20

40

60

80

100

120

140

160

180

200

220
Metadata Workload + Other Clients I/O Workload

Metadata Workload

Figure 3. The time to run a metadata workload
with and without other clients performing an
I/O workload.

Figure 4. Uneven load across three MDSs
during a flash crowd.

ure 5. The distribution of load is very uneven, with one
MDS handling over 90% of the requests and the third han-
dling none at all. This indicates either an infrequent ex-
changes of load metrics or slow migration of the names-
pace.

6. Performance Evaluation

We evaluated the overhead and scalability of our profiler
in Ceph. Experiments were conducted using the same 25
node cluster, though 12 OSDs were used instead of 4. We
measured the latency for RMI function calls which push
collected metrics from the visualization client to the vi-
sualization server. We varied the number of Ceph clients

MDS Number
1 2 3

N
um

be
r 

of
 o

pe
n(

) 
C

al
ls

 S
er

vi
ce

d

0

2000

4000

6000

8000

10000

Figure 5. The number of opens handled by
each MDS during a flash crowd.

(and thus visualization clients) and Figure 6 shows the re-
sults and standard deviations. The average call latency with
1,000 nodes is only three times that of latency with one
node. This indicates that even in very large systems the
cluster of visualization servers may be kept small. To ex-
plore the performance overhead added by our profiler, we
ran three workloads, each with and without our profiling in-
frastructure and measured the total run time for each work-
load. We used a heavy-metadata only workload, a light-I/O
and light-metadata workload, and a heavy-I/O only work-
load. Table 1 shows our results. We see that the visualiza-
tion client profiling each node adds a near negligible over-
head to each workload.

7. Future Work and Conclusions

The opportunity exists in a number of areas for future
work. One possible area is the granularity of data that



Number of Ceph Clients

1 50 10
0

25
0

50
0

75
0

10
00

A
ve

ra
ge

 R
M

I C
al

l L
at

en
cy

 (
m

s)

0

20

40

60

80

100

Figure 6. Average latency for RMI calls as
clients increase.

Workload W/o Client W/ Client
Metadata 165 167

I/O w/ metadata 157 158
I/O 146 146

Table 1. Time (in seconds) to run three work-
loads with and without profiling the system.

the visualization server aggregates. For example, if the
user zooms the view into a small region, the granularity
of data sent from that region should become more fine-
grained. This would complement our current approach of
only sending data from nodes which currently appear in the
view. Another area of potential research is the integration
of automated performance anomaly detection using statis-
tical analysis. This approach may compliment our compre-
hensive view of system analysis by notifying the visualiza-
tion application when performance outliers are detected in
the system. Such notifications will make the user aware of
issues outside of the current view.

We presented a new approach to distributed storage sys-
tem profiling that focuses on offering an intuitive view of
system performance in a scalable fashion. We success-
fully identified performance issues in the Ceph petascale
file system. We also identified performance degradation
that resulted from seemingly unrelated system activities.
The ability of our system to identify these issues shows
promise for our prototype visualization application. In con-
clusion, we believe our work has motivated and demon-
strated a need to achieve a simple comprehensive view of
the storage system if complex performance debugging is
to be achieved. We hope our work serves motivates others
toward this goal.

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed
systems of black boxes.19th SOSP, Oct. 2003.

[2] A. Aranya, C. P. Wright, and E. Zadok. Tracefs: A File
System to Trace Them All.3rd FAST 2004, Mar. 2004.

[3] P. T. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
magpie for request extraction and workload modelling.6th
OSDI, Dec. 2004.

[4] R. Bosch, C. Stolte, D. Tang, J. Gerth, M. Rosenblum, and
P. Hanrahan. Rivet: a flexible environment for computer
systems visualization.27th SIGGRAPH, July 2000.

[5] M. Chen, A. Accardi, E. Kcman, J. Lloyd, D. Patterson,
A.Fox, and E. Brewer. Path-based failure and evolution
management.1st NSDI, Mar. 2004.

[6] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and
J. Symons. Correlating instrumentation data to system
states: A building block for automated diagnosis and con-
trol. 6th OSDI, Dec. 2004.

[7] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly,
and A. Fox. Capturing, indexing, clustering, and retrieving
system history.20th SOSP, Oct. 2005.

[8] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica.
X-trace: A pervasive network tracing framework.4th NSDI,
Apr. 2007.

[9] S. Graham, P. Kessler, and M. McKusick. Gprof: A call
graph execution profiler.SIGPLAN, June 1982.

[10] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok.
Operating system profiling via latency analysis.7th OSDI,
Nov. 2006.

[11] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia
distributed monitoring system: design, implementation, and
experience.Parallel Computing, 30(5-6), July 2004.

[12] M. P. Mesnier, M. Wachs, R. R. Sambasivan, A. X. Zheng,
and G. R. Ganger. Modeling the relative fitness of storage.
SIGMETRICS, June 2007.

[13] A. V. Mirgorodskiy, N. Maruyama, and B. P. Miller. Prob-
lem diagnosis in large-scale computing environments.SC
’06, Nov. 2006.

[14] S. S. Shende and A. D. Malony. The tau parallel perfor-
mance system.Int. J. High Perform. Comput. Appl., 20(2),
2006.

[15] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-El-
Malek, J. Lopez, and G. R. Ganger. Stardust: tracking ac-
tivity in a distributed storage system.SIGMETRICS, June
2006.

[16] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A scalable, high-performance dis-
tributed file system.7th OSDI, Nov. 2006.

[17] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn.
CRUSH: Controlled, scalable, decentralized placement of
replicated data.SC ’06, Nov. 2006.

[18] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller.
Dynamic metadata management for petabyte-scale file sys-
tems.SC ’04, Nov. 2004.


