
An Efficient Implementation of Interactive Video-on-Demand

Steven W. Carter Darrell D. E. Long∗

Department of Computer Science
Jack Baskin School of Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064

{carter, darrell}@cse.ucsc.edu

Jehan-François Pâris†

Department of Computer Science
University of Houston

Houston, TX 77204-3475
paris@acm.org

Abstract

The key performance bottleneck for a video-on-demand
(VOD) server is bandwidth, which controls the number
of clients the server can simultaneously support. Previ-
ous work has shown that a strategy called stream tapping
can make efficient use of bandwidth when clients are not
allowed to interact (through VCR-like controls) with the
video they are viewing. Here we present an interactive
version of stream tapping and analyze its performance
through the use of discrete event simulation. In partic-
ular, we show that stream tapping can use as little as 10%
of the bandwidth required by dedicating a unique stream
of data to each client request.

1 Introduction

Video-on-demand (VOD) is a service that allows clients
to communicate with a VOD server to select and then view
the video of their choice at the time of their choice. A
few companies, such as IBM [17] and the DIVA Systems
Corporation [8], are successfully running VOD servers for
relatively small numbers (less than 500) of clients. In or-
der for VOD to become a wider commercial success and
challenge the multi-billion dollar video rental industry, it
must be able to handle many more clients, allow those
clients to interact with the video through standard VCR
controls, and do so with as much efficiency as possible to
keep costs down.

The main bottleneck for a VOD service is bandwidth—
either the disk bandwidth of the VOD server or the net-
work bandwidth connecting the VOD server to the client
set-top box (STB), the piece of hardware at the client
premises responsible for receiving and decoding video
data. These two bandwidths are related—using one effi-
ciently almost always means using the other efficiently—

∗This research was supported by the Office of Naval Research un-
der Grant N00014–92–J–1807 and by the National Science Foundation
under Grant PO–10152754.

†This research was supported by the Texas Advanced Research Pro-
gram under grant 003652-0124-1999.

and together they control how many concurrent streams
of data the VOD server can send to clients.

A conventional VOD system does not use bandwidth
efficiently. It simply dedicates a unique stream of data
to each client request. For interactive VOD, which al-
lows clients to interact with their selected video through
VCR controls such as pause and rewind, conventional sys-
tems have a certain amount of appeal. They are straight-
forward to implement, and, since clients potentially will
have unique streams of data due to their interactions, it is
not clear to what degree the VOD server would be able
to share data between clients anyway. Still, conventional
systems do not scale well, and better solutions are neces-
sary.

Systems such as stream tapping [3, 4] and patching [9]
present one such solution. Stream tapping allows clients
to “tap” into streams of data created for other clients who
have requested the same video. By using existing streams
as much as possible, clients minimize the amount of new
bandwidth they require and allow more clients to simulta-
neously use the VOD server.

With more clients able to use the server, the VOD
provider’s cost per client is reduced and clients do not
have to wait as long for their request to be serviced. Since
the most important criteria for how a client will judge a
VOD service are likely to be cost and waiting time, stream
tapping has the potential to be an extremely effective so-
lution for VOD.

Indeed, previous work [3, 4] has shown that stream
tapping is effective for non-interactive VOD, performing
better than all non-broadcasting schemes and performing
competitively with broadcasting schemes, even at high
workloads. Here we present an interactive version of
stream tapping and explore its performance under a va-
riety of conditions.

The subsequent sections are organized as follows. In
Section 2 we describe stream tapping in some detail. Sec-
tion 3 introduces interactive stream tapping and section 4
presents information about the simulation we used to ana-
lyze stream tapping, and then in Section 5 we show results
from that simulation. Finally, Section 6 contains our con-



∆c ∆c

β∆b ∆b

β 4β

b

a

c

St
re

am

3β2β

...

...

Time (since the start of complete stream a)

Figure 1: The three stream types from the VOD server’s perspective. Stream a is a complete stream, b is a full tap
stream, and c is a partial tap stream.

cluding remarks.

2 Stream Tapping

Stream tapping [3, 4] allows clients to “tap” into data
streams created for other clients, which reduces the
amount of new bandwidth required for their own requests.
The strategy is very effective, using less than half the
bandwidth of a conventional system for any video re-
quested more than 10 times an hour [4]. Stream tap-
ping also outperforms both piggybacking [7], which alters
video display rates to merge video streams together, and
staggered broadcasting [2,5], which starts video instances
at regular intervals.

2.1 The Basic Algorithm

Stream tapping deals with overlapping videos. If one
client begins viewing a 120-minute video, and 10 min-
utes later another client begins viewing the same video,
then their videos will overlap for 110 minutes. If the sec-
ond (later-arriving) client can use the data from the video
stream feeding the first client, then the second client will
only need its own stream for 10 minutes, and the VOD
server will save over 90% on the bandwidth cost. Stream
tapping defines a way in which clients can often “tap” into
streams of data originally intended for other clients.

Because stream tapping allows clients to receive data
far in advance of when it is needed, clients will need some
sort of local buffer space. The capacity of this buffer, des-
ignated as β and measured in minutes of video data, is one
of the factors determining when and in what way a client
can tap data.

Clients will tap most of their data from complete
streams. These are “normal” streams. They start at a par-
ticular position in a video and transmit the remainder of
the video. For non-interactive stream tapping, this start-
ing position is always the beginning of the video.

There are two mutually exclusive ways a client can tap
data. These two ways are determined by ∆, the differ-

ence in video position (in minutes) between the client and
a complete stream. If the client’s request has not been
serviced yet, we assume it is at position zero.

The first way a client can tap data is through the use of
a full tap stream (Figure 1, stream b). This method can be
used if there exists a complete stream for the same video
as the request, and if ∆ ≤ β. Then the client can receive
the complete stream and put it in its buffer while it simul-
taneously receives the first ∆ minutes of the video from
the full tap stream and displays it live. Once the client
reaches the ∆-minute point of the video, it can receive the
rest of the video from its buffer, which will continue to
be fed by the complete stream, and which will therefore
always contain a moving ∆-minute window of data.

Clients can also use partial tap streams (Figure 1,
stream c). These streams can be used if there is a com-
plete stream for the same video as the request, but ∆ > β.
In this case, the client must go through phases of filling up
and emptying its buffer since the buffer will not be large
enough to account for the difference in video positions.
In particular, the client will receive the complete stream
for β minutes to fill up its buffer and simultaneously re-
ceive the first β minutes of the video from the partial tap
stream. The client will then receive the next ∆ − β min-
utes of the video via the partial tap stream to catch itself
up to the video data in its buffer. At that point it can simul-
taneously empty its buffer and re-fill it using the complete
stream, and then receive the next ∆ − β minutes of the
video from the partial tap stream again to catch itself up
to the buffer, and then repeat until the video is complete.

Note that these definitions describe when a client can
use a tap stream but not when it should. Stream tapping
makes this decision based on the service times of the three
types of streams (see Table 1) and the current video group
of the request. The service time is defined as the amount
of time the client requires its own stream of data, and the
video group is defined as a complete stream and all of
the streams tapping data from it. With a minor amount of
bookkeeping, the VOD server can keep track of the cur-
rent and minimum average service times for each video



Table 1: Service times for the three stream types when the length of the video is L and the difference in video position
(for tap streams) is ∆.

Stream type Service time
Complete L
Full tap ∆

Partial tap β + bL−β
∆

c(∆ − β) + min(∆ − β, (L − β) mod ∆)

group.
Stream tapping makes the stream decision in the fol-

lowing manner. If no complete stream for the requested
video is active, the request must use a complete stream.
If a tap stream can be used, stream tapping compares the
service time of the potential tap stream to the minimum
average service time of the video’s current group. If the
former is less than a constant factor α of the latter, then
the request will be assigned a tap stream. Otherwise, it
must use a complete stream.

The idea behind the decision process outlined above
is that a video group will start with a large average ser-
vice time because of the initial complete stream, but then
tap streams will advance the service time almost mono-
tonically to its minimum point. Stream tapping attempts
to determine this minimum point and then start a new
video group when it is reached. Since the progression
to the minimum service time is almost monotonic, an α
value near 1.0 makes the most sense, and we have found
α = 1.03 to work well in practice.

2.2 Further Improvements

For a client to use a tap stream, it must have the ca-
pability to receive two distinct streams at once—the tap
stream and a complete stream. If the client can handle
a bandwidth higher than two streams, then two more op-
tions become available to it.

The first of these options is called extra tapping. Extra
tapping allows a client to tap data from any stream on the
VOD server providing data that it can use, and not just
from the complete stream in its video group.

For example, suppose a complete stream starts at time
t0, and a full tap stream starts at time t0 + 5 minutes.
Then, if a second full tap stream starts at time t0 + 6 min-
utes, extra tapping will allow it to tap normally from the
complete stream but also tap four minutes of data from the
first full tap stream. In all, the service time of the second
full tap stream would drop from six minutes to two min-
utes, saving the VOD server some bandwidth for other
requests.

There are two limitations to extra tapping. The first,
as alluded to earlier, is bandwidth-related. The client can-
not receive more streams than its maximum bandwidth al-
lows. The second limitation is buffer-related. The client

is not allowed to tap data that it does not need or displace
data that it does need. Since the buffer of a partial tap
stream is completely spoken for after β minutes, and since
a full tap stream exists for at most β minutes, extra tapping
can only be used for the first β minutes of tap streams.

Stream tapping’s second option is called stream stack-
ing. If a client, under the same limitations as for extra tap-
ping, can receive its tap stream at a higher rate than nor-
mal, and if the VOD server has streams available for use,
then the client can stack some of these streams together
and use them to more quickly receive the tap stream. By
rearranging bandwidth in this way, stream stacking allows
the VOD server to finish servicing existing streams more
quickly, allowing new streams to be scheduled.

3 Interactive Stream Tapping

Interactive VOD is much more difficult to implement
that non-interactive VOD. Not only do clients have to be
“merged” together initially so they can share data, they
also potentially have to be “re-merged” every time they
make an interaction. The initial merging problem has
been solved in numerous ways, but the interactive merg-
ing problem has caused new problems, and that is why
many broadcasting protocols either do not support inter-
active VOD [10, 11, 15, 16, 18] or only support limited or
discontinuous VCR functions [2]. It is also why straight
batching is not a good idea (since it cannot re-merge
clients) and why piggybacking [7] is not effective (since
it re-merges too slowly). Interactive VOD adds two new
areas for stream tapping to manage. One is the interaction
itself, which can include removing a client from its video
group and deallocating bandwidth, and the other is the
completion of the interaction, which can include adding
a client to an existing video group or creating a new video
group altogether. We will discuss these areas in order.

When a client initiates an interaction, stream tapping
first attempts to release bandwidth associated with that
client. It examines each stream the client is scheduled to
receive, and if the client is the only one to receive them,
then the streams will be deallocated.

Stream tapping then determines the amount of band-
width required by the interaction, if any. If the bandwidth
is available, the client will begin the interaction immedi-



ately using an interaction stream. Otherwise the client
will be forced to wait. Note that we could allow stream
tapping to use the client’s buffer at this point, but we
wanted to ensure that once a client starts an interaction,
it will be able to continue the interaction for as long as de-
sired, and not be forced either to terminate the interaction
early or wait for bandwidth in the middle.

Once the client finishes its interaction, it will find itself
in a similar position to when it first made its request: there
will either be a leading complete stream some ∆ away
that it can tap from, or there will be no such stream. Once
again the server will have to decide on a stream type for
the request, but this time the process will be different.

Whereas stream tapping used service times to make the
decision, interactive stream tapping uses the positional
difference, or distance, between streams. There are two
reasons for this. First, distance correlates well with ser-
vice time, but distance is easier to calculate. Second, it
is important to space complete streams sufficiently apart
to allow room for stream tapping to assign tap streams,
and while it is possible to calculate the distance between a
client and leading and trailing complete streams, it is not
possible to do so with service times.

Therefore, given some distance δ for each video, any
client finishing an interaction with a video position within
δ of a complete stream is assigned the appropriate tap
stream. Otherwise it is assigned a complete stream.

Note that δ is the maximum distance away from a com-
plete stream that a tap stream should be assigned. Stream
tapping can approximate this distance easily. Every time
a new group for a video is created, the amount of time
the previous group was active is an approximation of δ.
Stream tapping simply averages the three most recent of
these times together and uses that value for δ.

Once the client has been assigned a stream type, the
VOD server will know the initial stream requirements for
the client. At this point the client can use its buffer to per-
haps reduce those requirements, and then the server will
be able to attempt to allocate bandwidth for the client. If
the bandwidth is available, the client will begin receiving
data immediately. Otherwise it will have to wait.

3.1 Contingency Streams

When clients make an interaction, they often require a
new stream of data, either for the interaction itself (e.g.
when rewinding with picture) or for the period of normal
playback following the interaction. In order to prevent
the client from being blocked in such a request for new
bandwidth, stream tapping attempts to keep a number of
streams available on the VOD server. These streams are
called contingency streams.

Normally, the more contingency streams a VOD server
has, the less time clients will have to wait to resume play-
back after an interaction, but then more bandwidth will be

Pe
rc

en
ta

ge

0.0

0.5

1.0

1.5

2.0

2.5

3.0

60 70 80 90 100 110 120 130 140 150

Empirical data
Our distribution

Video Length (min)

Figure 2: A comparison of our video length distribution
to empirical data.

wasted. With stream tapping, however, clients employing
the stream stacking option can use all available streams,
including contingency streams, and so very little band-
width will be wasted.

4 Our Simulation Model

Stream tapping is complex enough that an analytical
model was not an option, and so we used discrete event
simulation to study the system. In this section we will de-
tail some of the assumptions and workload characteristics
we used in the simulation.

4.1 Video Library

We had to decide on two factors for each video: its
length and its popularity. For the lengths, we used empir-
ical data from 409 videos released during 1997 and 1998.
The Internet Movie Database1 was our primary source for
video lengths and Video Hits Spotlight2 for video release
dates. From this data we found that a normal distribution
with a mean of 102 minutes and a standard deviation of
16 minutes provided the smallest sum-squared error while
retaining integer values for the parameters. A comparison
of our distribution to the empirical data is shown in Fig-
ure 2. We also truncated the video lengths to a minimum
of 70 minutes and a maximum of 180 minutes to keep the
values realistic.

The popularity of each video was modeled using a Zipf-
like distribution with parameter 0.271. This is the distri-
bution used by most VOD studies [1, 2, 5, 6, 12–14]. The
0.271 parameter was determined using empirical rental
patterns from 92 videos, and so we modeled the VOD
server to have 92 videos as well (n = 92).

1http://www.imdb.com
2http://www.myvideostore.com



4.2 VCR Controls

We modeled four VCR controls in our simulation:

• Pause,

• Rewind with cueing, where cueing means the server
provides picture but not sound,

• Fast forward with cueing, and

• Jump, which allows the client to jump to any point in
the video.

We believe these are the four controls that any interactive
VOD service should provide.

The usage distributions that we used for the VCR con-
trols are summarized in Table 2. These parameters rep-
resent our best estimates in the absence of empirical ev-
idence. We assume that clients will simply watch the
videos they select, and that they will mostly use interac-
tions when they are interrupted or if they need to review
something they missed the first time. That is why, for
example, pause and rewind have the highest two frequen-
cies, and why we modeled the initiation of interactions
using a Poisson process with an interarrival time of 30
minutes (for each client).

We chose a cueing rate of 20 times the display rate.
This is a rate that should be similar to what one might find
on a standard VCR. We also assumed that each cued oper-
ation could be handled using a single stream, rather than
requiring 20 times the bandwidth. If this cued stream can-
not be formed by sampling frames from a normal stream
(which is likely the case for MPEG encodings), then the
VOD provider can always keep a second (cue-friendly)
version of each video and only incur a small storage
penalty. Since cued data cannot be used for normal play-
back (or tapping), it is immediately flushed from the client
buffer after it is displayed.

4.3 Clients

Clients were generated using a Poisson arrival process
with an interarrival time of 1/λ, for varying values of λ.
between 250 and 350 arrivals per hour. Once generated,
clients simply selected a video, waited for their request
to be serviced, and then interacted and watched the video
until it was completed.

4.4 Server, Network, and STB

These are the components for which we made the most
simplifying assumptions—partly because detailing them
would not greatly enhance the simulation and also be-
cause we wanted the results and parameters to reflect only
what is caused and needed by stream tapping alone. So
when we restrict a client to a specific buffer size, this is

A
ve

ra
ge

St
ar

t-
up

L
at

en
cy

(m
in

)

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100

λ = 250
λ = 300
λ = 350
λ = 400

Contingency Streams

Figure 3: How the number of contingency streams affects
start-up latency (n = 92, st = 300, β = 30).

only the buffer that stream tapping uses and may not be
the only buffer on the STB. When we report client latency,
this is only the latency caused by stream tapping and does
not include transportation delay, stream start-up delay, or
other possible delays. We also assume that the network
never refuses bandwidth to the VOD server, and that all
of the client STB’s have identically sized buffers and can
receive four streams of data at once.

5 Results

For the results, we chose to model a relatively small
VOD server, one that only has enough bandwidth for 300
streams of data (st = 300). Smaller VOD servers are
more difficult to manage than larger servers because there
is less bandwidth available per video and because with
fewer clients able to use the server, the proximity of re-
quests is farther apart and merging streams becomes more
expensive. Thus, the results presented in this section can
be seen as a lower bound on stream tapping’s capabilities.

One of the most important aspects of the performance
of a VOD server is its start-up latency, that is the amount
of time clients must wait to watch their video. Figure 3
displays the system average start-up latency for request
arrival rates between 250 and 400 requests per hour, and
shows how these latencies are affected by the number of
contingency streams sc. As one can see, start-up laten-
cies remain very small as long as the request arrival rate
λ remains less than or equal to 300 requests per hour. On
the other hand, higher request arrival rates, say 350 to 400
requests per hour, result in unacceptable latencies. As we
will see later, the poor performance of the server in this
range of request arrival rates is due to the relatively small
size of the client buffer.

We also found out that allocating too few contingency
streams is much worse for start-up latency than allocat-



Table 2: The distribution parameters for each of the four interactions. The actual duration is selected in a uniform
manner between the minimum and maximum values. CR is the cueing rate.

Frequency Minimum Maximum
Interaction of Use (%) Duration (min) Duration (min)
Pause 60.0 1.0 15.0
Fast Forward 10.0 1.0/CR 5.0/CR

Rewind 25.0 1.0/CR 5.0/CR

Jump 5.0 – –

In
te

ra
ct

io
n

B
lo

ck
in

g
Pr

ob
ab

ili
ty

(%
)

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

λ = 250
λ = 300
λ = 350
λ = 400

Contingency Streams

Figure 4: How the number of contingency streams affects
resume blocking (n = 92, st = 300, β = 30).

ing too many streams. This fact is largely dependent on
the stream stacking option, which can use available band-
width to improve performance. When the number of con-
tingency streams is low, bandwidth will almost always be
in use and stream stacking will be able to do little work.

Figures 4 and 5 show how the number of contingency
streams affects interactions. The interaction blocking
probability measures the likelihood that a client must wait
for bandwidth either during or after an i nteraction, and
the interaction latency is the total amount of time the
client must wait for bandwidth (only) when it is blocked.
Assuming the VOD provider is anticipating fewer than
350 requests per hour (which is likely considering Fig-
ure 3), 35 contingency streams are enough to guarantee
a blocking probability of less than 0.1% and an average
latency of 2 seconds. Those bounds should be more than
enough to ensure client satisfaction.

Conventional stream tapping can provide good perfor-
mance even when the client buffer is as small as 5–10 min-
utes in size [4]. We found this was not the case with inter-
active stream tapping, As Figure 6 demonstrates, clients
need at least a 25-minute buffer for adequate performance
when the arrival rate λ is 300 requests per hour and a 35-
minute buffer when the rate is 350 requests per hour.

A
ve

ra
ge

In
te

ra
ct

io
n

L
at

en
cy

(s
ec

)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80

λ = 250
λ = 300
λ = 350
λ = 400

Contingency Streams

Figure 5: How the number of contingency streams affects
resume latencies (n = 92, st = 300, β = 30).

A
ve

ra
ge

St
ar

t-
up

L
at

en
cy

(m
in

)

0

5

10

15

20

25

30

0 10 20 30 40 50 60

λ = 250
λ = 300
λ = 350
λ = 400

STB Buffer Size (min)

Figure 6: How the client buffer size affects performance
(n = 92, st = 300, sc = 30).



A
ve

ra
ge

St
ar

t-
up

L
at

en
cy

(m
in

)

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Neither Option
Stream Stacking Only

Extra Tapping Only
Both Options

STB Buffer Size (min)

Figure 7: How the stream stacking and extra tapping
options affect performance (n = 92, st = 300, sc = 30,
λ = 350).

There is indeed a stronger case for even larger buffers.
First, a 60-minute buffer would allow the server to han-
dle 400 requests an hour while keeping the average start-
up latency under three minutes. Second, a two-hour
buffer would allow the client to keep almost all previously
viewed video data in local storage. As a result, rewind
and pause interactions could be handled by the client STB
without any server intervention. If MPEG-2 encoding (at
4 Mb/s) is used, then a two-hour buffer would require 3.6
GB of space, and a disk drive of that capacity would not
add greatly to the price of the STB (indeed, it is difficult
to buy a disk drive with capacity less than 4GB).

The two stream tapping options, extra tapping and
stream stacking, can only be used during the first β min-
utes of full and partial tap streams, and we would expect
that their impact would increase with β . This is indeed
the case and is shown in Figure 7. With a 45-minute
buffer, using both options reduces client start-up latency
from almost 16 minutes to less than 5 seconds. Hence us-
ing both stream tapping and extra tapping is essential to
the good performance of the server.

Figure 8 compares the bandwidth requirements of
stream tapping and conventional systems. Little’s Law
tells us that with at most 300 active requests and an av-
erage service time of 104 minutes,3 conventional systems
can only obtain a throughput of 173 requests an hour. We
have already shown that stream tapping can handle twice
that amount effectively (in Figure 3, for example). There-
fore it should be no surprise that stream tapping also out-
performs conventional systems in terms of bandwidth, us-
ing as little as 6% as much bandwidth at the highest shown
arrival rate and 44% at the lowest.

Of the remaining interactive strategies, only staggered

3We assume that clients will release streams when they pause, and so
interactions only change the average service time of a video very slightly.

A
ve

ra
ge

B
an

dw
id

th
(s

tr
ea

m
s)

8

16

32

64

128

256

512

1024

0 50 100 150 200 250 300 350

Staggered Broadcasting (5 min)
Staggered Broadcasting (2 min)

Conventional System
Stream Tapping

Arrival Rate (per hour)

Figure 8: A comparison between conventional systems,
staggered broadcasting (with 2- and 5-minute intervals be-
tween retransmissions), and stream tapping (n = 1, st un-
constrained, β = 30).

broadcasting is likely to be competitive with stream tap-
ping. We have previously shown, for example, that
stream tapping performs better than piggybacking [7] for
non-interactive VOD [4], and since stream tapping can
“merge” streams ten times faster than piggybacking, and
since interactive VOD only means streams will have to be
merged more often, the difference between the two should
only grow larger.

Figure 8 shows the bandwidth requirements for stream
tapping as compared to staggered broadcasting when the
intervals between successive retransmissions are two and
five minutes. Those two intervals are likely to be the upper
and lower bounds for staggered broadcasting since any-
thing more than five minutes will not give enough inter-
active precision to the clients, and anything less than two
minutes will take up too much bandwidth. Stream tapping
uses less bandwidth than even the lowest staggered broad-
casting bound as long as the video is not requested more
than 100 times per hour, and it sits comfortably between
the two bounds even if the video is requested 360 times
per hour. Since stream tapping gives perfect precision for
interactions and does not impose a start-up latency, it is
clearly competitive with staggered broadcasting.

6 Conclusions

Interactive video-on-demand (VOD) allows a client to
watch the video of its choice at the time of its choice,
and then interact with the video through VCR-like con-
trols such as pause and rewind. Most strategies designed
to make efficient use of a VOD server’s bandwidth either
do not support interactive VOD at all, or they only provide
VCR controls with limited duration or coarse precision.

We have presented a strategy for interactive VOD based



on stream tapping, a scheme previously shown to work
well in a non-interactive environment.

Through the use of discrete event simulation, we were
able to examine the performance of interactive stream
tapping. We found that two factors were essential to
the performance of our new strategy. First, interactive
stream tapping requires a much larger client buffer than
non-interactive stream tapping. While non-interactive
stream tapping provided good performance with a client
buffer capable of containing between 5 and 10 minutes
of video data, interactive stream tapping requires a 25-
minute buffer in each STB and performs much better with
a 60-minute buffer. Assuming a MPEG-2 encoding at
4Mb/s, this translates into between 750 MB and 3.6 GB
of disk space. Second, extra tapping and stream stacking
are essential to the good performance of the server.

Under these circumstances, interactive stream tapping
outperforms all other existing strategies for interactive
VOD. In particular, interactive stream tapping can use
less than 10% of the bandwidth required by a strategy
dedicating a unique stream of data to each client request.
Also, although interactive stream tapping can use a simi-
lar amount of bandwidth as staggered broadcasting when
client request rates are high, it provides a better VOD ser-
vice by not forcing clients to wait for their requests and
by not limiting interactions.

References

[1] E. L. Abram-Profeta and K. G. Shin. Providing un-
restricted VCR functions in multicast video-on-demand
servers. In IEEE International Conference on Multimedia
Computing and Systems, pages 66–75, Austin, TX, USA,
June 1998. IEEE Computer Society Press.

[2] K. C. Almeroth and M. H. Ammar. The use of multi-
cast delivery to provide a scalable and interactive video-
on-demand service. IEEE Journal on Selected Areas in
Communications, 14(5):1110–22, Aug. 1996.

[3] S. W. Carter and D. D. E. Long. Improving video-on-
demand server efficiency through stream tapping. In Pro-
ceedings of the Sixth International Conference on Com-
puter Communications and Networks (ICCCN ’97), pages
200–7, Las Vegas, NV, USA, Sept. 1997. IEEE Computer
Society Press.

[4] S. W. Carter and D. D. E. Long. Improving bandwidth effi-
ciency on video-on-demand servers. Computer Networks,
30(1–2):99–111, Jan. 1999.

[5] A. Dan, P. Shahabuddin, D. Sitaram, and D. Towsley.
Channel allocation under batching and VCR control in
video-on-demand systems. Journal of Parallel and Dis-
tributed Computing, 30(2):168–79, Nov. 1995.

[6] A. Dan and D. Sitaram. Multimedia caching strategies for
heterogeneous application and server environments. Tech-
nical Report RC 20670, IBM Research Division, T.J. Wat-
son Research Center, Dec. 1996.

[7] L. Golubchik, J. C. S. Lui, and R. R. Muntz. Adaptive pig-
gybacking: a novel technique for data sharing in video-on-
demand storage servers. Multimedia Systems, 4(30):140–
55, June 1996.

[8] M. Gunther. Interactive TV: it’s baaack! Fortune,
138(2):136–7, July 1998.

[9] K. A. Hua, Y. Cai, and S. Sheu. Patching: A multicast tech-
nique for true video-on-demand services. In Proceedings
of the Sixth ACM Multimedia Conference, pages 191–200,
Bristol, UK, Sept. 1998. ACM.

[10] K. A. Hua and S. Sheu. Skyscraper Broadcasting: a new
broadcasting scheme for metropolitan video-on-demand
systems. In Proceedings of SIGCOMM ’97, pages 89–100,
Cannes, France, Sept. 1997. ACM.

[11] L. Juhn and L. Tseng. Harmonic broadcasting for video-
on-demand service. IEEE Transactions on Broadcasting,
43(3):268–71, Sept. 1997.

[12] H. J. Kim and Y. Zhu. Channel allocation problem in VOD
system using both batching and adaptive piggybacking.
IEEE Transactions on Consumer Electronics, 44(3):969–
76, Aug. 1998.

[13] S.-E. Kim, A. Sivasubramaniam, and C. R. Das. Analyz-
ing cache performance for video servers. In Proceedings of
the 1998 ICPP Workshop on Architectural and OS Support
for Multimedia Applications Flexible Communication Sys-
tems, pages 38–47, Minneapolis, MN, USA, Aug. 1998.
IEEE Computer Society Press.

[14] W. Liao and V. O. K. Li. The split and merge protocol for
interactive video-on-demand. IEEE Multimedia, 4(4):51–
62, Dec. 1997.

[15] J.-F. Pâris, S. W. Carter, and D. D. E. Long. A hybrid
broadcasting protocol for video on demand. In Proceed-
ings of the 1999 Multimedia Computing and Networking
Conference (MMCN ’99), pages 317–26, San Jose, CA,
USA, Jan. 1999.

[16] J.-F. Pâris, S. W. Carter, and D. D. E. Long. A reactive
broadcasting protocol for video on demand. In Proceed-
ings of the 2000 Multimedia Computing and Networking
Conference (MMCN ’00), pages 216–23, San Jose, CA,
USA, Jan. 2000.

[17] T. Sanuki and Y. Asakawa. Design of a video-server com-
plex for interactive television. IBM Journal of Research
and Development, 42(2):199–218, Mar. 1998.

[18] S. Viswanathan and T. Imielinski. Metropolitan area video-
on-demand service using pyramid broadcasting. Multime-
dia Systems, 4(4):197–208, Aug. 1996.


