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Abstract

As storage systems scale to thousands of disks, data dis-
tribution and load balancing become increasingly impor-
tant. We present an algorithm for allocating data objects
to disks as a system as it grows from a few disks to hun-
dreds or thousands. A client using our algorithm can locate
a data object in microseconds without consulting a central
server or maintaining a full mapping of objects or buckets
to disks. Despite requiring little global configuration data,
our algorithm is probabilistically optimal in both distribut-
ing data evenly and minimizing data movement when new
storage is added to the system. Moreover, our algorithm
supports weighted allocation and variable levels of object
replication, both of which are needed to permit systems to
efficiently grow while accommodating new technology.

1 Introduction

As the prevalence of large distributed systems and clus-
ters of commodity machines has grown, significant research
has been devoted toward designing scalable distributed stor-
age systems. Scalability for such systems has typically been
limited to allowing the construction of a very large system
in a single step, rather than the slow accretion over time of
components into a large system. This bias is reflected in
techniques for ensuring data distribution and reliability that
assume the entire system configuration is known when each
object is first written to a disk. In modern storage systems,
however, configuration changes over time as new disks are
added to supply needed capacity or bandwidth.

The increasing popularity of network-attached storage
devices (NASDs) [11], which allow the use of thousands
of “smart disks” directly attached to the network, has com-
plicated storage system design. In NASD-based systems,
disks may be added by connecting them to the network, but
efficiently utilizing the additional storage may be difficult.
Such systems cannot rely on central servers because doing
so would introduce scalability and reliability problems. It
is also impossible for each client to maintain detailed in-

formation about the entire system because of the number of
devices involved.

Our research addresses this problem by providing an al-
gorithm for a client to map any object to a disk using a small
amount of infrequently-updated information. Our algorithm
distributes objects to disks evenly, redistributing as few ob-
jects as possible when new disks are added to preserve this
even distribution. Our algorithm is very fast, and scales with
the number of disk groups added to the system. For exam-
ple, a 1000 disk system in which disks were added ten at
a time would run in time proportional to 100. In such a
system, a modern client would require about 10 µs to map
an object to a disk. Because there is no central directory,
clients can do this computation in parallel, allowing thou-
sands of clients to access thousands of disks simultaneously.

Our algorithm also enables the construction of highly re-
liable systems. Objects may have an arbitrary, adjustable
degree of replication, allowing storage systems to replicate
data sufficiently to reduce the risk of data loss. Replicas
are distributed evenly to all of the disks in the system, so
the load from a failed disk is distributed evenly to all other
disks in the system. As a result, there is little performance
loss when a large system loses one or two disks.

Even with all of these benefits, our algorithm is simple.
It requires fewer than 100 lines of C code, reducing the like-
lihood that a bug will cause an object to be mapped to the
wrong server. Each client need only keep a table of all of
the servers in the system, storing the network address and
a few bytes of additional information for each server. In a
system with thousands of clients, a small, simple distribu-
tion mechanism is a big advantage.

2 Related Work

Litwin, et al. describe a class of data structures and al-
gorithms on those data structures which the authors dubbed
Scalable Distributed Data Structures (SDDS) [20]. There
are three main properties which a data structure must meet
in order to be considered a SDDS.

1. A file expands to new servers gracefully, and only
when servers already used are efficiently loaded.
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2. There is no master site that object address computa-
tions must go through, e. g., a centralized directory.

3. File access and maintenance primitives, e. g., search,
insertion, split, etc., never require atomic updates to
multiple clients.

While the second and third properties are clearly impor-
tant for highly scalable data structures designed to place ob-
jects over hundreds or thousands of disks, the first property,
as it stands, could be considered a limitation. In essence, a
file that expands to new servers based on storage demands
rather than on resource availability will present a very diffi-
cult administration problem.

Often, an administrator wants to add disks to a storage
cluster and immediately rebalance the objects in the clus-
ter to take advantage of the new disks for increased paral-
lelism. An administrator does not want to wait for the sys-
tem to decide to take advantage of the new resources based
on algorithmic characteristics and parameters that they do
not understand. This is a fundamental flaw in all of the LH*
variants discussed below.

Furthermore, Linear Hashing and LH* variants split
buckets (disks in this case) in half, so that on average, half
of the objects on a split disk will be moved to a new, empty,
disk. Moving half of the objects from one disk to another
causes wide differences in the number of objects stored on
different disks in the cluster, and results in suboptimal disk
utilization [2]. Splitting in LH* will also result in a “hot
spot” of disk and network activity between the splitting
node and the recipient. Our algorithm, on the other hand,
always moves a statistically optimal number of objects from
every disk in the system to each new disk, rather than from
one disk to one disk.

LH* variants such as LH*M [19], LH*G [21],
LH*S [18], LH*SA [17], and LH*RS [22] describe tech-
niques for increasing availability of data or storage effi-
ciency by using mirroring, striping and checksums, Reed-
Solomon codes and other standard techniques in conjunc-
tion with the basic LH* algorithm. Our algorithm can also
easily take advantage of these standard techniques, although
that is not the focus of this paper.

The LH* variants do not provide a mechanism for
weighting different disks to take advantage of disks with
heterogeneous capacity of throughput. This is a reasonable
requirement for storage clusters which grow over time; we
always want to add the highest performance or highest ca-
pacity disks to our cluster. Our algorithm allows weighting
of disks. Breitbart, et al. [2] discuss a distributed file organi-
zation which resolves the issues of disk utilization (load) in
LH*. They do not, however, propose any solution for data
replication.

Kröll and Widmayer [14] propose another SDDS that
they call Distributed Random Trees (DRTs). DRTs are op-

timized for more complex queries such as range queries
and and closest match, rather than the simple primary key
lookup supported by our algorithm and LH*. Addition-
ally, DRTs support server weighting. Because they are
SDDS’s, however, they have the same difficulties with data-
driven reorganization (as opposed to administrator-driven
reorganization) as do LH* variants. In addition, the authors
present no algorithm for data replication, although meta-
data replication is discussed extensively. Finally, although
they provide no statements regarding the average case per-
formance of their data structure, DRT has worst-case per-
formance which is linear in the the number of disks in the
cluster. In another paper, the authors prove a lower bound of
Ω(
√

m) on the average case performance of any tree based
SDDS [15], where m is the number of objects stored by the
system. Our algorithm has performance which is O(n logn)
in the number of groups of disks added; if disks are added
in large groups, as is often the case, then performance will
be nearly constant time.

Brinkmann, et al. [3, 4] propose a method for pseudo-
random distribution of data to multiple disks using par-
titioning of the unit range. This method accommodates
growth of the collection of disks by repartitioning the range
and relocating data to rebalance the load. However, this
method does not allow for the placement of replicas, an es-
sential feature for modern scalable storage systems.

Chau and Fu discuss and propose algorithms for declus-
tered RAID whose performance degrades gracefully with
failures [5]. Our algorithm exhibits similarly graceful
degradation of performance: the pseudo-random distribu-
tion of objects (declustering) means that the load on the
system is distributed evenly when a disk fails.

Peer-to-peer systems such as CFS [10], PAST [24],
Gnutella [23], and FreeNet [7] assume that storage nodes
are extremely unreliable. Consequently, data has a very
high degree of replication. Furthermore, most of these sys-
tems make no attempt to guarantee long term persistence
of stored objects. In some cases, objects may be “garbage
collected” at any time by users who no longer want to store
particular objects on their node, and in others, objects which
are seldom used are automatically discarded. Because of the
unreliability of individual nodes, these systems use replica-
tion for high availability, and are less concerned with main-
taining balanced performance across the entire system.

Other large scale persistent storage systems such as Far-
site [1] and OceanStore [16] provide more file system-like
semantics. Objects placed in the file system are guaran-
teed (within some probability of failure) to remain in the file
system until they are explicitly removed (if removal is sup-
ported). OceanStore guarantees reliability by a very high
degree of replication. The inefficiencies which are intro-
duced by the peer-to-peer and wide area storage systems
address security, reliability in the face of highly unstable
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nodes, and client mobility (among other things). These fea-
tures introduce far too much overhead for a tightly coupled
mass object storage system.

Distributed file systems such as AFS [13] use a client
server model. These systems typically use replication at
each storage node, such as RAID [6], as well as client
caching to achieve reliability. Scaling is typically done by
adding volumes as demand for capacity grows. This strat-
egy for scaling can result in very poor load balancing, and
requires too much maintenance for large disk arrays. In
addition, it does not solve the problem of balancing object
placement.

3 Object Placement Algorithm

We have developed an object placement algorithm that
organizes data optimally over a system of disks or servers
while allowing online reorganization in order to take ad-
vantage of newly available resources. The algorithm allows
replication to be determined on a per-object basis, and per-
mits weighting to distribute objects unevenly to best utilize
different performance characteristics for different servers in
the system. The algorithm is completely decentralized and
has very minimal storage overhead and minimal computa-
tional requirements.

3.1 Object-based Storage Systems

NASD-based storage systems are built from large num-
bers of relatively small disks attached to a high bandwidth
network, as shown in Figure 1. Often, NASD disks man-
age their own storage allocation, allowing clients to store
objects rather than blocks on the disks. Objects can be any
size and may have any 64-bit name, allowing the disk to
store an object anywhere it can find space. If the object
name space is partitioned among the clients, several clients
can store different objects on a single disk without the need
for distributed locking. In contrast, blocks must be a fixed
size and must be stored at a particular location on disk, re-
quiring the use of a distributed locking scheme to control
allocation. NASD devices that support an object interface
are called object-based storage devices (OBSDs)1 [25]. We
assume that the storage system on which our algorithm runs
is built from OBSDs.

Our discussion of the algorithm assumes that each object
can be mapped to a key x. While each object must have a
unique identifier in the system, the key used for our algo-
rithm need not be unique for each object. Instead, objects
are mapped to a “set” that may contain hundreds or thou-
sands of objects, all of which share the key x while hav-
ing different identifiers. Once the algorithm has located the

1OBSDs may also be called object-based disks (OBDs).
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Figure 1. A typical NASD-based storage sys-
tem

set in which an object resides, that set may be searched for
the desired object; this search can be done locally on the
OBSD and the object returned to the client. By restricting
the magnitude of x to a relatively small number, perhaps
106 or 107, we make the object balancing described in Sec-
tion 6.1 simpler to implement without losing the desirable
balancing characteristics of the algorithm.

Most previous work has either assumed that storage is
static, or that storage is added for additional capacity. We
believe that additional storage will be necessary as much
for additional performance as for capacity, requiring that
objects be redistributed to new disks. If objects are not re-
balanced when storage is added, newly created objects will
be more likely to be stored on new disks. Since new objects
are more likely to be referenced, this will leave the existing
disks underutilized.

We assume that disks are added to the system in clusters,
with the jth cluster of disks containing m j disks. If a sys-

tem contains N objects and n j = ∑ j−1
i=0 mi disks, adding m

more disks will require that we relocate N · m
n j+m objects to

the new disks to preserve the balanced load. For all of our
algorithms, we assume that existing clusters are numbered
0 . . .c−1, and that we are adding cluster c. The cth cluster
contains mc disks, with nc disks already in the system.

3.2 Basic Algorithm

We will call disks servers since this algorithm might be
used to distribute data in an object database or other more
complex service. Our algorithm operates on the basic prin-
ciple that in order to move the (statistically) optimal number
of objects into a new cluster of servers, we can simply pick a
pseudo-random integer zx = f (x) based on each object’s key
x such that 0 ≤ zx < nc +mc. If zx < mc, then the object in
question moves to the new cluster. Our algorithm is applied
recursively; each time we add a new cluster of servers, we
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j = c
while (object not mapped)

seed a random number generator with the object’s key x
advance the random number generator j steps.
generate a random number 0≤ z < (n j +m j)
if z≥ m j

j← j−1
else

map the object to server n j +(z mod m j)

Figure 2. Algorithm for mapping objects to
servers without replication or weighting.

add another step in the lookup process. To find a particular
object, we work backward through the clusters, starting at
the most recently added, deciding whether the object would
have been moved to that cluster. The basic algorithm for de-
termining the placement of some object with key x, before
making considerations for object replication, and weighting
is shown in Figure 2.

We use a uniform random number generator which al-
lows “jump-ahead”: the next s numbers generated by the
generator can be skipped, and the s + 1st number can be
generated directly. The generator which we use can be ad-
vanced s steps in O(logs) time, but we are currently ex-
ploring generators which can generate parametric random
numbers in O(1) time, as described in Section 5.1.

Using a simple induction, we sketch a proof that the ex-
pected number of objects placed in the new cluster by this
basic algorithm is mc

nc+mc
·N, and that objects will be ran-

domly distributed uniformly over all of the servers after
the reorganization. We also demonstrate that the algorithm
minimizes the expected number of objects which get moved
in a reorganization where only a single cluster is added, and
that the algorithm is therefore optimal in the number of ob-
jects moved during such a reorganization.

In the base case, all objects should clearly go to the first
cluster since n0 = 0, meaning that m0

n0+m0
· N = N. Fur-

thermore, since z comes from a uniform distribution and
each object will be placed on server 0 + (z mod m0) = z
mod m0, the probability of choosing a given server is 1

m0
.

Thus each server has an equal probability of being chosen,
so the objects will be distributed uniformly over all of the
servers after placing them on the first cluster.

For the induction step, assume that N objects are ran-
domly distributed uniformly over nc servers divided into
c− 1 clusters, and we add cluster c containing mc servers.
We will optimally place mc

nc+mc
·N objects in cluster c.

Since each random number 0 ≤ z < nc + mc is equally
likely, we have a probability of mc

nc+mc
of moving any given

object to a server in cluster c. With N objects, the total

number of objects moved to a server in cluster c is mc
nc+mc

·
N—the optimal value.

Since the N objects in the system are distributed uni-
formly over nc servers by our inductive hypothesis, a re-
located object has an equal probability of coming from any
of nc servers. The expected number of objects moved from
any given server S (where 0 ≤ S < nc ) is mc

nc+mc
· 1

nc
·N.

so the expected number of objects remaining on any server

S will be 1
nc

(

1− mc
nc+mc

)

·N = N
nc+mc

. Since the expected

number of objects placed in cluster c is mc
nc+mc

·N, the ex-
pected number of objects placed on a given server in cluster
c is 1

mc
· mc

nc+mc
·N = N

nc+mc
.

Because the expected number of objects on any server in
the system after reorganization is N

nc+mc
, the distribution of

objects in the system remains uniform. Since the decision
regarding which objects to move and where to move them
is made using a pseudo-random process, the distribution of
objects in the system also remains random.

Finally, we can see that the algorithm moves an approxi-
mately optimal number of objects during the reorganization
by noting two facts. First, an object mapped to a given clus-
ter will never move to a different cluster unless it is mapped
to a newly added cluster—objects may move to new clus-
ters, but never to old ones. When we add a new cluster, all
objects that move must therefore move into the new cluster.
Secondly, the expected number of objects in a new cluster
is exactly the number of objects which will allow the distri-
bution of objects over the clusters to remain uniform, so the
algorithm could not move fewer objects into the new clus-
ter and remain correct. We therefore move approximately
the minimum number of objects for the algorithm to remain
correct. Therefore, the algorithm moves the optimal number
of objects during a reorganization.

4 Cluster Weighting and Replication

Simply distributing objects to uniform clusters is not suf-
ficient for large-scale storage systems. In practice, large
clusters of disks will require weighting to allow newer disks
(which are likely to be faster and larger) to contain a higher
proportion of objects than existing servers. Such clusters
will also need replication to overcome the frequent disk fail-
ures that will occur in systems with thousands of servers.

4.1 Cluster Weighting

In most systems, clusters of servers have different
properties—newer servers are faster and have more capac-
ity. We must therefore add weighting to the algorithm to
allow some server clusters to contain a higher proportion of
objects than others. To accomplish this, we use a integer
weight adjustment factor w j for every cluster j. This factor
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will likely be a number which describes the power (such as
capacity, throughput, or some combination of the two) of
the server. For example, if clusters are weighted by the ca-
pacity of the drives, and each drive in the first cluster is 60
gigabytes, and each drive in the second cluster is 100 giga-
bytes, then w0 might be initialized to 60, and w1 might be
initialized to 100. We then use m′j = m jw j in place of m j

and n′j = ∑ j−1
i=0 m′i in place of n j in Figure 2. Once an ob-

ject’s cluster has been selected, it can be mapped to a server
by n j + v mod m j, as done in the basic algorithm.

The use of 64-bit integers and arithmetic allows for very
large systems; a 1,000 terabyte system that weights by giga-
bytes will have a total weight of only 1 million. If weights
are naturally fractional (as for bandwidth, perhaps), they
can all be scaled by a constant factor cw to ensure that all
w j remain integers.

4.2 Replication

The algorithm becomes slightly more complicated when
we add replication because we must guarantee that no two
replicas of an object are placed on the same server, while
still allowing the optimal placement and migration of ob-
jects to new server clusters.

This version of the algorithm, shown in Figure 3, relies
on the fact that multiplying some number 0 ≤ n < m by a
prime p which is larger than m and taking the modulus m
(i. e.. (np) mod m) defines a bijection between the ordered
set S = {0 . . .m− 1} and some permutation of S [9]. Fur-
thermore, the number of unique bijections is equal to the
number of elements of S which are relatively prime to m. In
other words, multiplying by a prime larger than m permutes
the elements of S in one of φ(m) ways, where φ(·) is the
Euler Phi function [9], as described in Section 4.3.

Again, x is the key of the object being placed, c is the
number of clusters, n j is the total number of servers in the
first j−1 clusters, and m j is the number of servers in clus-
ter j, where j ∈ {0 . . .c− 1}. Let R equal the maximum
degree of replication for an object, and r ∈ {0 . . .R−1} be
the replica number of the object in question. z and s are
pseudo-random values used by the algorithm.

The algorithm also assumes that m0 ≥ R. That is, the
number of servers in the first cluster is at least as large as
the maximum degree of replication. This makes intuitive
sense since if it were not true, there would not be a suffi-
cient number of servers available to accommodate all of the
replicas of an object when the system is first brought online.

In the case where m j < R, our algorithm (intuitively
speaking) first pretends that the cluster is of size R. It then
selects only those object replicas which would be allocated
to the first m j servers in our imaginary cluster or R servers.
In this way, we can avoid mapping more than one replica
to the same server. When m j < R, the number of objects

j← c
while object is not mapped

seed a random number generator with the object’s key x
advance the generator j steps
m′j← m jw j

n′j← ∑ j−1
i=0 m′i

generate a random number 0≤ z < (n′j +m′j)
choose a random prime number p≥ m′j
v← x+ z+ r× p
z′← (z+ r× p) mod (n′j +m′j)
if m j ≥ R and z′ < m′j

map the object to server n j +(v mod m j)
else if m j < R and z′ < R ·w j and v mod R < m j

map the object to server n j +(v mod R).
else

j← j−1

Figure 3. Algorithm for mapping objects to
servers with replication and weighting.

which get mapped into cluster j is
w j ·R

n′j+m′j
· m j

R =
m′j

n′j+m′j
, so

the R factor cancels completely.
Let the total weight in the system W be ∑c

i=0 wimi. The
fraction of the total weight possessed by a server in cluster j
is thus wi

W . We must therefore show that the expected num-
ber of object replicas owned by some server j is

w j
W ·N ·R.

We also must show that no two replicas of the same ob-
ject get placed on the same server. Again, we can prove
these facts using induction. We omit the proof that the ob-
jects remain distributed over the other clusters according to
their weights, since the argument is essentially identical to
that in the basic algorithm described in Section 3.2.

In the base case, n′0 = 0, and z′ is modulus n′0 +m′0 = m′0
(and hence z′ < m′0). Since we require that the first clus-
ter have at least R servers, we will always map the ob-
ject to server n0 + (v mod m0) = v mod m0 which is in
the first cluster, as described in Figure 3. v is a pseudo-
random number (because z is pseudo-random), so an ob-
ject has equal probability of being placed on any of the m0

servers in cluster 0. Therefore, the expected number of ob-
jects placed on a given server when there is only one cluster
is 1

m0
·N ·R = w0

w0m0
·N ·R = w0

W ·N ·R, which is what we
wanted to prove.

Now,

[x+ z+ r× p]≡m0 [x+ z]+ [r× p].

We can therefore examine the (x+z) mod m0 term, and the
(r× p) mod m0 term separately.

Recall that x is the key of an object. Since x and z can be
any value, both of which are (potentially) different for each
object, but the same for each replica of the object, x+ z can
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(x+z)mod m

(r*p) mod m

mod m

Figure 4. The mapping of the ordered set
of integers {0, . . . ,m j − 1} to a permutation of
that set using the function f (x) = (x+ z+ r× p)
mod m j

be viewed as defining a random offset within the m0 servers
in the first cluster from which to start placing objects.

p and m0 are relatively prime, so by the Chinese Remain-
der Theorem [9], for a given y, [r× p] ≡m0 y has a unique
solution modulo m0. In other words, p defines a bijection
from the ordered set {0, . . . ,m0−1} to some permutation of
that set.

Thus we can think of (x + z + r× p) mod m0 as denot-
ing some permutation of the set {0, . . . ,m0−1}, shifted by
(x + z) mod m0.2 In other words, if we rotate the the last
element to the first position x + z times, then we have the
set defined by f (x) = (x + z + r× p) mod m0. Since this
is also a permutation of {0, . . . ,m0− 1}, and since r < m0,
each replica of an object maps to a unique server, as shown
in Figure 4.

For the induction step, assume that each cluster is
weighted by some per-server (unnormalized) weight w j

where 0 ≤ j < c, and that all of the object replicas in the
system are distributed randomly over all of the servers ac-
cording to each server’s respective weight (defined by the
server’s cluster).

If we add a cluster c containing mc servers, then wc ·mc is
the total weight allocated to cluster c. Since a given object
replica is placed in cluster c with probability wc·mc

W , the ex-
pected number of objects placed in cluster c is wcmc

W ·N ·R.
As in the base case, the object replicas will be distributed
over the servers in cluster c uniformly, so the expected num-
ber of object replicas allocated to a server in cluster c is
wc
W ·N ·R, which is what we wanted to show.

Since p defines a bijection between the ordered set
{0, . . . ,mc − 1} and some permutation of that set, each
replica that is placed in cluster c is placed on a unique

2The number of unique permutations of {0, . . . ,m0− 1} which can be
obtained by multiplying by a coprime of m0 is equal to the Euler Phi Func-
tion φ(m0), as described in Section 4.3.

server. Note that at most mc out of R replicas of a given
object can be placed in cluster c, since the other R−mc

replicas will be mapped mod R to values which are greater
than or equal to mc when mc < R.

Thus, no two replicas of the same object get placed on
the same server. Furthermore, following the same argument
as given in Section 3.2 (omitted here for the sake of brevity),
the algorithm moves (approximately) the optimal number
of objects during a reorganization where a single cluster is
added.

4.3 Choosing Prime Numbers

Our algorithm uses a random prime number, which must
be known by every server and client in the system. It is
sufficient to choose a random prime from a large pool of
primes. This prime p will be relatively prime to any modu-
lus m < p, as will p mod m. Furthermore, choosing a ran-
dom prime and computing p mod m is statistically equiv-
alent to making a uniform draw from the set of integers in
the set Z

∗
m = {0 ≤ x < m|gcd(x,m) = 1} which are rela-

tively prime to m. A proof of this is beyond the scope of
this paper.

The number of integers in the set Z
∗
m (these relatively

prime integers will be called coprimes for the remainder of
this section) is described by the Euler Phi Function:

φ(m) = m∏
p|m

p−1
p

where p|m means the set of all p such that p is a factor of
m[9].

Since φ(m) < m! when m > 2, the number of bijections
described by the set of coprimes to m is smaller in general
than the number of possible permutations of a set of integers
{0, . . . ,m− 1}. It is also beyond the scope of this paper to
show the precise statistical impact of this difference. The
practical impact of this difference, however, can be seen in
Figure 6(c).

5 Performance and Operating Characteris-
tics

5.1 Theoretical Complexity

In this section we demonstrate that our algorithm has
time complexity of O(nr) where n is the number of server
additions made, and r is the time in which it takes to gen-
erate an appropriate random number. The algorithm that
we are currently using to generate random numbers takes
O(logn) time. This can theoretically be reduced to O(1).

As noted in Section 4.3, appropriate prime numbers can
be chosen in O(1) time, and the rest of the operations other
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than those related to generating random numbers are arith-
metic, so every operation besides those used for generating
random numbers runs in O(1) time.

The algorithm for seeding and actually generating ran-
dom numbers is also constant time [26]. The algorithm
for “jumpahead,” or advancing the random number gener-
ator a given number of steps without calculating interme-
diate values, however takes O(logn) time. Specifically, the
algorithm for jumpahead requires modular exponentiation,
which is known to run in O(logn) time [9]. Since we must
jump ahead by the cluster group number each iteration, each
iteration of the algorithm takes, on average O(logn) time.

In the worst case, an object replica will be placed in the
first server cluster, in which case the algorithm must ex-
amine every cluster to determine where the object belongs.
The average case depends on the size and weighting of the
different clusters, and thus is not a good metric for per-
formance. If the weight and clusters sizes are distributed
evenly, then clearly we will need, on average n

2 iterations.
However, we believe that newer clusters will tend to have
exponentially higher weights, so that in the average case,
we only need to calculate logn iterations.

Rather than using jumpahead to generate statistically
random hash values that are parameterized by the server
cluster number, we have examined another approach us-
ing parametric random number generators [8]. These ran-
dom number generators are popular for distributed random
number generation. By parameterizing the generated se-
quence, the generators can assign a different parameter to
each processor in a cluster, while using the same seed.
This guarantees unique, deterministic pseudo-random num-
ber sequences for each processor.

One simple method, based on Linear Congruence Gen-
erators [8], allows the parameterization to occur in O(1)
time. LCGs, however, are notorious for generating num-
bers which all lie on a higher dimensional hyperplane, and
thus are strongly correlated for some purposes. Unfortu-
nately, this correlation results in very poor distribution of
objects in our algorithm, making LCGs unusable for object
distribution.

We are currently examining other more sophisticated
generators, but as a final note, our algorithm does actually
support O(n) operation, but this is mostly of theoretical in-
terest. O(n) operation can be achieved as follows: On the
first iteration, seed the generator and advance it n steps, as
would normally be done. Next instead of re-seeding the
generator and advancing it n− 1 steps, retain the state of
the generator (do not reseed it), and then advance it the pe-
riod of the generator (in this case, the maximum value of an
unsigned long integer) minus 1. Since the period of the gen-
erator is a known quantity which does not depend on n, this
can be done in O(1) time. Of course, advancing the genera-

tor by such a large quantity is very slow, so the classification
as O(n) is of academic interest only.

5.2 Performance

In order to understand the real world performance of
our algorithm, we tested the average time per lookup un-
der many different configurations. First, we ran a test in
which 40,000 object replicas were placed into configura-
tions starting with 10 servers in a single cluster to isolate
the effect of server addition. We computed the average time
for these 40000 lookups, and then added clusters of servers,
10 servers at a time, and timed the same 40,000 lookups
over the new server organization. In Figure 5(a), we can
see that the line for lookups under this configuration grows
faster than linear, but much slower than n logn.

In Figure 5(b), there are two lines which grow approxi-
mately logarithmically. Since disk capacity has been grow-
ing exponentially [12], we also consider the performance of
the algorithm when the weight of (and hence number of ob-
ject assigned to) new clusters grows exponentially. The bot-
tom line illustrates a 5% growth in capacity between cluster
additions, and the middle line represents a 1% growth.

The weighting of new servers can therefore significantly
improve the performance of the algorithm. This is consis-
tent with the predictions made in Section 5.1.

5.3 Failure Resilience

When a server fails, clients must read and write to other
servers for each of the objects stored on the failed server. If
all of the replicas for a particular server are all stored on the
same set of servers, e. g. if all of the replicas for objects on
server 3 are stored on server 4 and server 5, then a server
failure will cause the read load on the “mirror servers” to
increase by a factor of R−1

R , where R is the degree of ob-
ject replication (meaning that the load on each of the mirror
severs nearly doubles). This value assumes that the repli-
cated clients are not using quorums for reads, in which case,
all mirrors participate in reads, so that there will be no in-
crease in load. This is a false benefit however, since it is
achieved by using resources inefficiently during normal op-
eration; R−1

R can be a severe burden when R is 2–3, as likely
will be used in large-scale systems. In order to minimize
the load on servers during a failure, our algorithm places
replicas of objects pseudo-randomly, so that when a server
fails, the load on the failed server is absorbed by every other
server in the system.

Figure 6(a) shows a histogram of the distribution of ob-
jects which replicate objects on server 6. In this case the
load is very uniform, as it is in Figure 6(a), where the weight
of each server cluster increases. In Figure 6(c), we see sev-
eral spikes, and several servers which have no replicas of
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Figure 5. Time for looking up an object versus the number of server clusters in the system. All times
computed on an Intel Pentium III 450.
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(a) Server 6 fails in a system with 4 evenly weighted clusters of
5 servers
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(b) Server 6 fails in a system with 4 clusters of 5 servers, each
cluster having increasing weight
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(c) Server 6 fails in a system with 2 clusters of 5 servers, and 1
cluster of 12 servers. The failed server is in the the cluster of 12
servers.
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(d) Server 6 fails in a system with 4 clusters of 5 servers, where
object replicas are distributed to adjacent servers

Figure 6. The distribution of the replicas of objects stored on a failed server, where the server fails
under different system configurations. A total of 300,000 objects are stored in the system.

objects on server 6. This occurs because the cluster with
which server 6 was added is of size 12, which is a com-
posite number ( 3×22 = 12 ). Depending on the degree of
replication and the number of distinct prime factors of the
size of the cluster, if the size of a cluster is composite, some
“empty spots” may occur in the cluster.

Even in when the number is a composite number, the ob-
jects are distributed relatively uniformly over most of the

servers. Clearly such a distribution is far superior to a sim-
plistic sequential distribution as illustrated in Figure 6(d),
in which a few servers in the system (R− 1 where R is
the degree of replication, to be exact) will take on all of
the load from the failed server. Instead, our algorithm dis-
tributes load from failed servers nearly uniformly over all
of the working servers in the system.
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6 Operational Issues

Our algorithm easily supports two desirable features for
large-scale storage systems: online reconfiguration for load
balancing, and variable degrees of replication for different
objects.

6.1 Online Reconfiguration

Our algorithm easily allows load balancing to be done
online while the system is still servicing object requests.
The basic mechanism is to identify all of the “sets” that will
move from an existing disk to a new one; this can be done by
iterating over all possible values of x to identify those sets
that will move. Note that our balancing algorithm will never
move any objects from one existing disk to another existing
disk; objects are only moved to new disks. This identifica-
tion pass is very quick, particularly when compared to the
time required to actually copy objects from one disk to an-
other. During the process of adding disks, there are two
basic reasons why the client might not locate the object at
the correct server.

First, server clusters may have been reconfigured, but the
client may not have updated its algorithm configuration and
server map. In that case, the client can receive an updated
configuration from the server from which it requested the
object in question, and then re-run our algorithm using the
new configuration.

Second, the client may have the most recent configura-
tion, but the desired object has not yet been moved to the
correct server. In that case, if the client thought that the ob-
ject replica should be located in cluster j, but did not find it,
it can simply continue searching as if cluster j had not been
added yet. Once it finds the object, it can write the object in
the correct location and delete it from the old one.

Different semantics for object locking and configuration
locking will be necessary depending on other parameters in
the system, such as the commit protocol used, but our algo-
rithm is equally suited for online or batch reorganization.

6.2 Adjustable Replication

Our algorithm allows the degree of replication of any
or all of the objects to vary over time with the following
constraint—when the system is initially configured, the ad-
ministrator must set the maximum degree of replication.
This value can be no more than the size of the initial cluster
(since we must have a unique location in which to place all
replicas). The client can then decide on a per object basis
how many replicas to place. If it places fewer than the max-
imum number possible, the spots for the remaining replicas
can be used if a higher degree of replication is desired at

a later time. Practically speaking, a client might use per-
file metadata to determine the degree of replication of the
different objects which compose a file in an OBSD.

7 Future Work

Our algorithm distributes data evenly and handles disk
failures well, but there are further issues we are currently
investigating. We are studying a more efficient parame-
terizable random number generation or hashing function,
which will make the worst case performance of the algo-
rithm O(n). In addition, we are studying a modification to
the algorithm which will allow for cluster removal. In ex-
change for this capability, the algorithm will need to look
up all R replicas at once. This should not significantly af-
fect performance if locations are cached after they are cal-
culated.

We are also considering the exact protocols for the dis-
tribution of new cluster configuration information. These
protocols will not require any global locks on clients, and
in some cases where optimistic locking semantics are ac-
ceptable, will not require any locks at all.

We are considering different read/write semantics for
different types of storage systems, and are integrating this
algorithm into a massively scalable cluster file system.

Finally, we are considering a fast-recovery technique that
automatically creates an extra replica of any object affected
by a failure in order to significantly increase the mean time
to failure for a given degree of replication [27].

8 Conclusions

The algorithm described in this paper exhibits excellent
performance and distributes data in a highly reliable way.
It also provides for optimal utilization of storage with in-
creasing storage capacity, and achieves balanced distribu-
tion by moving as little data as possible. The use of weight-
ing allows systems to be built from heterogeneous clusters
of servers. In addition, by using replica identifiers to indi-
cate the location of different stripes of an object, we can also
use our algorithm to place stripes for Reed-Solomon coding
or other similar striping and data protection schemes. Using
these techniques, it will be possible to build multi-petabyte
storage systems that can grow in capacity and overall per-
formance over time while balancing load over both old and
new components.
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