
Provenance Based Rebuild: Using Data
Provenance to Improve Reliability

Technical Report UCSC-SSRC-11-04
May 2011

Brian A. Madden Ian F. Adams Mark W. Storer
madden@cs.ucsc.edu iadams@cs.ucsc.edu mwstorer@netapp.com

Ethan L. Miller Darrell D.E. Long Thomas M. Kroeger
elm@cs.ucsc.edu darrell@ucsc.edu tmk@soe.ucsc.edu

Storage Systems Research Center
Baskin School of Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064

http://www.ssrc.ucsc.edu/



Provenance Based Rebuild: Using Data Provenance to Improve
Reliability

Brian A. Madden† Ian F. Adams† Mark W. Storer‡ Ethan L. Miller†

Darrell D.E. Long† Thomas M. Kroeger∗

† University of California, Santa Cruz ‡ NetApp ∗ Sandia National Labs

Abstract
Traditionally, data preservation and reliability have used
error correcting codes (ECCs) to ensure data safety. The
development of general data provenance tracking sys-
tems provides a new opportunity for data reliability. We
present a method that utilizes provenance to determine a
datum’s generating process and inputs, and then uses this
information to recompute lost data. This method, called
Provenance Based Rebuild (PBR) provides a new, com-
plimentary reliability mechanism that integrates with tra-
ditional systems to offer a variety of benefits including
fine grained prioritized rebuild and parallel rebuild. While
PBR offers benefits that address weaknesses in current
techniques, it also faces a number of challenges such as
data placement, and infrastructure provisioning.

1 Introduction
The advent of general data provenance capturing systems,
such as the Provenance Aware Storage System [9], offers
the ability to track the processes, system state, and inputs
used to generate a piece of data. By storing a datum’s
provenance along with the process and initial inputs that
created it we have an effective set of tools for recomput-
ing data in the event of corruption or loss. If such a failure
were to occur these tools could be used to rerun a process
with the correct initial inputs to recompute the lost data.
This method of reconstruction, which we call Provenance
Based Rebuild (PBR), solves many of the shortcomings of
ECCs. PBR provides a number of novel benefits and im-
provements including: fine grained control over what files
are rebuilt, the ability to prioritize the order in which those
files are rebuilt, and potential for per-file parallelism dur-
ing rebuild. While offering a number of benefits, utilizing
PBR requires considerations such as provenance collec-

tion, data placement, and infrastructure provisioning.
Data protection typically comes in the form of error

correcting codes (ECCs). Note that replication can be
seen as a special case of an ECC where correcting errant
data simply means copying from a replica. ECCs unfor-
tunately suffer from drawbacks such as propagating block
level errors silently. If an error occurs on write, or data
is written to the wrong location, an ECC’s parity data will
also be incorrect as it is a computational result of the origi-
nal data. Silent errors are dangerous as they are not explic-
itly caught by the storage system, and errant data may be
used in future computations resulting in more erroneous
data, with the potential for significant consequences.
ECC based reliability techniques also face challenges

as the areal density of hard drives continues to grow. The
number of input/output operations per second (IOPS) that
a drive can achieve has not grown proportionally to the
areal density, and as a result ECC rebuild times are grow-
ing [7]. Growing rebuild times are more than just a minor
invonvience. The time between failure and recovery is a
critical period where additional failures could cause com-
plete data loss. Despite this danger, it is not uncommon to
find rebuild times in the tens of hours.
ECCs also lack any sort of semantic knowledge of the

data. If a particular file or group of files are more impor-
tant than others there is no good way to prioritize those
files should a rebuild occur. Additionally, the most com-
mon ECC configurations are incapable of rebuilding data
at multiple granularity levels. Instead, the smallest unit
that can be rebuilt is a fixed sized parity group, leaving
individual file rebuilds out of the question. Despite these
problems many trust their data to ECC systems. Many
of these problems are detailed by Appuswamy [4], but
whereas they see a need to fundamentally change the way
that ECC techniques are implemented, we see an alterna-
tive approach that complements ECCs to create a system
more robust than the sum of its parts.



Despite the shortcomings of ECCs, a solution that pro-
vides benefits such as fine grained rebuild control does
not require fundamentally altering the way that current
offerings function. By creating a new independent form
of reliability, both systems can be utilized in tandem to
capitalize on each system’s relative strengths. PBR is a
system well suited to address many of the problems left
by traditional ECC based systems.

2 Background
We start by defining some basic terminology to eliminate
any confusion in our discussion. A process is any action
that transforms or outputs data. We refer to any data or
parameter that is used by a process as an input. Similarly,
the data resulting from the running of a process is an out-
put. Outputs may be used as input to other processes; such
outputs are referred to as intermediate results. A relation-
ship between inputs, outputs and processes is stored in an
output’s provenance which maps the lineage and neces-
sary inputs and processes to recreate an output.
Provenance based rebuild (PBR) is the term we give

to a system in which provenance is utilized in conjunc-
tion with original processes and inputs to reproduce data.
By treating a datum’s provenance as a road map to recon-
struction, and reading the provenance chain backwards
from our desired datum, we can determine what pro-
cesses, inputs, shell variables, and dependencies were
used to create that datum. Once the system state, inputs,
and processes have been determined, the system can use
this information to rerun the processes necessary to re-
compute the lost datum.

3 Architecture and Overview
The PBR architecture is composed of four major com-
ponents: the underlying compute system, the provenance
collection agent, the PBR store, and a rebuild system. Fig-
ure 1 shows the components of the PBR architecture.
The provenance collection agent is a software compo-

nent, such as the Provenance Aware Storage System [9],
that sits low in the software stack of each node in the
compute system and collects data on how outputs were
produced. Ideally this agent would be a privileged entity
that could track fine granularity data such as shell vari-
ables, installed libraries, inputs including random seeds,
processes, and any other data items useful in recreating
the state of a compute system at the time a particular da-
tum was generated.

During normal operation (non-recovery mode) the
provenance collection agent would store the provenance,
inputs, and processes on the PBR store. An input or pro-
cess used in more than one computation would only be
stored once to avoid unnecessary storage overhead. When
recovery mode is activated a special marker is written to
the provenance chain to indicate the start of a rebuild.
This marker ensures that any new provenance written to
the chain during a rebuild is not accidentally included for
rebuild as well.
A PBR store is a physically distinct storage system sep-

arate from the compute system’s main storage that is re-
sponsible for only the provenance, inputs, and processes
used by PBR for data regeneration. Ideally this store
would be protected by a combination of ECCs and repli-
cation such as a RAID system. By backing the crucial
data needed to rebuild using PBR with a more traditional
reliability system a single point of failure is eliminated.
Lastly, the rebuild system is any compute system capa-

ble of running the processes needed to rebuild data using
PBR. This system can be as simple as reusing the orig-
inal compute system. Ideally, the rebuild system would
be something akin to the cloud [1, 2], highly available and
scalable so that the benefits of per-file rebuild, and par-
allelism can be exploited. The rebuild system will host
a small software layer that is capable of reading a prove-
nance chain and computing the set of file necessary for
rebuild. It can do this by reading the chain forward from a
given rebuild marker (or the start of the chain) to the most
recent rebuild marker written by the collection agent. As
the chain is read PBR determines the set of files resident
on the system at the time of data loss.
As the chain is read, files created during that length of

chain are added to the list, and any files deleted during
that length of chain are removed from the list, yielding a
complete set of files present on the system at the time of
data loss.
Once the set of files to be recomputed has been es-

tablished, the rebuild system will create a build script
describing how each file was originally generated. The
script will be responsible for setting shell variables, in-
stalling dependencies, and running the process with the
correct inputs. Each build script will be bundled with
the correct process, inputs, and necessary dependencies
forming a self contained software bundle known as a re-
build unit RU. These RUs can be composed into larger
shared dependency units (SDUs) to exploit locality and
reuse common dependencies among RUs. For example,
if a number of processes all rely on the same cryptogra-
phy libraries they would be composed into a SDU so that
the dependency would only need to be bundled, and in-



stalled once. Note that the issue of creating build scripts
and replicating prior software state for re-computation is
a difficult problem. Care must be given when generating
these scripts to avoid software conflicts.

















Figure 1: PBR Basic Overview: The four basic compo-
nents: a compute system; a provenance collection agent; a
PBR store for storing provenance, inputs, and processes;
and a re-compute system, in this example the cloud, for
use when data must be regenerated.

4 Benefits of PBR
The PBR system is capable of addressing the problem of
growing rebuild times. This is immediately visible for
files that have a small set of input data and a large output.
In these cases PBR has to read minimal data for recompu-
tation whereas ECC would need to read 6-8 times the size
of the rebuilt data to recover. The second way PBR alle-
viates long rebuild times is by tracking data provenance
on the file level. With provenance we have a way to re-
build each file independently of one another. Once a file’s
provenance, process, and input is read from disk they can
be recomputed locally or distributed for processing else-
where. By offloading rebuild elsewhere, bottlenecks such
as lack of local resources can be overcome; live systems
do not have to be interrupted by rebuilds; and per-file par-
allelism can be achieved. This parallelism is a boon to
reliability, particularly as areal density continues to out-
pace IOPS, as PBR recovery time is only limited by the
slowest process amongst all rebuild processes.
To see the benefits of rebuilding in parallel consider a

site that provides video on demand services to their cus-
tomers. Videos are available in a number of formats and
resolutions to provide good coverage to customers, but a
disk has failed and a number of versions of a particular
video have been lost. Using PBR the missing video for-
mats can be recomputed in parallel allowing for lost for-
mats to become available as their process finishes rather
than waiting for the length of a full disk rebuild.
Another area that PBR can offer benefit over RAID is in

its ability to ensure greater safety from block level errors.

If a block level error does occur, total loss of that data is
not assured. Provenance data describes how data was gen-
erated rather than being a computational derivative of it.
If a block level error is found in an output, the process that
created it can be re-run with the initial inputs to recompute
the data. Additionally, if errors are found in data due to a
bug in a process, that process can be swapped out with an
equivalent or updated process and output recomputed us-
ing the updated process instead. Process swapping offers
a few benefits beyond being able to re-create data from
an updated, bug free process. It also allows users of PBR
to decide to swap out old, possibly slow processes with
newer, more efficient versions. Take for example a pro-
cess that uses a serial algorithm to compute its output. If
a newer, parallelized version of the algorithm exists, the
process can be replaced and any future rebuilds will ben-
efit from the new algorithm.
The descriptive nature of provenance also offers seman-

tic insight into the data. By combining the fine granularity
of PBR with the semantic insight that provenance offers
we have the ability to prioritize file rebuilds, either via
human interaction or heuristics. Prioritizing rebuilds are
a particularly attractive option in situations where some
data may be more valuable than others. For example, if
a disk fails and data must be rebuilt, more recently ac-
cessed data may be rebuilt first with the assumption that
it is more relevant, thus preventing complete data loss in
the case of additional failures. The ability to prioritize re-
builds may make the difference between meeting a service
level agreement (SLA) and being in breach of contract.
As an additional benefit, in cases where a process is ca-
pable of streaming partial outputs as it operates, data can
be streamed out and used in subsequent computation as
the rebuild is happening, minimizing the amount of down
time associated with disk failure.
In addition to parallel rebuild, prioritized rebuild, and

safety from block level errors, PBR offers the benefit of
diversity. As an orthogonal method of reliability PBR suf-
fers from a different set of failure modes. Adding addi-
tional ECCs to a traditional setup, for example, may pro-
vide benefits, but it does not protect against failures such
as an errant RAID controller. Using a combination of
techniques reduces the likelihood that both mechanisms
will fail simultaneously from a problem.
Lastly, a tradeoff between storage and computation ex-

ists; this tradeoff focuses on foregoing the storage of in-
frequently used intermediate or final outputs in favor of
recomputing them later if needed. Utilizing a PBR system
offers the added benefit of sharing much of the infrastruc-
ture that would be required to consider such a tradeoff. A
more in depth discussion of this tradeoff can be found in



Maximizing Efficiency By Trading Storage for Computa-
tion [3].

5 Challenges and Tradeoffs
There are a number of challenges and tradeoffs that must
be addressed to realize the benefits of PBR. These include
provenance collection, data placement, and infrastructure
provisioning.
There is a tradeoff in provenance collection, concerned

with striking a balance between too much, and too little
provenance information. With perfect provenance, or an
exact history of a datum, we can make strong guarantees
that rebuilding the datum with PBR will result in a bit
for bit copy. We can make this guarantee as we have the
necessary information to reconstruct the exact software
state of the machine that was originally used to generate
the data. As the detail of the provenance becomes more
coarse, for example if random seeds or shell variables are
not captured, the guarantees become weaker. The cost of
capturing too much provenance means increased storage
overhead and provenance graph pruning when a rebuild
is necessary. The cost of capturing too little provenance
results in weaker reliability guarantees, for example, not
capturing random seeds may result in a rebuild that is not
an exact bit for bit copy.
Another tradeoff in a PBR system is the placement and

protection of the constituent data. The protection of the
data provenance, inputs, and processes is vitally important
– without these data the entire rebuild system is rendered
useless. Placing the provenance, inputs, and processes to-
gether may yield better storage utilization but presents a
danger in the face of correlated failure as the necessary
data to recompute using PBRmay be lost. Despite the dif-
ference between RAID and PBR systems we believe that
many of the age old data placement strategies are still ap-
plicable. Initial inputs, provenance, and processes should
be stored separately and redundantly to prevent a single
point of failure. Furthermore, distinct geographic loca-
tions should be chosen for the replicas to prevent corre-
lated failures. The choice of additional protection ulti-
mately affects utilization of the PBR store, performance
of the system should the PBR data become corrupt, and
the overall reliability of the system.
Challenges such as the provisioning of resources must

also be addressed. We believe that one of the greatest ad-
vantages of the PBR system is the parallel, and prioritized
rebuild. For many, provisioning enough resources to re-
build a large number of files in parallel may be difficult
or impossible using only local assets. We believe that
the ideal medium for PBR rebuild is in the cloud. With

the ability to easily grow and shrink resources as needed,
the cloud provides an essential ability to provision large
numbers of compute nodes as necessary. While there is
still some challenge in determining the optimal number
of nodes to acquire, and the best rebuild schedule to op-
timize the use of those resources, an ideal PBR system
would include a scheduling utility for balancing the time
to recovery and resource acquisition.
A final challenge in PBR is the issue of the hetero-

geneous nature of the rebuild hardware. Systems and
hardware are constantly changing, and these changes may
present problems when trying to run old processes on new
machines. In some cases architectures may have changed
so much that it is impossible to run old software on the
new hardware. Virtual machines offer some protection
against this problem as old hardware can be virtualized,
however this is not a perfect or guaranteed solution. This
long term data problem is not solely a problem of PBR; all
long term storage systems suffer from this problem as for-
mats and software changes. It is simply all the more vis-
ible with PBR due to the reliance on using old processes
to rebuild lost data, however PBR offers more semantic
insight into the data through its provenance. As hardware
evolves, software adapts, and using PBR’s ability to swap
out and upgrade processes a PBR system has the poten-
tial to adapt too. Organically growing and changing with
new hardware and software is a much better alternative to
blindly hoping bits can be decoded in the future.

6 Related Work
In the provenance aware storage system paper (PASS) [9],
one of their proposed applications is automatic script gen-
eration to create—or recreate— a particular file based on
its provenance. Our work here is effectively an extension
of this idea to a grander scale. Similarly, the Chimera
system [5] tracks data provenance, and allows users to
both query and regenerate datasets on demand. Database
transaction log replay [8] can also be thought of as a type
of provenance based recontruction, as they replay tracked
information to return the system to a usable state.
Earlier work by Adams et al. [3] proposed using data

provenance and reconstruction as a method for improv-
ing storage system efficiency and recompute times. Our
work here shares similarities, but it focused on reliabil-
ity and reconstructions rather than overall storage system
efficiency. Similarly, Yuan et al. [10] analyze scientific
workflow to identify an optimum balance of intermediate
results to reduce storage overhead and reduce computa-
tion costs. Ko et al. [6] examined the use of intermedi-
ate datasets in map-reduce operations. They show that by



selectively storing intermediate results can significantly
speed up recomputation in the event of failures. Though
Yuan and Ko apply provenance and workflow for the re-
construction of data, their goals are very different in their
focus on improved efficiency and computation times.
Chapman et al. look at the problem of using prove-

nance as a method for verifying the a conclusion or result.
In their work they use causal networks as a method for
quantifying belief in a result. This would approach would
likely be of great use in our own proprosal for aiding in
automatic verification of outputs recomputed by PBR.

7 Conclusions
We have introduced a novel method for improving data
reliability complimentary to traditional ECC based ap-
proaches. Rather than rely solely on ECCs of the final
data, we proposed storing a data’s provenance, inputs, and
processes to reconstruct the data when needed. With our
technique comes with a number of challenges and trade-
offs that must be addressed such as provenance collection,
data placement, and infrastructure provisioning. Despite
these challenges, PBR provides many novel benefits such
as per-file prioritized rebuild, opportunity for trade-offs in
rebuild time and storage overhead, and swapping out of
obsolete or missing processes. With the PBR technique,
organizations will have a numver of new opportunities and
trade-offs with which to work with, all while providing
and additional method to improve the long term reliabil-
ity of their stored data.

References
[1] Amazon web services. http://aws.amazon.com/.
[2] Cloud power. http://www.microsoft.com/en-us/

cloud/.
[3] I. Adams, D. D. E. Long, E. L. Miller, S. Pasupathy, and

M. W. Storer. Maximizing efficiency by trading storage
for computation. In Proceedings of the Workshop on Hot
Topics in Cloud Computing (HotCloud ’09), 2009.

[4] R. Appuswamy, D. C. van Moolenbroek, and A. S. Tanen-
baum. Block-level raid is dead. In Proceedings of the
2nd USENIX conference on Hot topics in storage and file
systems, 2010.

[5] I. T. Foster, J.-S. Vöckler, M. Wilde, and Y. Zhao.
Chimera: A virtual data system for representing, query-
ing, and automating data derivation. In Proceedings of the
14th International Conference on Scientific and Statistical
Database Management (SSDBM ’02), pages 37–46, 2002.

[6] S. Y. Ko, I. Hoque, B. Cho, and Indranil. On availability of
intermediate data in cloud computation. In HotOS 2009,
2009.

[7] A. Leventhal. Triple-parity raid and beyond, December
2009.

[8] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: a transaction recovery method sup-
porting fine-granularity locking and partial rollbacks us-
ing write-ahead logging. ACM Transactions on Database
Systems, 17(1):94–162, 1992.

[9] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
M. I. Seltzer. Provenance-aware storage systems. In Pro-
ceedings of the 2006 USENIX Annual Technical Confer-
ence, pages 43–56, 2006.

[10] D. Yuan, Y. Yang, X. Liu, and J. Chen. A cost-effective
strategy for intermediate data storage in scienctific cloud
workflow systems. In 24th IEEE International Parallel
and Distributed Processing Symposium, 2010.


