
A note on bit-mapped free sector management

Darrell D. E. Long
Compu te r & Information Sciences

Universi ty of California, Santa Cruz

The most common methods for maintain a list of free sectors on disk are to use either a linked
list or a bit map [1].

Using a linked list has the advantage that is requires no extra storage since the links are stored
in the free sectors. It also provides quick allocation and deaUocation, requiring only that a free
sector be removed from the head of the list, or a freed sector be added to the head of the list,
respectively.

The main disadvantage of a linked list is that over time the list tends towards random. That
is, unless the list is sorted, sectors are placed on the list in no particular order. The result is poor
locality during file access, significantly impacting performance by increasing the average seek
time.

By using a bit map, adjacent free sectors will always appear adjacent in the bit map. There
is a small cost in terms of storage; that is, the bit map will contain one eighth as many bytes as
there are sectors on the disk. There is a potentially more important concern: the average number
of bits that must be scanned in order to find a free sector. Since this technique was first used, the
size of disks has increased by approximately four orders of magnitude. If the number of bits to be
scanned on average increased even a small fraction of this amount, the technique would need to
be abandoned.

This question came up in our undergraduate operating systems course. Our initial speculation
was that bit maps would be inappropriate for the large disks that are becoming available.

As the following analysis will show, the bit map technique remains viable for large disks, and
as we shall see it is, in a sense, independent of the size of the disk.

Assume for the moment that the free sectors are uniformly distributed across the disk, resulting
from files being freed in no particular order. Further assume that the system is in steady state
with r sectors free on average out of a total n. The problem then reduces to drawing one of r cards
from a deck of size n [2]. Let b~, 1 < i < n, be the bit map where there are r zero bits indicating
free sectors. Then the probability of the first bit being zero is

r
Pl = Pr[bl = 0] = - .

rt

Similarly,
P 2 = P r [b 2 = 0 A b l = l] = (l - r r

1'

an d

In general ,

= ~)(i P3 = Pr[b3 = 0 A bl = 1 A b2 = 1] (1 - r
n _ l) n _ 2 '

Pk = Pr[bk = OA bj = 1, 1 < y < k] =
1 - r r n - i - r r

n - i n - k + 1 - n - ~ n - k + 1 '

w h i c h s imp ly m e a n s tha t the probabi l i ty of bk be ing the first ze ro bi t is cond i t iona l on the proba-
bi l i ty of bj, 1 < j _< k - 1 be ing one. As k increases the l ikel ihood of bk be ing zero increases as the
n u m b e r of b i t s yet to be scanned decreases.

We can reduce this u n w i e l d y expression b y not ic ing that

k-2 k-1

I I (n - i - r) = (n -- r) (n - r - 1) - - . (n - - r - k + 2 ; =
i=O

(n - r)!

(n - r - k + 1)!"

Similarly,

The result is that

k-2 n!

II (~ - i) = (,~_ k + 1),"

(n - r) ! (n - k + 1) !
P k = (n - r - k + l) ! x n! X

(n - r)t (n - k)! r
n - k + 1 (n - r - k + 1)!ni"

This can be r ewr i t t en as
n - k (r-l) p~ = ¢) ,

w h i c h can be v i e w e d as the n u m b e r of w a y s to obtain a r u n of l eng th k - 1 one bi ts d i v i d e d b y
the to ta l n u m b e r of w a y s to a r range r zero bits out of n total.

Let the r a n d o m var iable x be the n u m b e r of bits that m u s t be s c a n n e d before f i nd ing a zero,
t h e n the expec ted va lue of x i s

n - r + l n--r+l i[n--i~
kr--1/

E[x]= ~ ip ,= Z ¢1
i=1 i=l

Since the on ly the first n - r bi ts c a n b e allocated, in the wors t case the scan wil l h a v e to con t inue
to bi t n - r + 1 (which m u s t cer ta in ly be zero). This s u m can be r educed to

E[x] - ~ + 1
r + l "

The var iance of x is g iven b y

V[xi = r (u - r) (1 + n)

(1 q- r) 2 (2 + r)

8

This m e a n s that the expected number of bits that must be scanned to find a free sector depends
only on the ratio of the total number of sectors to the number of free sectors. Said another way,
given a disk that is 90% full, it does not matter whether the disk is 20 megabytes or 5 gigabytes,
the average n u m b e r of bits that must be scanned is approximately 10 (except for a vanishingly
small E).

We a s sumed that free sectors were uniformly distributed across the disk. If the a lgor i thm
always scans sequentially from the first bit, this will almost never be true. It ha s been observed
empirically that w h e n this is done, allocated sectors will cluster at the start of the disk, and free
sectors will cluster towards the end. The result is that the expected number of bits to be scanned
will tend towards the wors t case of n - r + 1.

There are two simple heuristics that alleviate this problem. The simplest w a y to mainta in a
roughly un i fo rm distribution of free sectors is to begin scanning at a r a n d o m posit ion each time.
The m e t h o d more frequent ly used in practice is to use a roving pointer, where the next search begins
where the last left off. It is also common to reset the roving pointer to the beginning of the deleted
region w h e n a file is freed. This increases the randomness of the free sectors since the roving
pointer is reset to a r a n d o m position just before a sequence of zero bits. It can also significantly
improve per formance as the disk becomes increasingly full, since the roving pointer will often be
at the beginning of a free region.

While the analysis presented here is simple, we have been unable to locate it in any of the
s tandard texts. It has important implications to practitioners, w h o might instead follow their
intuition a n d implement a more complex scheme than necessary.

References

[1] A. S. Tanenbaum, Modern Operating Systems. Englewood Cliffs: Prentice Hall, 1992.

[2] B.V. Gnedenko , The Theory of Probability and the Elements of Statistics. N e w York: Chelsea, 1989.

