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Abstract

Secure, Energy-Efficient, Evolvable, Long-Term Archivediage

by
Mark W. Storer

Users are storing ever-increasing amounts of informatigitadly, driven by many
factors including government regulations and the publigsire to digitally record their per-
sonal histories. Unfortunately, we have yet to demonstratewe can reliably preserve digital
data for more than a few years, putting a generation’s @lltegacy at risk. Much of the prob-
lem is rooted in our approach to building long-term storagdesms; currently archival systems
are developed using the same approaches, access patétestarnques used to design higher-
performance, shorter-term storage systems. As a resutertuarchival storage systems still
rely on strategies that fail in long-term scenarios, wasteey and energy, and perpetuate the
endless cycles of “fork-lift” upgrades and wholesale miigmres needed to remain efficient and
up to date.

In my thesis, | demonstrate that archival storage is a fiesctategory of storage
that requires specialized solutions. To this end, | preseméral techniques tailored specifi-
cally for the unique demands of long-lived data. To explbiegecurity needs of archival data,
| have developed POTSHARDS, which offers secrecy througlomditionally secure secrecy
techniques, and survivability through increased atta¢ka®n and built-in data recovery. To
study cost savings, | have created Pergamum, a distribystdrs of intelligent storage appli-
ances that stores data reliably with multi-level encoding @ hierarchical auditing scheme, and
energy-efficiently by leveraging existing MAID techniqueghile extending them by exploit-
ing the different access patterns of data and metadata. ifiRuatop of Pergamum is Logan, a
management layer being developed that actively identifidsdecommissions wasteful devices
in order to continuously maximize system efficiency. Thestesns combine to demonstrate

significant progress towards effective, secure, enerfigiarit, and evolvable archival storage.
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Chapter 1

Introduction

Whereof what's past is prologue, what to come in yours and

my discharge.

William Shakespeare

The ability to store and maintain massive quantities of dathecoming increas-
ingly important, as scientists, businesses, and consuanerscreasingly aware of the value
of archival data. Scientists have long attempted to presdata archivally, though such ef-
forts have sometimes fallen short. For businesses, daati@t is mandated by law [2, 3], and
data mining has proven to be a boon in shaping businessgstraf®r individual consumers,
archival storage is being called upon to preserve sentethant historical artifacts such as pho-
tos, movies and personal documents [106, 107]. Unfortlpdtaditional storage systems are
not designed to meet the needs of long-term, archival d&tdlp, 119].

Paradoxically, despite the increasing value of archivaéh,daigh cost is one of the
biggest obstacles to applying traditional storage tealesgo design systems to house archival
data; the goal of cost-efficient, long-term storage is tdbnéhe potentially indefinite reten-
tion of all data thatnightone day prove useful [35, 103]. With current systems, itngpty too
expensive to store everything indefinitely (if they can jdevany long-term persistence guaran-
tees at all). Archival storage therefore needs to inexpertsi obtain (static costs), inexpensive
to operate (operational costs), easy to scale over timév@le), and secure enough to safely
store private information indefinitely.

At the core of my thesis is the premise that archival storagedistinct class of stor-



age that is poorly served by general-purpose storage sy$i€th More specifically, compared
to traditional workloads, the long data lifetimes of ar@higtorage marks a fundamental dis-
tinction that requires solutions specifically tailored aawith a potentially indefinite lifetime.

I demonstrate this need by examining three areas of arcéiiwedge: security, cost efficiency
and management. While solutions to all three problems eibin the scope of traditional,
enterprise storage, my thesis demonstrates that, withamdmival setting, all three require spe-
cialized solutions.

It deserves to be noted, however, that long-term digitabg® is not a wholly techni-
cal problem, nor can it be answered with a wholly technicaltgm. Instead, digital preserva-
tion requires an examination of storage at a higher level thadia, file systems or even storage
systems; long-term preservation of digital informationstrinvolve critical thought at the level
of people and organizations [34, 106, 107]. Truly, just ahi&al storage is well served by an
evolvable solution that adapts gracefully over time, thenln talents of digital custodians must
also adapt. To that end, an important goal of evolvable @eshs to preserve data long enough
so that future advances in application preservation camppkeal.

Long-term preservation of data is still a relatively youagd increasingly active area
of study. The work presented in this thesis covers an onggeiploration of topics within
archival storage, a fact reflected in the diverse range ofintyatin the projects that comprise
this study. POTSHARDS was constructed to investigate #gcand survivability for data
with an indefinite lifetime. It is relatively mature work thhas produced several publications.
Pergamum was created to explore a reliable, cost-efficrehtval storage architecture that ag-
gressively realizes static and operational cost savinggyaum progressed fairly rapidly, and
while mature enough to produce a fully formed publicatiois still relatively young. Logan is
the youngest of the three projects, and was designed torexatohival storage management.
It has only recently reached the stage where preliminarigdesan be presented. Logan came

about as a result of the capabilities enabled by Pergamum.

1.1 Security

While storage security has long been an active, well-rebedr area, the indefinite
lifetimes of archival storage introduce a number of new leingles [19, 62, 162]. One of the

biggest challenges is that mechanisms such as cryptogmaphywell in the short-term, but
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are less effective in the long-term. The use of computdbomad encryption in an archival

scenario introduces the problems of lost keys, compromnkisgs, and even compromised cryp-
tosystems. All this is exacerbated by the numerous keyioosend cryptosystem migrations
that will inevitably occur over the course of several desadbis must all be done without

user intervention because the user who stored the data mayavailable. Thus, security for

archival storage must be designed explicitly for the unidemands of long-term storage.

Since security covers a large set of properties, | focusdti®long-term implications
of a few fundamental features: data secrecy and data abitiégsMore specifically, planning
for long-term data storage requires an examination far alog level of the storage system
itself, involving critical assessment at the organizatievel and higher. Thus, | focused my
examinations on those aspects of secrecy and availathifitytitaditionally make organizational
assumptions that are invalid in long-term scenarios. Hostdata secrecy, both internal and
external attackers must be considered; even an altruiggem@ation can change over time to
become a primary threat to data secrecy. Second, with intetlata lifetimes, it is unreason-
able to assume that key authorities will survive past the emliate future. For data accessibility
this means that data must be available and accessible imtgpdaform for valid users without
relying on the survival of a third party for key managemenis just as unacceptable to recover
only ciphertext, as it would be to reveal plaintext to unauted users.

To address the many security requirements for long-terimivaicstorage, | have de-
signed and implemented POTSHARDS (Protection Over Timey®ty Harboring And Reli-
ably Distributing Stuff), which uses three primary techreq to provide security for long-term
storage. First, secret splittin@][is used to produce a tuple afsecret sharefrom a block of
data,mof which must be obtained to reconstruct the block. Unlikergption, secret splitting is
unconditionally secure; it can be shown that combining felwvanm shares reveaisoinforma-
tion about the original block. Second, POTSHARDS uses aajjldhta namespace that is used
to identify data entities. The namespace introduces anegleof diversity [53] into the model,
since it is sparsely populated and treated in a similar ¢asto a heap. Third, POTSHARDS
utilizes approximate pointers, which differ from tradite pointers in that they indicatera-
gion in the namespace as opposed to an exact address. Approxioiaters enables secure
recovery from only the data itself by associating relatecteteshares in a way that does not

unduly compromise security.



1.2 Cost Efficiency

Many storage systems designed for long-term data presanvaly on sequential-
access technologies, such as tapes, that decouple mediat$raccess hardware. While ef-
fective for back-up workloads (write-once, read-rarelgywer writes supersede old), such sys-
tems are poorly suited to archival workloads (write-oneadrmaybe, new writes unrelated to
old writes). With as many as 50-100 tapes per drive, a remeiné to keep tapes running at
full speed, and a linear media-access model, random-apegggmance with tape-media is
relatively poor. This conspires against many archivalagjeroperations — such as auditing,
searching, consistency checking and inter-media reliplmperations — that rely on relatively
fast random-access performance. This is especially irapbm light of the preservation and
retrieval demands of recent legislation [2, 3]. Furtherngndata retention policies include the
notion of a limited lifetime, after which data is securelfated; selective deletion is difficult
and inefficient in linear media. Finally, the separation @&dia and access hardware introduces
the need to preserve complex chains of hardware; readinddatae requires a compatible
reader, controller and software.

Recently, hard drives have dropped in price relative to,tapeking them a poten-
tial alternative for archival storage [126]. The availibilof high-performance, low-power
CPUs [15] and inexpensive, high-speed networks have magesgible to produce a self-
contained, network-attached storage device [60, 138] vatisonable performance and low
power utilization: as little as 500 mW when both the CPU arsk dire idle. The use of disks
instead of tapes means that heads are packaged with meatiaying the need for robotics
and reducing physical movement and system complexity. dJsiandardized communication
interfaces, such as TCP/IP over Ethernet, also helps syrplthnology migration and long-
term maintenance. By using randomly-accessible diskgansof linear tapes, systems can
take advantage of inter-media redundancy schemes. Uné&dgly, many existing disk-based
systems incur high costs associated with power, coolingaaimainistration because of design
approaches that favor performance over energy efficienouweder, recent work on MAIDs
(Massive Arrays of Idle Disks) has demonstrated that camnalile energy-based cost savings
can be realized while maintaining high levels of perforneaf89, 122, 188], though such sys-
tems still often favor performance over even greater ensagings.

While my design leverages MAID technigues, it also extehlly removing the need



for centralized controllers, and by exploiting the diffieraccess patterns of data and metadata.
Pergamum takes an approach similar to that used in higlowpesice scalable storage sys-
tems [144, 189, 192], and is built from thousands of inteltigstorage appliances connected by
high-speed networks that cooperatively provide reliabficient, long-term storage. Each ap-
pliance, called a Pergamuiome is composed of four hardware components: a commodity hard
drive for persistent, large-capacity storage; on-boashftaemory for persistent, low-latency,
metadata storage; a low-power CPU; and a network port. Baglmace runs its own copy of
the Pergamum software, allowing it to manage its own cogrsist checking, disk scrubbing and
redundancy group responsibilities. Additionally, the C&hd extensible software layer enables
disk-level processing, such as compression and virus aigeckinally, the use of standardized
networking interfaces and protocols greatly reduces tbblpm of maintaining complex chains

of dependent hardware.

1.3 Management

In contrast to traditional storage systems, which are dflfyianore concerned with
scalability in performance and capacity, an archival systiesigned for long-lived data must
scale over many dimensions, including time, vendors arfthi@ogies [19]. The goal, therefore,
is to move away from an endless series of migrations and-fftifkupgrades, to a continuously
evolving system. To realize this goal, | have begun devetaginon Logan, a software-based
management layer that runs atop a distributed architestuca as Pergamum [168]. While
devices in such an architecture can operate independémiy,full potential is realized when
they cooperate in inter-device redundancy groups to peodata reliability and ensure data
longevity. Further, since the storage nodes are intelligeach device contains specialized
software that acts as an abstraction layer between thesyatel the device’s underlying hard-
ware. This flexibility provides the potential for an adap¢adystem that changes gradually with
technology; while individual components may change, therallsystem evolves gracefully.

Although a fully distributed system is well suited to an exatile design, it introduces
the problem of managing the global state of a fully deceizizdl system. It is impractical for
each node to maintain global knowledge—keeping just 10 KBnpele for each of a million
nodes would require 10 GB of storage per node. Moreover,ikgedhat information current

would require far too many messages to be exchanged betvegles.nWhile recent work has

5



made great strides towards efficiently aggregating data\@any large networks of distributed
nodes [199, 200], even these approaches may be insufficiensystem that could easily en-
compass millions of nodes. Instead, a million-node digted system must facilitate nodes
joining the system, manage placement of data and redundafmynation, handle node fail-
ure, and gracefully phase out nodes as they age with onliapanbwledge of the whole system
and more complete knowledge of a small part.

Further, as archival systems become more useful as thdideoseases, long-term
storage management must recognize that energy efficiegeyres constant, proactive opti-
mizations. While some earlier systems have addressedyeetigency [39, 68,121,122, 188],
none have examined how opportunity costs affect a systemitsvéetime. Since drive capac-
ity, real estate values and power costs are always inciggasiatem efficiency must be measured
against what is currently achievable, not simply what eiaseachievable. For example, most
storage systems assume that drives are replaced due t@ failwholesale system upgrades,
suggesting that drives may remain in use well past the pdibeimg economically efficient.
Further, proactive decommissioning could also improveesysreliability; earlier work has
shown that the previously-held bathtub failure model fordhdrives may not be valid [147],
and that even small numbers of sector failures can presagalbgrive failure [16, 17].

The remainder of my thesis proceeds as follows. ChapterdZagrovide a brief
background on the subjects covered in this thesis, and plgceork in the context of exist-
ing research. Following that, Chapter 4 presents POTSHARDSy/stem | designed to ex-
plore long-term data secrecy and recoverability. Chaptdiséusses Pergamum, a system |
designed that provides reliable, cost-efficient archivatage in an architecture that enables
system evolvability. Chapter 6 provides an overview of Lmgan early stage project that indi-
cates current progress towards evolvable system managieirneally, in Chapter 7 | summarize

my results, and conclude my thesis.



Chapter 2

Background

Knowledge is of two kinds: we know a subject ourselves, or
we know where we can find information upon it.

Samuel Johnson

The purpose of this section is to present the backgroundnivgtion needed to eval-
uate my work on archival storage. This involves a number gfartant topics. First, | present
a discussion on storage security, and establish a lexiamili be used throughout my thesis.
The former includes an examination of cryptography andetesplitting from a long-term per-
spective. The latter is important, as many security termashaavily overloaded. Second, as |
did with security, | provide a discussion of data deduplaata popular technique for improv-
ing storage efficiency. Third, | summarize the design matwe that developed over the course
of my study, and my conversations with long-term data cuated The final section is a brief
aside. It provides an abbreviated discussion on applitgifeservation and long-range think-
ing. While this issue is largely orthogonal to the work | haeklressed, it is worth mentioning

and tends to arise in any discussion of long-term, dataanzhi

2.1 Security Mechanisms

Storage security is a multifaceted area with many overldaeiems, and is too broad
to be discussed completely within this thesis. The goal isf discussion, therefore, is to re-

move any ambiguity resulting from commonly used securitynge and to establish the role of



security in a long-term, archival perspective. To that ¢he remainder of this section proceeds
as follows. | begin with a short discussion on security ma@ras in general. This includes
a discussion of mechanisms versus policies, and a summang aftegories used to describe
how resistant security mechanisms are to attacks — an iamgdéctor to consider when eval-
uating the long-term security implications of a mechanidrhen, | provide some background
information on one of the most common security mechanismsrygtion. Following that, |
cover secret splitting, another common security mechanism

In general, systems that claim to be secure enforce thresapyipolicies [90]: se-
crecy, integrity and availability. While all of these arepaortant properties, they do not rep-
resent the complete gamut of security policies. For exam@gous approaches have been
developed to enforce anonymity [37, 133, 135, 180], pldesikniability [13, 37], accountabil-
ity [120, 150, 151, 203], and more. That being said, the mtusll am concerned with (secure,
long- term archives) focuses primarily upon providing segy integrity and availability for data
with a potentially indefinite lifetime.

An important distinction to make is the difference betweeseaurity policy and a
security mechanism. Policy is a description of a systentsnidedbehavior For example,

a secrecy policy might state that data should only be readayplauthorized users. In con-
trast, mechanisms are concerned vifitiplementation Continuing with the previous example,
a secrecy policy could be implemented using encryption.aRather way, policies describe a
system’s security goals, while mechanisms are how thosks goa achieved. This distinction
is important to make, as policies for short-lived data candrg similar to policies concerning
long-lived data. Unfortunately, problems often arise wtiensame mechanism is used for both
short-lived and long-lived data.

A security mechanism’s resistance to computation basedkatican be described us-
ing a four category framework [158] (summarized in Tablé .2Hirst, computational security
states that a cryptosystem cannot be compromised in lemsatispecified number of steps.
While many systems would seem to fall into this categoryruitt, it is very difficult to defini-
tively state that a system is computationally secure; a ax@sh'’s resistance to different types
of attacks can vary widely. It is important to note that cotagionally secure does not merely
mean that it is computationally feasible to circumvent alna@tsm, but also that it can be shown

to be possible within a certain number of operations. Thaspgortant distinction must be



Security Level| Description

Ad-hoc | argued to be secure without any rigorous evidence

Computational| secure against an opponent allowed to perforspecificnumber of operations
Provable| reducible to a well-known, intractable problem

Unconditional | secure even to an opponent with an unbounded amount of catigrut

Table 2.1: Classifications used to describe a security-am@sin’s resistance to computation
based attacks (ordered by resilience from weakest to ssbpg

made between computationally secure and computatioballyd The later means that, given
enough computational time, the mechanism can be comprdmiges is a critical point when
dealing with long-term security. The second categprgyable securityreduces the attack to
another, well-known problem. For example, a cryptosysteightrbe shown to be provably
secure based on the difficulty of factoring large, prime nermbDespite what the name might
suggest, provable security is only a proof relative to amgthsually intractable, computational
problem. It is not the same as a proof that shows that an aatyensth infinite computational
time cannot compromise the mechanism. Thindgonditional securitys secure in the face of
an opponent with an unbounded amount of computation. THiseistrongest security class.
It implies that, even to an adversary with infinite computadil time, it can be proven that the
mechanism is secure. A fourth class, and by far the weakddgipc securitys also mentioned
on occasion. It describes mechanisms that are argued tocheedeut for which no rigorous
analysis can be made. So-called “security through obgtuethniques often fall into this cat-
egory. It should also be mentioned that almost nothing ispgtetaly secure. Even mechanisms
that are unconditionally secure can fall prey to human lewgbtanalysis techniques such as
social engineering or physical coercion (so-called rulbtose cryptanalysis techniques).
While the ad-hoc security level may seem to describe meshenthat are without
value, quite the opposite is true. One such example, randssnimas become increasing pop-
ular. In the area of application security, considerableretias gone into increasing an adver-
sary’'s workload through the introduction of randomnesg.[28tacks that rely upon memory
exploits are often based on the fact that information istiegtan very predictable and con-
sistent locations. Randomization is a means of forcing aersdry to analyze each copy of

the program they are attacking. This increased difficultgsdoot, however, makes the attack



impossible. Thus, the increased attack time can be combiniédother strategies, such as
signature-based attack detection [83, 182, 198]. Howeweimnportant difference between ap-
plication protection and data protection is that a userta gaunique and personal. Thus, even
one compromise could mean that unique data has been lost.

2.1.1 Encryption

Encryption is one of the most common mechanisms encouniertbeé area of com-
puter security. The traditional introduction to encryptimvolves users, Alice and Bob, who
wish to communicate in a way that they can understand eadr othile their fictional ad-
versary, Oscar, cannot. Using a predetermined key, Aliceypis her plaintext message into
ciphertext. When Bob receives the message, he is able tgpdate ciphertext back into
plaintext— he also has the predetermined key and he knowsyhtosystem that Alice used in
the original encoding. If Oscar obtained the ciphertextsagse, he would be unable to decrypt
it because he does not have the key. An important observagiomake is that it is assumed
that Oscar knows the cryptosystem that Alice and Bob usettkKeff’s principle states that a
cryptosystem’s security comes from the adversary not kngwie encryption key; it is assumed
that the adversary always knows what cryptosystem is beird [158].

With a few exceptions, most encryption algorithms are pobvaecure. In other
words, the most secure that the cryptosystem can be reasofedis based on the difficulty
of a related, intractable problem. For example, some puac cryptosystems rely on the
difficulty of factoring large numbers. While unconditiolyakecure cryptosystems exist, one-
time-pad systems for example, they often incur a manageoustthat makes them unwieldy
at best. As the security of encryption is based on upon tliewtify of a related problem, the
struggle between cryptography and cryptanalysis can lweedeas an arms race. For example,
a DES encrypted message was considered secure in 19763 jysats later, in 1999, the same
DES message could be cracked in under a day [158]. From arénge perspective, it is
very difficult to predict the future of cryptanalysis. Foraemple, advances such as quantum
computing have the potential to make many modern cryptdigcagdgorithms obsolete. While
cryptography works reasonably well for short-term dataesmg it does introduce a number
of issues that become magnified as data lifetimes grow lormgethe extreme end, data with

indefinite lifetimes (as is the case for long-term archivafage), these effects can be dramatic.
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Cryptosystems are generally divided into two categorieethan their key arrange-
ment: symmetric-key and public-key. In a symmetric-keyptogystem [152], the key that is
used to encrypt the message is the same as the key used tptdberynessage. Thus, in the
previous example, both Alice and Bob share the same synoxieyi In contrast, public-key
cryptosystems utilize two keys: a public-key and a privegfl51]. In this key arrangement,
Alice encrypts messages for Bob using Bob’s public key, aod &ecrypts messages using his
private key.

While cryptosystems themselves can be described by thgiak@angement (sym-
metric versus public-key), the use of cryptography can tsrilged based on the lifetime of
the ciphertext. In long-lived encryption, such as for anrgpied file in an archival storage sys-
tem, the data is indefinitely persistent. In contrast, tlaeecalso short-lived uses of encryption.
These uses may not suffer from the same pitfalls as long-kerecryption, owing to their low
persistence requirements.

Examples of short-lived encryption include the use of agpaphic primitives in
authentication and authorization policies. Many suchesystrely upon the idea that key dis-
tribution, if carefully controlled, can imply a user’s idég [116, 150]. This often requires the
use of a trusted key generating authority with the abilitaathenticate users. Further, this trust
issue can be extended to include capability granting, irclvkine key generator also provides
users with “tickets” that can be redeemed for services [98].1In this model, the loss of an
encryption key does not pose a great problem, as new ticletde generated with relative
ease.

Another example of short-lived encryption is session sgcusome protocols, such
as transport layer security (TLS) [44], are concerned withtqeting data transmissions from
eavesdroppers, replay attacks and message forging. (uiwigle anonymous communica-
tions using encryption as way of masking the source andragitn [46, 133]. In these schemes,
a message is routed through a pre-determined number of Ad&isender shares a unique key
pair with each host that the message will be routed througghuaes these keys to “wrap” the
message in multiple layers of encryption. As the messageuied through the hosts, the re-
ceiving node decrypts their layer of the message and passesdssage onto the next host. As
with other short-lived uses of encryption, the loss of argpiton key is not catastrophic.

In contrast to short-lived encryption, key managementmgiived encryption is con-
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siderably more problematic. With persistent ciphertextumber of scenarios would motivate
the need for eventual re-encryption. Examples include k&stions, compromised keys, com-
promised encryption algorithms and access revocationhdrvery least, the computationally-
bound nature of cryptographic security implies that, whetadifetimes are long enough, re-
encryption is inevitable; processing power is monotohjcaicreasing. In some cases, re-
encryption may only be needed for a few files, but in othergasany petabytes of data might
need re-encryption.

Especially when required due to a key compromise or algorékploit, re-encryption
of data must be done in a timely manner, However, the time pdydpe new encryption tech-
nique to a large amount of data will probably not be the lingtifactor; rather, issues with
obtaining keys and reading the old data quickly may be mdtieat Even this assumes that
a custodian exists to oversee such a process. Further,ipgtioms to speed migration likely
come with an associated management cost. For example, gt@nsychooses to save time by
encrypting over the old algorithm, it must have a way of deplvith key histories and key
distribution. With long data lifetimes this becomes ingiegly complicated, as key histories
would need to be preserved. In contrast, if the system clsdosgecrypt the data before apply-
ing the new algorithm, then it must have access to the usecsyption keys. Both scenarios
must also take into account the threat from malicious inaitkeckers. If an insider has access
to a user’s encryption keys, the security of the system iggitally weakened; encryption as a
security mechanism relies on carefully controlling acdedeeys.

Another problem introduced by the long-term usage of ert@gps the threat of key
loss. In an archival storage system, data can be very difficubproduce; the software, hard-
ware and even users that produced the data may no longer itebiaEncryption keys are a
single point of failure and key loss is effectively equivaléo short-term data deletion. Unfor-
tunately, it is not equivalent to secure data deletion. Diss bf the encryption key renders the
data temporarily unavailable. While the cryptosystem Iglyaccess times are negatively (and
drastically) impacted. Unfortunately, due to the compatelly-bound nature of cryptography,
the data may be readable in time, and is therefore not sgaletdted. To mitigate the problem
introduced by key loss, many systems that utilize encrypticlude a key-management aspect.
Unfortunately, this often introduces an implicitly trudtkey authority, which in turn increases

the risk of a malicious inside attack.
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The fear with any long-term use of cryptography is that aacker with enough time
and computational resources can compromise any policy@ardaising encryption. Numerous
examples exist of archives being lost or misplaced [25,108, 123, 201]. In such a scenario,
a malicious user that obtains encrypted data would meredy e wait for cryptanalysis tech-
nigues to catch up to the cryptosystem used to protect tlae @hus, it must be assumed that an
adversary with enough computational time can circumveynpalicy that utilizes cryptographic
primitives. It is, therefore, fair to say that encryptionyoprovides adequate security when the

relevant lifetime of the data is shorter than the time needesmpromise the cryptosystem.

2.1.2 Secret Splitting

While keyed cryptography is the mechanism most often agtatiwith data secrecy,
another popular mechanism is secret splitting [33, 74,124,130, 195], in which a secret is
distributed to a number of share holders. The unconditipregicure nature of some secret
splitting schemes suggested from a very early stage thantight be well suited to long-term
security [163, 166].

There are two general classes of secret splitting techgiegquaf n schemes anchof n
threshold schemes. Each of these classes is comprised aftzenof different algorithms that
differ in their security, performance and feature set. Betthniques produce a setmkhares
from the data to be kept secret. With mof n scheme, alh of the shares are required in order
to reconstruct the data. In contrast, withof n threshold schemes, the secret is used to generate
n pieces, anyn < n of which can be used for reconstruction; batandm are determined at the
time of splitting [153].

The classic, if not slightly morbid, example of secret $iplg is the distribution of
missile launch codes. In this scenario, the goal is to @istei the weapons’ launch codes to
a number of trustees, such that a quorum of shareholdersagrest to provide their share in
order for the missiles to be launched. Arof n scheme could allow the launch of the weapons
even if some of the shareholders are either unavailablewilluny to provide their share of the
launch codé.

The performance of different secret splitting algorithnesies widely. The binary
XOR operation, a computationally inexpensive operationmk the basis of a relatively straight-

LAccording to alime Magazinarticle, control of Russian nuclear weapons relied uponf82iireshold scheme
with secret shares distributed to the President, Defensésir and the Defense Ministry [157]
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Figure 2.1: A simplen of n XOR based secret splitting scheme in which a se&as, split into
n pieces all of which must be recombined in order to recons®um this algorithmR; through
R,_1 andS are distributed amongst the secret shareholders.

forward technique. lllustrated in Figure 2.1, it is fast egb to provide security in systems
which must provide relatively low-latency data access 163). Then of n XOR-based algo-

rithm operates as follows:

1. Randomly generate— 1 pieces of dataR; throughR,_1) equal in size t& (the secret
to split)

2. XORR; throughR,_1 andSto produceS. (Ri®R®...®R,_1®S=19)

3. Securely dispose &and distributeR; throughR,_; andS to the secret share trustees

While the simplen of n XOR approach is relatively fast, other approaches rely on fa
more expensive operations, and thus, are considerablyesldwor example, Shamir’s original
m of n threshold scheme relies on linear interpolation and paxes follows. The secret
Sis divided into shares using an— 1 degree polynomiatj(x) = S+ ajX+ ... + agn_X™*
whereg is randomly generated. The first share is generated by adilogity(1), the second by
calculatingq(2), and so forth up t@(n). Thus, it stands to reason that ampof these values,
and their index, is sufficient to deduce the valué&goivhile less thamm reveals no information.
However, as linear interpolation is more expensive thannarli XOR operation, Shamir’s
threshold scheme is slower than tinef n XOR based scheme.

A useful characteristic of some secret splitting schemgmifect secrecy. In such
schemes, it can be proven that combining any fewer than thelgtermined number of shares,
m < n, revealsno information about the original secret. For example, as@du2 shows, us-
ing the XOR based algorithm, with less tharshares, all possible values $fare all equally
likely. This unconditional secrecy, as described in Table & fundamentally different than the
computationally-bound security provided by most keyedptmgystems. Thus, uncondition-

ally secure secret splitting schemes can provide rigoyguslvable, future-proof security; the
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Owners|| Adversary
Ry | 1100 1100
R, | 1010 1010
Rs | 1110 1110
Ry | 0101 27?7
S| 1101 27?7

Figure 2.2: Example of the unconditionally secure naturammfXOR based secret splitting
algorithm with perfect secrecys= R, & ... & Ry). Even with three of the four secret sharBs (
—Ry), the adversary is no closer 8because all values &, are equally likely (assuming that
R are all randomly generated). Thus all valuesSafre equally likely as well.

inevitable need for re-encryption in largely avoided. Rart secret splitting is well suited to
long-term archival usage, since the slower speeds of mamgtsgharing schemes, compared to
encryption, are not a major detriment in archival workloads

While displaying several useful characteristics, it is artant not to assume that se-
cret splitting is a cure-all panacea for the shortcoming®g-lived encryption, or that it can
be effectively used as a drop-in replacement for cryptdgrafm any system that utilizes secret
splitting, there are several concerns that must be addtesse

One problem with secret splitting is ensuring that a malisiadversary, who is able
to obtain one share, cannot easily determine and find the stlages needed for reconstruction.
This is especially true when guarding against maliciouglars. With cryptography, a system
can store encrypted data and, without the correspondiny@ian key, there is a relatively low
chance that the data will be readable by an unauthorizedimgke short-term. If the key is
not stored with the data, even the abilities of a maliciossd@r are mitigated. However, with
secret splitting, a malicious insider, with knowledge ofiethshares reconstruct the data, and
where those shares are stored, can easily launch a targtsteld @nd obtain the data.

As with keyed encryption, secret splitting must takes pnéoas against the loss of
key material. Knowing which secret shares to combine isagmals to an encryption key; it
is the secret that transforms ciphertext into plaintextcd®ering data from secret shares is a
difficult problem in the absence of any assistance, as the rmgproach would involve testing
every possible combination of shares. Thus, the use oftsggliting must include a secure
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recovery mechanism that does not inadvertently empowerttankar (inside or outside the
system).

Storage overhead is another problem with secret splitiimgpoth n of n andm of n
algorithms, storage blow-up is typically on the ordendimes. Some schemes require less stor-
age overhead [129], but in return offer less than unconthliy secure secrecy guarantees. This
is in stark contrast to encryption, which incurs minimarage overhead. The increased storage
requirements imposed by secret splitting provide furtivédence of the need for economically
efficient, archival storage.

Secret splitting is well suited for long-term, archival rsige for a number of rea-
sons. First, it is unconditionally secure, and thus can igeovyong-term security. Second,
threshold schemes do not suffer from the single point ofifailthat encryption introduces.
Finally, archival workloads can accommodate the comparatly expensive, and therefore
slower speeds, of many secret splitting algorithms. Theynait, however, a drop in replace-
ment for encryption, and require designs that take in addieneed for data recovery and the
threat of malicious insiders.

2.2 Single Instance Storage

A common technique found in some archival storage systemmanitent-based nam-
ing [69, 127,205, 206]. This technique uses a hash of the alathe data’s name and offers
a number of benefits. First, content-based naming simplifaga-reliability checking as the
name of the data provides an easy way to check data inte@dé#yond, content-based naming
has been utilized as a means of reducing storage overhealtible users posses the same
file, a storage server would only need to store that file once.

Taking single instance storage a step further, data dezitjgh can be applied not
only at the level of entire files, but can also be used to ifiemtiatching blocks within files.
The first intra-file technique is exemplified by the Venti avehstorage system [127]. In Venti,
files are broken into fixed sized blocks before deduplicatsmnfiles that share some identical
contents (but not all), may still yield storage savings. $&eond, and most flexible form, breaks
files into variable-length “chunks” using a hash value ondirglj window; by using techniques
such as Rabin fingerprints [128], chunking can be done vdigiaaitly. This technique has

been used in a variety of communications and storage sy$fieins13, 202].
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Figure 2.3: Targeted-collision attack in which a maliciaser exploits predictable data (in this
example, a form letter with a due date) to generate valid kiDg, and associate those IDs with
invalid chunks. If the user is the first to submit the ID, suhsent chunks will be deduplicated
to a garbage value.

Unfortunately, conflicts can arise when attempting tozgilleduplication techniques
in a secure storage system. Deduplication takes advantatgaosimilarity in order to achieve
a reduction in storage space. In contrast, the goal of cgypfihy and other secrecy mecha-
nisms is to make ciphertext indistinguishable from theoadly random data. Thus, the goal of
a secure deduplication system is to provide data secug&mnat both inside and outside adver-
saries, without compromising the space efficiency achievidtyough single-instance storage
techniques.

One strategy for combining deduplication with securityaswergent encryption [48,
161]. This technique uses a function of the hash of the @girdf a chunk as the encryption
key: any client encrypting a given chunk will use the sametkego so, so identical plaintext
values will encrypt to identical ciphertext values, redesd of who encrypts them. While this
technique does leak knowledge that a particular cipherdext thus plaintext, already exists, an
adversary with no knowledge of the plaintext cannot dedbeeey from the encrypted chunk.

In addition to the difficulty of combining security mechamis with deduplication,

single instance storage opens up the possibility of tadgeddision attacks. In a deduplicated
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chunk store, a targeted-collision attack could be used focate a false value with a given
key. The pivotal difference between random collisions amgedted collisions is that a user can
exploit the predictable content of some data — in Fig 2.3 théaious user utilizes similarities
in form letters — to generate valid chunk identifiers. If awvadary can be the first to submit
those identifiers with a garbage chunk, and if the chunk starmot verify the correctness of
the identifiers, subsequent submissions that have the skmnfier will be deduplicated to the
garbage chunk.

While content based naming, and more generally dedupitathay be useful for
increasing a system'’s storage efficiency, it does raise dauof concerns in long-term archival
storage. First, while the mean time to data loss is not aftebly deduplication, multiple files
may be compromised from the loss of a single chunk. Secordhe$s add another level of
complexity, as retrieving a file now relies upon two distiactions: identifying the blocks to
retrieve, and locating each of the respective blocks. Thisddiscussed, it can complicate the
integration of other desired storage properties, such awige Finally, as the next section

discusses, it may remove a level of transparency that sostedians of long-term data prefer.

2.3 Archival Design Guidelines

During the course of the research for this thesis, and thraliscussions with long-
term data custodians, a number of design motivations arivatcmeeds have become increas-
ing evident. Of course, as part of the challenge of buildiffigotive long-term storage systems,
finding the right compromise between conflicting needs caditfieult. This section identi-
fies some of the core directives that should guide the dedigrstorage systems intended for

long-term data.

2.3.1 Capacity Scalability

Archival storage is well served by a scalable storage sysidore specifically, this
relates to two facets of scalability: granularity, and sealit potential. The first, granularity,
describes the size of each scale-out unit. The second-ceh[@otential, describes the upper
limits that a system can scale to before requiring a whatesgdtem replacement.

Capacity scalability is especially important in an archstrage scenario, because
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accurate storage-need forecasts can be notoriously diffccealculate; quite often, once the
value of archival data has been recognized, custodianswdisthat they have underestimated
the amount of data that is worth preserving [103]. This sgena further exacerbated by the
growth in file sizes. In addition, an effective archival gystshould present a low barrier to
entry. This is important, as a long-term storage system Idhoe able to grow with a data

producer.

2.3.2 Efficiency

In keeping with the goal of enabling the preservation of atedhatmightone day be
useful, archival storage must be concerned with cost efiitgie Put more succinctly, archival
storage must be inexpensive. Further, since efficiencysgaimrelatively low when considered
as an afterthought, cost efficiency must be a central goal fhe very beginning of the design
process. In this respect, its analog can be seen in commaierity; while early system security
was largely a tacked-on afterthought, it is widely held tottaat security must be present as a
motivating design directive in order to be most effectiv2][10f course cost efficiency is not a
discrete value, but rather the aggregation of a number thdiglesign decisions.

A common approach to controlling costs is the use of commiddirdware [59, 68,
69]. Often times, the assumption in such a system is thakhifgilure rates are tolerable, or
that the marginal cost of performance from enterprise diasdware is either unneeded or too
costly. It is important to note that the cost savings yieldeduch a strategy may be offset by
an increase in management costs. For example, a systenxpieat® higher failure rates from
consumer class equipment may not factor in the additionalirgidtrator workload incurred
from replacing these more frequent failures.

Administrative efficiency describes the effort to managgstesn. Part of what makes
this particular facet of efficiency difficult to measure ig thcope of what it includes [11]. The
management costs of a system should entail everything indraliplanning to (in a traditional
system) the end of life decommissioning of a system. Thusyidtrative efficiency covers
everything from the ease of integrating a system into artiagistorage hierarchy, to the indus-
trial design of a system’s components. For example, in &latgrage system, a large amount
of an administrators job is replacing failed drives. A dedigat makes it difficult to locate and

replace failed drives can drastically reduce administeagifficiency.
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Figure 2.4: The nominal price of energy from 1973 to 2008 foe¢ markets: residential,
commercial, and industrial.
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Recently, energy efficiency is an area that has been the faysite a bit of atten-
tion [121, 122, 188, 208]. In storage, energy efficiency islenap of two primary components.
First, there is the energy to actually power the systenfitSelcond, there is the associated cost
of cooling the equipment; as modern power supplies are n@fwléfficient — typical power
supplies are often only 65—-75% efficient — they generateraons amount of excess heat.

Unfortunately, most systems fail to address the oppostoosts associated with en-
ergy efficiency. In traditional storage systems this is noiagor problem, since most systems
will only be used for a few years. However, in a system thab isvolve over time, the concept
of energy inflatiormust be addressed. As Figure 2.4 illustrates, the price @fygns increas-
ing [51]. Further, as Figure 2.5 shows, hard drive capacita/e been growing at an exponential
rate [1]. In fact, Kryder's Law states that hard-drive cafies are increasing even faster than
processor speeds; since 1956, hard drive capacity hasssates0-million fold [181]. Thus,
there is a huge opportunity cost associated with aging héwrdsd Combined, these two factors
mean that every dollar spent on energy returns a monotbnidetreasing amount of utility as
measured by the storage capacity. In archival storage,dakcf an evolvable system means
that it is insufficient to view energy efficiency as a statigét. Rather, it must be dealt with
proactively. Put more succinctly, if a system is not gettimgreefficient, energy inflation means
that it is gettingessefficient.

Storage efficiency is a measurement of how much usable stdsagielded from
a given amount of raw storage. For example, reliability sob® that create a single mirrored
copy of data reduce storage efficiency by half. Thus, forigatstorage, the goal is to maximize

storage efficiency without unduly sacrificing required leva reliability.

2.3.3 Evolvability

Current storage systems tend to operate with a hardwaspdife of approximately
five years. At the end of this lifespan, data is migrated towa sgstem, and the old system
is replaced in what is sometimes called a "fork-lift” upgeadnadequate performance levels,
increasing failure levels, or equipment end of life accmmbften motivates this upgrade. Un-
fortunately, with its ever increasing corpus of data, supfgrades conspire against the cost
efficiency needs of archival storage; such upgrades oftam enhigh cost in energy and admin-

istrator time.
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Hard Drive Capacities Over Time
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Figure 2.5: Hard drive capacities from 1973 to 2008.
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Thus, archival solutions should be designed to scale atirogs[18, 19]. This has
been elaborated as the ability to scale across changes suebhaology, protocols, and ven-
dors. One approach to achieving this evolvability is to iustaway the details of technology
specific design, and export a very simple protocol, such addielput and get methods;
abstraction layers can map complex protocols to a set ofafimneahtal operations. Further, this
approach forces designers to call into question assungpéissociated with an implicit, whole-
sale system migration. For example, in a long-term evob/algstem, a drive cannot be left to
participate until it fails; the amount of capacity an oldvérprovides for the power it consumes
does not justify its existence.

2.3.4 Reliability

By its nature, the contents of archival storage can be vdfiguli to replace. Often
times the people, knowledge, systems or input needed teatecdata may no longer exist. In
other scenarios, such as with scientific computing and nmaglehe time required to regenerate
data may be prohibitive. Therefore, archival storage masthable.

At times, archival systems are called into use as a holdiag for cold data before
it is either relocated, or deleted. lronically, in this saea, archival storage must be reliable
enough to safely store data until a custodian has had thetopjiy to review its contents and
potentially delete it. In such a situation, all data must $®ianed to be irreplaceable until stated
otherwise.

2.3.5 Reasonable Performance

The workloads of archival storage allow it to relax the need dltra-low latency
access if it returns gains in other areas. For example, adguin disk results in energy savings,
but may incur a spin-up fee of a few seconds. This is not tolsayever, that random access
performance is not important to archival storage. Contiguhe example, a penalty of a few
seconds to spin up a disk may be acceptable, but the scalewfraifiutes to locate data on tape
is an unacceptable delay. The key insight is that randonsaguerformance can be relaxed, not
ignored,if it results in useful gains elsewhere in the system.
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2.3.6 Transparency

A design property that is rarely identified in traditionalandine storage, yet often
comes up in regards to archival storage, is that of tranapgreln an ideal system, an ever
increasing corpus of static data would eventually resida slowly changing, evolvable system.
This, however, introduces data vulnerability in the formvehdor dependence; with storage
higher in the hierarchy, lower level backups and replicattan provide backup access. Thus,
archival system should provide simple file level access ouslthat can serve as a worst-case
exit strategy.

The issue of transparency often comes up in the discussidéacbhiques that op-
erate at a sub-file level. For example, data deduplicatiamyude chunks may work against
transparency if chunks are distributed across many deviddsis, while such an approach
may increase storage efficiency, the implicit metadata aappimg involved with translating a

chunk-level data view to a file-level data view may be unatadglp to many data custodians.

2.4 Application Preservation

Projects in the area of long-term data preservation oftérintm one of two cate-
gories: data preservation and application preservatia@ta preservation, the area that my work
is concerned with, is about maintaining bits. In contragpli@ation preservation is concerned
with making sense of the interpreted meaning of those bsg2]. While application preser-
vation is orthogonal to the scope of my work, it is an intdér@sproblem and inevitably comes
in up in any discussion of long-term storage. Therefore gibed of this section is to provide a
basic understanding of application preservation issues.

As mentioned earlier, long-term preservation of digitaiada not a purely technical
problem, and is poorly served by purely technical solutiddsnsiderable work, therefore, has
gone into the human and organization level challenges. ¥ample, The National Archives of
Australia has made a concerted effort to detail a seriesgifiyactices to ensure that migration
and digital custodial work can proceed as effectively asibtes[75]. Part of this effort involved
establishing a clear point of responsibility to replace niestly ad hoc efforts spread across
disparate organizations. More interestingly, their walérnitifies the break that digital records
represent compared to physical artifacts; originalityasanger the issue, rather the capture and
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playback of a temporal “performance” of a digital artifagtie aim. Specifically, they identify
a three stage model of digital preservation: soeircedata, the combination of hardware and
software comprising thprocessneeded to interpret the source, and the agiediormancehat

is rendered to the screen.

Efforts to preserve the process and performance aspecfspbtation preservation
generally fall into one of two camps: migration and emulatidhe first, migration, involves the
effort of data custodians that perform audits to detect egeiged formats that can be translated
to safer formats. To this end, work such as the PDF/A spetititdnas been focused on pro-
ducing formats that are well suited to long-term data [134je PDF/A specification is a subset
of the complete PDF specification that limits features taséhthat can be reliably included
in a self-contained, self-describing PDF file. The secomdulation, maintains the original
source and performance components, and utilizes one orviraralized environments for the
performance phase [63].

At the current time, one of the critical aspects of applmatreservation is saving de-
scriptive metadata. To this end, Howard Besser’s adviog, isave any metadata that is cheap
and easy to capture” [22]. Further, metadata preservatsramumber of important implica-
tions to preservation chores ranging from searching foa dathin bodies of long-term data,
to assisting in data and format migration. Ironically, vehihetadata plays an important role
in preserving long-term archival data, it also complicdte®wy-term integrity; it is not enough
to simply preserve data, metadata and the connection betwmetadata and data must also be
preserved.

Within the context of my work, Chapter 5 discusses the desfghergamum, which
separates the internal storage of metadata and data, whapsulating it within a single device.
This is done for a number of reasons. First, in an effort todm efficient, the unique needs
of metadata and data — metadata currently has lower capaedgs, but is accessed more
frequently than data — are addressed with two different emggies; archival storage cannot
afford the luxury of excess, therefore the scale of the smiunust match the scale of the issue.
Second, while internally data and metadata are treatedatepa externally they are unified
into one field replaceable unit. Third, the needs of data agihdata may evolve along separate
paths; while the total capacity needed for data eclipsesaaéd, some predict that eventually
metadata may one day be larger than the data itself. By egtaiy a strategy of treating the
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two as unique, it is much easier to adapt newer devices todhanging needs.

Taking a step back from the specifics of computer storagee taee a number of
on-going projects in the area of long-term thought and desifvo of the most famous are
the Clock and Library of the Long Now [24]. Both endeavors keg projects of the Long
Now Foundation, and illustrate the group’s 10,000 year \aéthe future. Their philosophy of

“slower is better” serves as a counterpoint to what they se¢becurrent “faster and cheaper”
mentality.
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Chapter 3

Related Work

The moments of the past do not remain still; they retain in our
memory the motion which drew them towards the future,
towards a future which has itself become the past, and draw us
on in their train.

Marcel Proust

The current corpus of storage research consists of a widetgairsystems and stor-
age models. As with many terms in computer science, evendhewer scope of “archival
storage” is overloaded and involves numerous, sometimefiicting, models. For example,
public archival systems are often built expressively tauea®pen access; library-like systems
are designed to ensure equal access to all potential reddersntrast, other systems are de-
signed specifically to provide data secrecy.

The disparate needs of long-term preservation, and toaditi performance-oriented
storage, warrant a solution specifically designed for aettgtorage’s workload, access model
and data lifetimes. My work is important because it direetliglresses archival storage security,
energy-efficiency and evolvability. To that end, the two lgaaf this section are to present
my work in the context of existing research, and to demotestitzat no current systems fully
addresses the needs of long-term, secure storage.

The remainder of the chapter consists of an overview of séweportant areas of
relevant research. | begin by describing the trend towacoisaih specific systems. That is,
storage systems designed for very specific workloads aresa@atterns. Second, as distributed

architectures are well-suited to evolvable storage, Iudisthe intentions and designs of several
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prominent, distributed storage systems. Third, | preserdvarview of systems designed for a
wide variety of security properties. Finally, | discussesa approaches that have been taken to

address the high costs of data storage.

3.1 Workload Specific Storage

A growing trend in storage systems is the development ofesystdesigned with
very specific workloads in mind. Often times, these domaiapgmlication specific systems are
optimized for a unique access patterns or requirements.leWis presents the challenge of
how best to optimize for key operations, it also present®dppities. Domain specific systems
are often able to relax constraints that would prevent theym fbeing suitable as a general
purpose system. For example, in archival storage, reakoaabess latency penalties may be
an acceptable trade-off for gains in energy efficiency.

The purpose of the archival model that my research is cordewith is to preserve
relatively static data that has been purposely prepareldfigrterm storage. This class of data
tends to exhibit a write-once, read maybe workload. In arass setting this would be data
such as documents that have been finalized and requireiogtemhis is becoming increasingly
important as legislation increases the retention and egademands of such data [2,3]. In a
personal setting this would include such family historyoimmfiation as legal documents, medical
records, images, videos and correspondences.

As the contents of a secure, archival storage system ate&edfastatic, | am con-
cerned with a position that is adjacent to the traditionataie hierarchy [76, 194]. During
data’s production life cycle, content destined for long¥tearchiving exists within the storage
hierarchy. In this phase of its life, it warms and cools angstebbs and flows between the
gradation’s layers. However, upon reaching its final stii, it is prepared for long-term
preservation. Part of this procedure involves migratirgdhata out of the hierarchy and into the
class of archival storage system that my work is concerndl wi

Finally, the protection goal of long-term secure storage igrovide secrecy over the
data’s entire, potentially indefinite, lifetime. More oy#re security approach must effectively
balance secrecy with availability. On one hand, the dateesgaenust be sufficiently secure that
it does not require attention from a data shepherd. Howéwenst simultaneously be flexible

enough to be readable by an authorized viewer with no ouisfdemation about the data.
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GPFS is a file system designed for high performance clustesd computing [146].
These installations are often used in domains such as iciesimputing, where workloads are
marked by large numbers of concurrent accesses to the sanfeltfilough not necessarily in
the same location within the file). To deal with this concaotreeavy workload, GPFS divides
each file into equal sized blocks and these blocks are digtdbon different disks within the
storage environment. This allows multiple clients to haldds on different portions of the file.
This distributed locking allows the file system much greatéciency for parallel access. Dis-
tributed locking is based on a central lock manager thatibiiges capability tokens to clients.
Subsequent accesses to the data do not require furtherctavith the lock server. Allow-
ing clients to lock a specific byte-range as opposed to a wiileleor even whole-block lock
further optimizes locking. In the write once, read maybekl@ads of archival storage, such
heavy-weight locking strategies are unnecessary, andasiiyunneeded complexity.

The author’s of Slash [117] are concerned with the dataatiarv problems in large,
HPC environments. Their view of archival storage is thateofiary storage. The high data
production rates found in HPC workloads must provide cdstéfe storage for large volumes
of data, while still supplying data consumers in an efficisr@nner. Slash is an abstraction
layer between low level, archival storage and higher lei@bge. Their solution is composed
of metadata servers, a cache component and an archivingpo@mip The system has two goals.
First, it acts as a cache for storage higher in the hierarSegond, it acts a gateway between
the archival system and the upper level, HPC compute system.

Dynamo is a distributed key-value store that Amazon relgsnufor many of their
internal applications [42]. The system provides "alwap$-write reliability and favors avail-
ability over consistency. Making this distinct from arcllistorage is the system’s insistence
on low latency SLA's, and fairly high levels of administraioput for certain operations. How-
ever, similar to archival storage is the need for incremestalability, non-specialized peers,
and decentralization. One area of interest is that thisesysttilizes "hinted handoffs” which
are similar to the idea of foster writes [114].

The Google File System [28, 59] is another example of a filéesyghat was made
for optimal performance under a very specific workload. lis fharticular case the workload
was marked by a number of very large files that are rarely eléletnd where most mutations
come in the form of appends rather than writes to the middtaefile. The basic design of the
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Google File System involves a number of storage hosts andteatenaster server. Files are
divided into fixed sized chunks throughout the system anlicegpd a fixed number of times in
order to adequately deal with failures within the systemisBrategy works as the system are
designed with the specific file workload in mind. Other, moe@eral purpose storage systems
have specifically provided flexible redundancy schemesathat files to specify their desired
level of reliability [4,190]. In GFS, Client requests arensé the master server and include
the file name and the calculated chunk index. In an archieaao, this presents a number of
problems. First, the master servers present a central@ed gf control that introduces a point
of failure, and complicates evolution. Second, the systdixéd replication rate is suitable to a
workload such as Google’s that has no strict permanenceugiess, but would be inadequate
for the long-term survivability requires of archival data.

FAWN (Fast Array of Wimpy Nodes) was created as power awastegy for a work-
load dominated by seek-dominated key, value storage [10file/this workload is almost the
exact opposite of the write dominated archival space, thibeé sort of workload that a DNS
server, or other look-up service might encounter. Theiutsmh involves a number of rela-
tively high powered front-end systems, with an array of jogwered, DRAM based devices for
storage. Unfortunately, the current design of FAWN doesadlulress the reliability problems
associated with flash outside of straight replication. Aiddally, static costs are not addressed
by their system, and their reliance on flash suggests ttsaftrtlght be rather high. Additionally,
the front-end nodes are fully aware of each node in the systachare updated on each node
entrance and exist (it is, therefore, not a fully distrilolsystem). They do, however, utilize
a Chord like DHT arrangement. Although, as stated earlést, bokup times rely heavily on
caching and a front-end system that can route the queriestlgito the correct node.

3.2 Distributed Storage

Distributed systems, including storage systems, have beattive area of research
for some time. Designs that avoid a monolithic architectnifavor of a decentralized approach
have been applied to a wide range of pursuits including resoutilization, survivability, and
performance. Archival storage is well suited to a deceiatdlarchitecture, especially when the
interface between components is designed to facilitateefusystem evolution. Of course, as

with any fundamental design shift, opportunity comes whhlenges to overcome.
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As even moderately powerful computer systems often hava ktorage that goes
underutilized, attempts have been made to aggregate #tithdied resource and present it as
a single pool of storage [36]. One such example, Frangipasidesigned for trusted networks
and utilizes a layered approach [175]. At the lowest layerthe physical disks. Above this
is Petal, which presents multiple physical disks as distéd virtual disks [91]. Frangipani
is layered atop this, and presents views of virtual “file sesV. Frangipani is designed to be
used on a cluster of machines under a common administrabars, Tvhile block-level secrecy
is important, the system’s security primarily stems froosted operating systems and secure
communications channels.

Other attempts to utilize contributed storage widened thece of participating sys-
tems, forcing designers to take a harder look at systemiggaoom a public system, such as the
Internet, users may not know which nodes their data willdesiupon [7, 81]. These systems,
therefore, often utilize secrecy through encryption. B@meple, the authors of PAST [143] ex-
plicitly assume that it is computationally infeasible t@ak their encryption. Often times, as in
OceanStore [86, 137], the system itself does not directtirest the use of encryption beyond
stating that data entering the system must be encryptedichna strategy, the onus introduced
by encryption — such as key management, re-encryption, epddtations — is left to the user
or outside solutions.

Another use of contributed storage, and a useful technialieswited to archival stor-
age, is the use of geographic diversity to increase dataability [82, 145, 186]. One example
of this approach, Glacier [70], utilizes extensive use afsare codes and redundant distribu-
tion. The central idea is that high levels of redundancy i®Wigh levels of reliability. While
the approach does incur a high storage cost, the authomgateitthe problem by aggregating
smaller objects and utilizing garbage collection. Lastiile such geographic diversity can
introduce latency delays, Glacier, like other such systésnsot intended to be a primary store.
Instead is exists alongside a primary store that usergeufitir low-latency access while Glacier
is used for long-term accessibility.

An accessory to geographic disparity, data encoding ifnoftélized in place of
straight replication. Stonebraker and Schloss introdutisttibuted RAID [160] to provide
redundancy against site failure via geographic distrdsutand RAID-style algorithms. This
technique was further refined by Myriad [29], which uses adalgdisk abstraction in conjunc-
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tion with groups of data blocks and parity blocks that aredpo@d using erasure codes. While
such cross-site redundancy strategies do introduce aticaddilevel of management overhead,
studies show that cross-site redundancy techniques adildeoably to data reliability, even
when less than optimal encoding techniques are utilizefl [29

Outside of extensibility, distributed storage enablestdggrees of parallelism; in-
stead of a single, monolithic storage controller, requestsbe routed to any number of storage
hosts [26, 41]. Taking the idea a step further, several sysigilize dedicated metadata nodes
and storage nodes, further reducing potential bottlengck8, 118, 189, 190]. For example,
Ceph is comprised of intelligent object storage devicesDa cluster of metadata servers,
and clients. Scalability is provided by placement groupsl @ function which provides inode
to block mapping (as opposed to a static table) [77].

Intermemory exploits distributed systems for both religband lower access time [31].
Intermemory’s design was created based on the report byathefdorce on archiving of digi-
tal information. Intermemory implements a block level dudite that can be used to build
larger more complex data structures. They use two levelplitfisg, which is similar to POT-
SHARDS, but each level relies on an IDA, as there is no explieed for secrecy. The reason
that Intermemory does two levels is to reduce the amounttwiark connections needed for a
rebuild. It is unclear however if the splitting parametetshe two levels or fixed or tunable.
Unfortunately, while the increased fan-out achieved with tevels of splitting can benefit ac-
cess patterns, it can also result in significant managenventhead. As it stands in Intermemory
there is a lot of mappings that needed to managed.

Of course, while contributed storage can offer a number okfies, it can also in-
troduce problems, such as ensuring that participants didelgaved [20]. This is especially
important in open, communal arrangements where each ipatiity node acts as both a client
and a storage node. One approach to the free rider problesrevehnode does not actually
fulfill its storage obligations, is the use of periodic respiseand the looming threat of the end of
a mutually beneficial relationship [85, 95]. Another apmtoaelies on mathematical properties
of erasure coded storage [73, 148]. The key insight intoathmoach is that the signature of the
parity is the same as the parity of the signatures. Whileetlsgstems can provide short-term
data reliability through replication and geographic diigasuch an approach on its own isiill

suited to long-term storage. These systems provide no gie@sabout the persistence of each
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replica, and often require a user to take a rather activeimodgsuring the proper behavior of
their storage hosts.

Similarly PAST is a peer-to-peer model that attempts tdyfamalance the storage
demands on each node in the system [143]. The system is ad@sgan overlay network and
uses Pastry [142] as a lower level that handles routing sh@ae of the novel aspects of PAST
is its methods for normalizing the storage usage on memigEmidNames are evenly distributed
and identifiers are created by hashing the file’'s name, thesvpublic key and a randomly
chosen salt. PAST does utilize smart cards to manage the sifiarkey operations. A novel
aspect of PAST is the effort that has been put into storageagement. This is understandable
based on the fact that it is hinted that PAST would be a “payfay” sort of system. Storage
management is handled in two key ways: replica and file dimersReplica diversion allows
a node that is not one of tHenumerically closest drives to store a file in response to @&nod
without the necessary storage space. File diversion osghen all of a node’s leaf set is

reaching capacity.

3.2.1 Distributed Communication

While distributed architectures offer a number of benefitsranonolithic architec-
tures, they also introduce a number of problems. As the systast deal with numerous, often
transient, nodes, communication in distributed systemagiish area of research.

As distributed systems are composed of loosely couple@épiedent devices, system
wide knowledge can be challenging. An extreme approacheiptinsuit of global awareness,
in which a fully connected graph allows one-hop communiceti between any two nodes.
For example, in Name-Dropper, the system converges on Igkoimavledge by having nodes
randomly sending a neighbor a list of all the nodes it knowmiaf72]. The receiving node then
adds these to the list of nodes that it knows about. Unfotélyyehe per node storage overhead,
and proliferation of messages with these strategies make suitable for only relatively small
systems.

Another problem with systems that attempt to achieve gl&bhaWwledge is the diffi-
culty of determining a termination point. The work of KuttdPeleg and Vishkin relies upon
either knowledge of the total number of nodes in the systery &nowing the maximum total

number of nodes (perhaps based on the naming techniquestgafav]. Their solution works
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by transforming tall trees of links into stars, and then rivgygstars into a tree. The work of

Abraham and Dolev does not require prior knowledge of théegy's size [6]. Their approach

involves the search for a leader node. As each node entesysiem, it assumes that it is
the leader, and then iteratively contacts other nodes irttampt to either merge leadership or
assume leadership.

Unlike systems that attempt to maintain a full list of netwonembership on each
node, a number of approaches have shown that adequate g@warabe achieved through the
use of randomization. The “small-world” phenomenon dentrates that a k-nearest neighbor
approach with even small amounts of randomization nets lpsfaund reduction of hops in
peer to peer message routing [184]. Based on this behaWa@Vi only requires each node to
maintain a partial membership list [55]. The SCAMP appro@sblves subscription requests
that can be forwarded along a randomly generated path, bubtde dropped. The authors
show through simulation that this process has coveragkngva system that requires each node
to maintain a full membership list.

Related to the problem of global knowledge, is the problemlabal consensus [88,
89]. Chlebus and Kowalski explored the use of gossip withgibe of getting large groups of
nodes to agree on a common value [32, 187]. Their solutioohre¢ nodes maintaining and
trading arrays of information through the use of collecinsl disseminators. The problem is
the huge amount of information that is transmitted. The anstluse two metrics to measure
their solution: time and the number of point to point messadénfortunately, in an array of
n nodes, each node maintains three arrays of lengtkurther, all three of these arrays are
transmitted as a part of the update process.

Further work has extended gossip based communication agipes, making it Byzan-
tine fault tolerant [89, 93]. The goal of this solution is te btable in the face of Byzantine
failures as well as resistant to free riders that do not aicobaltruism (they only work for their
own benefit). The solution is based on pseudo-randomnetstteenpts to take advantage of
the benefits that randomness leads to gossip protocols sililifunctioning in a deterministic
fashion. Additionally, they use public-key encryption tf@ce accountability on the basis that
proof of misbehavior is a sufficient deterrent. This, alorithwdelayed gratification, ensures
that clients stick to established protocols.

In contrast to the lofty goals of global knowledge, a disttédd hash table (DHT) is
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a distributed data structure that maps keys to nodes. Gik@y,ahese algorithms can, with
knowledge of only a subset of the total nodes in a system,aratigely route a message to the
node responsible for the given key [132, 142, 207]. For exanip Chord, nodes are organized
using a circular namespace and, in a naive case, can simplyubed around the circle until
they arrive at the correct node [159]. To optimize this, eamtle maintains a “finger table” that
contains increasing large steps along the circle. In thig Waough a greedy algorithm, the
system can resolve lookups in log time. Additionally, aswitost DHT algorithms, Chord is
compatible with dynamic membership; nodes are able to emigtteave at any time. Similarly,
Pastry involves an overlay network based on nodelDs, andea tiered routing table [142].
As requests are routed through the system, each node paakewito a node that is "closer”
to the nodes responsible for housing that requested oljechis way, the authors show that
message arrive at their intended destination in a logaritimamber of steps.

Information management systems attempt to provide systeet awareness, while
still maintaining a decentralized, distributed architeet Some, such as SDIMS and Shruti,
utilize DHT algorithms as part of their foundation [199, 200hese information management
systems aggregate information about a distributed syststate, and make it available in a
way that does not collect all of the information in a centrainp of failure. Another approach
to data aggregation is seen in Astrolabe, which eschews DidTavor of a gossip-based ap-
proach [136]. Unfortunately, this approach is inefficierithacertain workloads, and focuses

more on data summaries that data aggregation.

3.2.2 Distributed Leadership Election

While distributed architectures offer the promise of fefiem centralized points of
failure, there are still a number of tasks that require aratwbordinator. Thus, for tasks as
varied as key distribution, routing and data aggregatidaasible distributed system must have
the ability to identify and reach consensus on a centralieader. Of course, as with many
problems within the space of distributed systems, the Bitmas complicated by the presence
of dynamic networks in which nodes may enter and leave andiugy

The problem of leader election is traditionally, and sucttindescribed as having the
goal of eventually electing a unique leader from a set of finedes. To this end, a number
of algorithms have been developed that solve this core @nolvithin the context of different
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network topographies and communications models.

One of the common approaches to leader election relies otofwtogy of a ring
network. A global extrema, bully algorithm was devised tooneer tokens in a token ring
network based on each node’s individual id [101]. The cortheflgorithm involves each node
sending its id to each of its neighbors. If a node receivesl gndater than its own, it passes the
id along. If a node receives its own id, by virtue of the netidstogical ring structure, it has
the largest id, and therefore becomes the network’s leader.

The other common approach to leader election relies onsdifflcomputation over
spanning trees [45, 54, 58]. In this approach, electiongnbe&ben a potential leader begins a
diffused computation. Each node propagates the electi@sage to its neighbors, and sets the
node it received the message from as its parent. An ackngwledt back to the parent node
is sent only after all of a node’s children have respondedltiMe simultaneous elections are
often dealt with using a bully approach in which the electiooted at the highest node id wins.

Beyond the basic problem, domain specific constraints ¢bproblem, and moti-
vate the need for domain specific solution. For example,l@gsesensor networks complicate
the basic leader election problem with a physical netwonlicstire that is subject to change;
nodes may be moving in and out of range [52,178, 179]. Furtein an evolvable system,
the capabilities and health of the nodes can vary widely desionay exhibit different battery
levels and hardware designs. To this end, a number of splutiave included modifications
to the basic algorithm to take node characteristics into@atin order to intelligently elect an

appropriate leader.

3.3 Storage Security

Security continues to be an important driving force in gjereesearch [139]. While
numerous stopgap solutions exist, it has become genegpted that a secure, modern sys-
tem must include security as part of its fundamental desldnis section presents an overview
of the wide gamut of problems addressed by current resediict, | present an overview of
systems that provide data secrecy, both for short and lemg-tlata lifetimes. Following that, |

discuss systems that address integrity and accountainilgiorage systems.
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System Secrecy Authorization Integrity Blocks for Compromise Kéition
FreeNet encryption none hashing 1 access based
OceanStorg encryption signatures versioning m (out of n) access based
FarSite encryption certificates Merkle trees 1 continuous relocafi
PAST encryption smart cards immutable files 1
Publius encryption password (delete) retrieval based m (out of n)
SNAD / Plutus encryption encryption hashing 1
GridSharing secret splitting replication 1
PASIS secret splitting repair agents, auditing m (out of n)
CleverSafe| information dispersal unknown hashing m (out of n) none
Glacier user encryption node auth. signatures n/a
Venti none retrieval n/a
LOCKSS none vote based checking n/a site crawling
POTSHARDS secret splitting pluggable algebraic signatures O(R™1)

Table 3.1: Capability overview of a sampling of storage eys that enforce specific protec-
tion policies. “Blocks to compromise” lists the number otal®locks needed to brute-force
recover data given advanced cryptanalysis; for POTSHARRESassume that an approximate
pointer points tdR shard identifiers. “Migration” is the mechanism for autoimagplication or
movement of data between nodes in the system.

3.3.1 Secrecy

The facet of security that immediately springs to mind tetodbe secrecy. As Ta-
ble 3.1 illustrates, many systems were designed to offelesaspect of protection. However,
not all were designed for archival workloads. In this suliea¢ | focus on systems that aim
to control who can read information. While many designsiagtithe rather straight-forward
application of encryption, others have opted towards uditimmally secure mechanisms such
as secret splitting. None the less, | show that these systienmot fully address the specific
needs of secure, long-term storage.

While a number of systems identified a need for security ireotd function over
public networks [86, 143], others view data security asrtbentral goal [9, 92]. These systems,
such as SNAD [112], utilize encryption as part of a robustiggcsolution [12]. While data is
encrypted on the client machine, and stored in its encryfoted, SNAD also provides enough
information to authenticate both readers and writers. Tbars go so far as to suggest that
the storage nodes may not need to authenticate incomingstqurhe computationally bound
nature of cryptography makes the viability of this practias a long-term solution, dubious at
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best; solutions that work well for shorter data-lifetimes ribt always translate to long-term,
archival scenarios.

Unexpected results can occur when multiple demands cadltfategies that inadver-
tently conflict with one another. For example, a common agghdo storage efficiency is the
use of data deduplication. By identifying common chunks atadboth within and between
files and storing them only once, deduplication can yield sasings by increasing the utility
of a given amount of storage. Unfortunately, deduplicatoploits identical content, while
encryption attempts to make all content appear random;ahe content encrypted with two
different keys results in very different ciphertext. Whifatial work has improved the secu-
rity of deduplicated storage, it still suffers from the ulspoblems associated with long-lived
encryption [48, 161]. It remains to be seen how to combinenditionally secure operations
with data deduplication.

A number of systems attempt to offer security with reliapibly encrypting data, and
then generating a set of erasure coded shares from the tephdPopular reliability encoding
techniques include algorithms such as Reed Solomon [6d]Rabin’s Information Dispersal
Algorithm (IDA) [129]. These functions take data as inputdgroduces shares, anyn of
which can be used to rebuild the input data. Compared to utitbamally secure secret splitting,
IDA algorithms are less secure. However, they often inculefss storage overhead.

In e-Vault [79], files to be stored are sent to a set of archivdsere integrity in-
formation is calculated over slices of data; each archilg keeps only the data slices that
belong to them. These partial signatures are combined to foe full data signature. In the
commercial space, CleverSafe has used this approach fares@n-line archival data hosting
using a custom six of eleven IDA algorithm [38]. Allmydatashextended this approach with
the addition of Merkle trees for ensuring the integrity ofadfl93], a technique also used by
e-Safe [8]. Evaluated as a viable long-term storage saolutid suffer from a reliance on en-
cryption, and the problem of an inside attacker; in ordeetieve the customer from having to
ensure the long-term survivability of their keys, such gy assume that the service provide
can be trusted with users’ keys.

SafeStore [85] is another example of system that utilizésrimation dispersal and
encryption as a way of providing long-term durability. Tihsolution is a hierarchical, dis-
tributed system with clients at the top and Storage Senavitkrs (SSP) at the bottom. Data
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is encoded into a number of pieces, and each of those piesentido an independent SSP.
There, it is further protected using another layer of enogdiThe effect is both inter-SSP and
intra-SSP redundancy. The second part of the SafeStorgndissan auditing system based on
cryptographic hashes and spot checks. The node being @pdaeides a report of the data that
they are holding, and the auditor challenges that reporsking for random blocks that it can
then hash and test against the reported manifest. Thergvareoncerns with this approach.
First, encryption occurs at the server. This implies thaser wther than the data owner has ac-
cess to the encryption keys. Second, providing full blockpart of the auditing systems opens
the potential for slow data leaks; even when chosen randawér the course of many years,
auditing can reveal numerous blocks. An alternative thmaitdi the amount of data revealed
would be the use of algebraic signatures [148].

Just as with encryption, one of the direct uses of secrdtigglis as a mechanism to
provide data secrecy. Two systems in particular, Grid8hdi69] and the Steganographic File
System[13], utilize fast XOR style secret splitting. Giiid8ing is designed for a collaborative
work environment that stresses low-latency disk accessis,Tie secret-splitting algorithms
usable by GridSharing are restricted to those which cam faf encode and decode operations.
As archival storage stresses data throughput over lomdsgtaccess, a system built specifically
for archival storage is able to take advantage of a wideetyadf secret splitting schemes, and
more complex splitting policies. The Steganographic Filst&m (SFS) is designed to provide
security as well as plausible deniability. In SFS, the diskds a number of random blocks of
data. A set of these blocks, chosen using a deterministarittign, is used as the random input
in the basic XOR scheme. The resulting blo&kjn the example illustrated in Figure 2.1, is
written to disk; to an attacker, it is indistinguishablerfrahe random blocks. The authors of
SFS utilize XOR based secret splitting because the inpukbloan be pre-generated; they are
simply random blocks. The security of SFS is based on thaliattkknowing the password and
which blocks of data to combine will reconstruct data, whieadversary cannot even ascertain
whether the data even exists on the system.

One of the prominent systems utilizing threshold secrédttisg, PASIS [65, 197] was
designed for long-term data survivability. The system @iasof a number of decentralized
storage nodes and a PASIS agent, which resides on the slsstem. My work differs from

PASIS in a number of ways. First, PASIS uses versioning asmoitant mechanism for
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audit based security. The mostly static content of longitarchival storage largely mitigates
the effectiveness of versioning strategies. Thus, my wodk$es more on protection through
unconditional security and noticeable access patterrrBethe authors of PASIS specifically
state that they aim to provide performance comparable &tiegilow-latency storage; my work
relaxes this constraint, as it is designed specifically foachival usage model. Third, PASIS
utilizes a directory service to translate object requestshiare requests. While this provides
enhanced performance, it does provide a potential targetttack. Moreover, it could provide
a malicious insider with the information needed to launclery effective, targeted attack.

3.3.2 Integrity and Accountability

While many assume that protection implies data secrecy, KE&[104, 105] is de-
signed to guard against an adversary attempting to censtamge public documents. The
purpose of LOCKSS is the long-term preservation and accestatic public works such as
journals and essays. The protection aspects of LOCKSS aieytarly interesting. It strives
to enforce a security policy that specifically does not conéasecrecy aspect but emphasizes
the integrity of the system’s contents. The current versiohOCKSS uses a two-level polling
model with an inner-circle of more trusted peers and an atitele of newer peers. The hosts
positioned in each circle are changed through a system ohttguin order to avoid dependence
on any particular set of peers. Additionally, there is aetysof effort-based challenges. These
help guard against Sybil attacks[47], where a single eptises as multiple systems in order to
unfairly influence voting.

In addition to data secrecy, encryption has been used to@néovariety of security
policies. For example, Freenet [37] is designed for the wmamus publication of information,
and uses encryption to absolve users of legal respongifmlitcontents stored on a their nodes.
The central idea is that node owners can reasonably clainthtég do not know the true con-
tents of the encrypted data. Another important aspect @rigieis communications anonymity.
The system relies on a network in which each node only knowsitatheir direct neighbors.
Resources are located through the use of hashes, and eqreebimited in the number of hops
they can make. Results backtrack over the request routgjngpfhe requested data to each
node along the path. This arrangement is well suited toaafntig popular data, but it does not

provide for the long-term persistence of its contents.
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Mnemosyne is a peer-to-peer system offering plausibleathdity, and extends ideas
presented in the Steganographic File System [13, 71]. Thadasic system involves a collec-
tion of random blocks that mask the existence of real blog¥ken a new disk is added to the
system, it is fully populated with random data. Real bloosssist of encrypted data, stored at
an address determined through a deterministic processicéity, the inclusion of replicated
blocks introduces the need to balance replication and #tkeofi overwriting a real block. As
the authors themselves point out, the “birthday paradof] fdakes this a non-trivial risk. To
extend the local system into a peer-to-peer system, thd lalddress and node address can be
treated as a matrix. The authors claim that this achievestdding in two ways. First, data is
striped across multiple nodes. Second, each node has sadelmtrandom blocks to hide data
within.

Publius [180] is an example of a system that uses secreirmplis a key management
method. A content management and publishing system, tHeo§®aublius is to provide both
content-producer and connection anonymity [46, 133, 18Bje(t the later is through the use
of third party systems). This is accomplished by repligagmcrypted content and using secret
splitting to distribute the key amongst a group of serveliisusl the servers do not know what
they are hosting. Users access data though special URLlisenicades the shares location
as well as a content-based name. While the system uses gooryihe worse case key-loss
scenario is that content would become read only. Publiup@tsga unique usage model, best
be described as write occasionally and read maybe, and liswild to web based publishing.
The concern, from a long-term perspective, is that writell@ccess is controlled through the
use of cryptographic primitives. Thus, the loss of an entoypkey would render data as read-
only in the short term but could potentially, in time, opea gystem up to unauthorized content
modification

In contrast to the problem of plausible deniability, an @asing demand for account-
ability has seen the use of encryption as an auditing took dtithors of CATS [203] cite the
“trust but verify” model as the basis of their threat modehey have created a system (for use
as the building block of a larger system) that makes all plagecountable for their actions.
They state that three properties must be true of a correcatipg system: undeniability, fresh-
ness and completeness. CATS achieves this through exaarsivof asymmetric cryptography.
The design proposed by Peterson et. al. [120], aims to asldrexther aspect of accountability.
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In their system, users commit to a storage state such thatdihcan confirm that the data has
been retained, has not been modified, and is accessible eAtrglew of legislation [2, 3] places
specific demands on data retention, and has made such agsieamaluable commodity. The
Peterson system is based on cryptographic hash functiohshams linking the current version
of the “version authenticator” with the previous versionngdssue with these systems, and a
common element in systems that rely on public-key cryptolgyais the implicit, trusted author-
ity. Choosing a suitable third-party for a long-term acdaibility solution could be difficult;
predicting the long-term stability of any given organipatis difficult at best.

SLTAS, extends the idea of asymmetric encryption for digitgnatures by tailoring
their strategy specifically for long-term archival stord@@6]. To this end, the authors’ ap-
proach utilizes two important design decisions. First,radependent time-stamp authority pe-
riodically resigns the data. This occurs over all previagsatures, producing what the authors
describe as an increasingly large “onion”. Second, in omguard against the eventual obso-
lescence of computationally bound cryptosystems, the-fitamp authority uses an increasing
large key each time the onion is signed. Unfortunately, dk piievious work, this approach
does not guard against the catastrophic failure of crygtesys — such as the discovery of a
polynomial time prime-factorization algorithm. Additialty, it assumes that the time-stamp au-
thority will exist for the entire lifetime of the data, andatht can properly manage and preserve
the necessary keys.

Similarly, the authors of SUNDR[94] ensure the integritysbfired data on untrusted
servers using a combination of content based naming, anddigipdated logging. The idea is
that, if two users are able to see each other’s changes, ibgrcan detect changes that either
one makes to a shared file. The authors stress a concept afdoskstency, in which the only
way that one server can perform an undetected change istthifile and maintain a separate
branch. Similar to other accountability solutions, SUND®Ralves a fair amount of public-
key signatures. Additionally, SUNDR does not provide daterascy; an issue that the authors
address by suggesting the use of encryption.

3.4 Cost Savings

While many systems are designed to provide new functignadithers attempt to

improve on a facet of existing strategies. For example, tmpgse of a number of systems
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System‘ Media‘ Workload Redundancy{ Consistency | Power Aware] Comm HW

PARAID | disk server clusters RAID Yes No

Nomad FS| disk server clusters none Yes No

Google File Systen} disk OLTP replicas relaxed No Yes
Copan Revolution 220A  disk archival RAID 5 SHA 256 Yes Yes
Sun StorageTek SL850D tape backup N+1 WORM media No No
RAIL | optical | backup, archival RAID 4 opt. write verify No Yes

Pergamum| disk archival 2-level R.S.| algebraic sig. Yes Yes

Table 3.2: Sampling of storage systems designed for ecaneifficiency, illustrating their
diverse workloads and cost strategies.

has been lower costs, while maintaining specific servicel$evAs Table 3.2 illustrates, these
systems have been designed for a variety of workloads, aptbgmifferent strategies in pursuit
of cost savings.

Many have sought to achieve cost savings through the useoheality hardware [59,
188]. Typically, this strategy assumes that cheaper SAMedwill fail more often than server
class hardware, requiring that the solution utilize add#l redundancy techniques. An exam-
ple of this approach is the Google File System, which uslizenumber of storage hosts and
a central master server. Thus, in GFS, files are divided irtmfsized chunks throughout the
system and replicated in order to adequately deal withrizglwithin the system. Recent stud-
ies, however, cast this assumption in a new light, showiag) #ATA drives often exhibit the
same replacement rate as SCSI and FC disks [147].

In addition to efforts to lower storage costs through loveed media, a related effort
has been spent on increasing the utility that each piece dfarmovides. Several systems,
such as the EMC Centera system [69], Farsite [48] and the &Wiacbingle Instance Store [23]
perform deduplication on a per-file basis. Other systenw) as LBFS [113], Shark [14], and
Deep Store [202], utilize a more comprehensive varialdeesthunking approach.

A number of systems equate archival storage with data backumg favor media such
as tape or optical storage over hard drives [49, 78, 172, 284his strategy, removable media
is utilized in an attempt to achieve cost-efficiency. Uniodtely the cost savings available
with such media are often offset by the need for additionathivare (e.g. extra drive heads

and robotic arms). Additionally, the random access perémte of these systems is often quite
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poor, which complicates distributed redundancy schemaditiag and consistency checking.
For example, Redundant Array of Inexpensive Libraries (BAitores data on optical disks,
and utilizes RAID 4 redundancy, but only a very high levet; dgery five DVD libraries, a sixth
library is solely devoted to storing parity [172]. Othertms have used striped tape to increase
performance [49]; later systems used extra tapes in theedtriadd parity for reliability [78].

Venti is an interesting system that combines deduplicatiibim removable media[127].
In Venti, files are broken into fixed-sized blocks before ge#dation. These blocks are coa-
lesced into fixed-sized groups, called arenas, that argrssito facilitate the use of removable
media. Unfortunately, while it presents itself as an ar@hsystem, Venti makes a few design
decisions that may compromise its long-term usefulnesst, Fne use of removable media in-
troduces the need to either migrate data as media evolvagiatain aging hardware. Second,
the system utilizes a centralized directory over media.|g#mch arena includes an index over
its own data, thus making the central index rebuildable hascbrpus increases this becomes
increasing unfeasible.

Commodity hardware, however, is not the only avenue foliziegl cost savings. An
increasing amount of focus has fallen on energy efficiencg aseans of cutting data center
costs. One of the primary culprits of rising energy costs lteen in dealing with the excess
amount of heat generated by inefficient power supplies. &\folwer supplies with an energy
efficiency of 90% do exist, the typical power supply’s effiwg is closer to 65-70% [174]. The
resulting inefficiency usually results in excess heat, sofacontributing to high cooling costs.
According to one analysis, up to 60% of energy costs are goicgol equipment [64].

The development of Massive Arrays of Idle Disks (MAIDs) gexted large cost sav-
ings by leaving the majority of a system’s disks spun dowr].[38terestingly, using a simu-
lation and super computing workload, the authors founddedicated cache disks had a very
detrimental effect on the system. However, this was dueddabk of locality in the authors’
evaluation workload (something that might also be commamiarchival workloads).

Further work centered on the use of idle disks has expand#dteadea by incorporat-
ing strategies such as data migration, the use of drives#mespin at different speeds, spinning
up subsets of disk, and power-aware redundancy technig2ds 122, 188, 208]. While these
systems realize energy savings, they are not designedisplgifor archival workloads, in-

stead attempting to provide performance comparable td-pimlver” disk arrays at reduced
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power. Thus, they do not consider approaches that couldesearemore power at the expense
of high performance. For example, some MAID systems, sudh@se built by Copan Sys-
tems [68], use a relatively small number of server-class €&udl controllers that can control
dozens of disks. However, this approach is still relatiy@yver-hungry because the CPU and
controllers are always drawing power, reducing energyieffiy. A Copan MAID system in
normal use consumes 11 W/TB [68]; this is only slightly lelsant the 12—-15W/TB Perga-
mum would requiref all disks were powered on simultaneoysiynd is much higher than the
2-3 W/TB that Pergamum requires if 95% of the disks are pasvefie

Ironically, the relatively recent introduction of idle #is has sparked new interest
in a comparatively old idea, that of log-structured file eys$ (LFS) [141, 185]. The original
motivation behind the development of log structured fileéerys was that, as caches grew larger,
fewer reads would be serviced from the disk, and therefon&laads at the lowest level of the
storage hierarchy would become distinctly write heavy. Kéeinsight for the connection LFS
and disk spin-down is that a system that appends writes terideof a data log intrinsically
obviates the need to try and predict accesses [56]. Whilstdrage hierarchy may not have
provided quite the cache levels expected by the authorseabiiiginal work, there may be the
potential for such data structures in the write dominatedkiwads found in archival storage.

The StorageTek 5800 is a Sun Microsystems product derived the HoneyComb
project [171]. It is designed for unstructured, static dachival). The system is fully dis-
tributed as requests for data can be directed to any nodeeigystem. Each node is a self-
contained unit including a high-power processor, multighizes, multiple Ethernet ports and
a power supply. Cost savings come from the use of commodigweae such as SATA hard
drives, low licensing costs, and low management overhead.refiability, they utilize Reed
Solomon encoding in 5+2 arrangement. While designed fdmieaktworkloads, the system
does not take power in consideration. The processors theyanesvery high power, and the
placement algorithm does not take into account the numbdis&é that must be spun up. In
some cases, they cite that sixty disks will be involved inrayle write. Lastly, while they
discuss scrubbing, they do not indicate at what frequenisyottturs [149].

HYDRAstor is another system developed specifically for sdany storage[50]. The
system consists of a number of back-end storage appliaandsa front-end of access nodes.
In order to achieve high storage efficiency, HYDRAstor sdiites as a series of immutable,
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variable-sized blocks. Content based addressing provatea level of deduplication over
blocks. Cost savings come from the use of commodity hardwaweever the selection of
highly reliable server-grade equipment could incur a hegange tag. Further, the system is
not designed for low energy utilization, and its hash badadgment algorithm for chunks
conspires against disk spin-down strategies.

IBM’s brick storage project, IceCube, uses federated gsaipntelligent storage de-
vices to provide low-latency, reliable storage [192]. E&cick holds on the order of tens of
small drives and a relatively high power desktop proces€arrently each brick supplies on
the order of a single terabyte, but requires 200W. Theiresyss designed for front line storage
and allows administrators the flexibility to choose theimorgliability versus cost trade offs.
One of the interesting notes is that they believe that bigtksild minimize internal redundancy
in order to lower costs. The primary cost savings in IceCutiaes from the system’s strat-
egy of deferring management to a convenient time, as oppmsadmore ambitious goal of
self-management. To this end, the system still includesrakred administrator nodes and re-
quires administrative input. Surprisingly, despite thstegn’s use of intelligent storage devices,
IceCube rejects the notion of evolvability in several wakgst, the current version relies on
highly specialized interconnects and water-cooled ra8exond, the three dimensional struc-
ture of the system prevents failed, interior nodes from dgpegmoved. This choice wastes floor
space, and suggests that a fork-lift upgrade is inevitable.

Another brick storage project, BitVault, follows the modd#il utilizing numerous,
intelligent storage devices [205, 206]. Like Pergamum aiingaors of BitVault identify archival
storage’s need for cost efficient storage. Unfortunatelste are three issues that prevent their
solution from maximizing the cost saving potential of disksbd archiving. First, BitVault
does not address power efficiency (although it is identifeedraarea of future work). Second,
BitVault achieves reliability through the use of file replion. While the advantage of this
design is that it facilitates the use of per file replicatitiices, it adversely affects the storage
efficiency of the system. Third, BitVault utilizes a globaldwledge approach to routing, which
further lower storage efficiency and reduces its scalgbilit

An active area of research, storage management tools agneégo provide admin-
istrators with the knowledge they need to make good deadi@a, 183]. Hippodrome takes a

very proactive role in storage management, as the authpregxthe belief that administration
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is quickly becoming one of the dominant costs in modern gsystems [11]. The core of the
authors’ algorithm involves an iterative process made ufpof key components. First there
is the analyzer that is used to obtain a custom workload. Tiene is a performance modeler
and solver that is used to produce a working and valid stdeageit model. Finally there is an

implementor that is used to migrate the system to the new mddere are two issues that |

feel the authors did not address in their implementatiore fliist issue that | feel was omitted
was the safety of their migration technique. One might imaghat any migration would come
with an inherent risk. The second issue, which is relatetheditst, is the question of simula-

tion. The field of optimization theory is an area rich withhieues and rigorous models for
modeling and optimizing systems. The authors fail to menifi@any of these models might be
useful.

Similarly, the authors of Zodiac focus on policy-aware imipanalysis [154]. Cen-
tral to its design is a session based component that allomiédrators to pose queries to the
system. Being a session based model, the queries have thdlifiewf being incremental in
nature. This is in contrast to SQL type queries in which easryis separate and atomic. Fur-
ther, a policy classification mechanism assists in gatgeslevant SAN data in order to reduce
the solution space for a number of key optimizations. Fonga, Zodiac includes a caching
mechanism in which SAN metadata is distributed throughbetslystem thus providing faster
access. The authors state that this improves impact asalysi to the commonality of data
accessed. Additionally, Zodiac includes a system of agdi®g, which helps improve the per-
formance of certain queries. All of this is used by an evatumeand visualization components
that provides the administrator with visual feedback oher $AN structure that was input to
the system.

As part of an eventual goal of fully automatic system adntiatgon, Self-* has fo-
cused on performance tuning, providing administrators tanéhg agents with the ability to
model changes to basic tuning parameters [5,57]. The aithake the claim that such man-
agement abilities must exist in systems as a fundamentairégadrawing an analogy to early
attempts at security that amounted to add-ons to exististesys. Their solution consists of
a management layer, above the storage layer, populatedawitmation agents and admin-
istrative interfaces. A key point that their early work itiéas is the need to track and log

information per request. In this manner, logged data pes/id complete picture of the re-
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quest’s life cycle; isolated information makes it diffictdt identify bottlenecks and correlated

events.
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Chapter 4

POTSHARDS, Long-Term Archival Security

One never reaches home, but wherever friendly paths imterse
the whole world looks like home for a time.

Hermann Hesse

Few would disagree that there has been a tremendous shitdewvriting business
data and our personal histories as digital data. In the gsa@feal sector, the demand for data
security is not surprising. However, even for personalfats, there is a distinct need for
long-term data protection. For individuals, archival agge is being called upon to preserve
sentimental and historical data such as photos, movies enstmal documents. This informa-
tion often needs to be stored securely [131]; data such agatedcords and legal documents
that could be important to future generations must be kejafinitely but must not be publicly
accessible.

While storage security is a relatively mature area of reseaovering a large corpus
of work, the long lifetimes of archival storage demand adhigh reexamination of a number of
fundamental assumptions. With POTSHARDS, | demonstratehmsis statement — archival
storage is a first class storage category that requires@mutilored for long-lived data — by
describing an approach to security designed specificallpeet the needs of long term data
storage.

The goal of a secure, long-term archive is, therefore, twigeosecurity for rela-
tively static data with an indefinite lifetime. More speddily a secure archive seeks to provide

three, long-term features: secrecy, recoverability ategiity. The first, long-term secrecy,
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aims to ensure that the data stored must only be viewable thypi@zed readers. The second,
recoverability, is akin to availability and stipulates tlklata must be available and accessible to
authorized users within a reasonable amount of time, evéimose who might lack a specific
key. The third, integrity, ensures that the data read isdheesas the data written.

The privacy aspect of POTSHARDS is achieved through un¢iomdily secure mech-
anisms, increased attack survivability and maliciousvagtdetection. Secret splitting provides
attack resilience because, unlike pure encryption, it ouaditionally secure and requires the
adversary to collect multiple pieces of data to recongtituty portion of the original block.
Further, the likelihood of detecting malicious data acesgsobabilistically increased through
a sparse namespace; requests for shares that do not exestsgreo detect. Compounding the
attack detection’s effectiveness, an attacker that atietopse the approximate pointer to make
a targeted attack would need to steal every share in thesitediadegion along with every share
in the region indicated by those shares and so forth.

The recovery and availability strategy of POTSHARDS enslihe reconstruction of
data from the secret shares alone. Thus, even with no outsldg to connect data blocks and
secret shares, a user’s data can be recovered. This isaBpioportant in long-term archival
scenarios in which data may have a potentially indefinittilifie [19, 162]. My approach is
based upon the use of approximate pointers, which proviges@bout inter-share relationships.
These clues supply enough information to allow recoveryégtiire a lot of shares, a necessity

that is difficult for an adversary to meet.

4.1 POTSHARDS Overview

Since POTSHARDS was designed specifically for secure, teng-storage, | iden-
tified three basic design tenets to help focus my effortsstFirassume that encrypted data
can be read by anyone given sufficient CPU cycles and advameegptanalysis. Put another
way, if an attacker obtains encrypted data, the plaintedteventually be revealed. Second,
for long-term survivability, data must be recoverable withany information from outside the
set of archives; fulfilling requests in a reasonable timenoamequire any outside data, such
as external indexes or encryption keys. Third, | assumeinidatiduals are more likely to be
malicious than an aggregate. Thus, the system trusts gafugehives, even though it does

not trust individual archives. The chance of every archivéhe system colluding maliciously
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Figure 4.1: An overview of POTSHARDS showing the data tramsftion component of the
client application producing shards from objects, andithisting them to independent archives.
The archives utilize distributed RAID algorithms to sedurecover shards if an archive is lost.

is small; the system allows rebuilding of stored data if ethives cooperate.

POTSHARDS is structured as a client application commuimgatvith a number of
independent archives. Though the archives are indepentlet assist each other through
distributed RAID techniques to protect data against achogs. Users store their data within
the system using a POTSHARDS client, which splits their dlailsto secureshards These
shards are then distributed to a number of archives, whete @@hive exists within its own
security domain. The read procedure is similar, but reekraaiser utilizes the POTSHARDS
client to request shards from archives and reconstituteladte

Users access the system through a POTSHARDS client, whishthnae primary
functions. First, the client handles alhta transformationduties. For writes, as shown in
Figure 4.1, this involves generatispardsfrom objectsthrough the use of secret splitting tech-
niques. For reads, the process is reversed, shard identifierused to fetch shards from the
archives, and objects are reconstructed. Second, the idiersponsible for distributing shards
to archives such that no single archive has enough shardsdastruct data. Third, as the client
resides on a system separate from the shards, the POTSHAIRDSI€ responsible for han-

51



dling communication between the user and the archives. t@dage of this arrangement is
that data never reaches an archive in unsecured form, arigl@@PU-bound data transforma-
tion processes can generate shards in parallel for a siagtd physical archives. Of course, as
in any security application, careless implementation efROTSHARDS client can introduce
unforeseen compromises; adversaries can take advantageetdssly cached passwords and
other such key material.

Shards are stored in a series of independent archivesyiigidn similar to financial
banks; they are relatively stable and they have an inceffiivencial or otherwise) to monitor
and maintain the security of their contents. While secusistrengthened by distributing shards
amongst the archives, it is important that each archive emodstrate an ability to protect
its data. Other benefits of archive independence includecied the effectiveness of insider
attacks and making it easier to exploit the benefits of geadgcadiversity. For these reasons,
even a single entity, such as a multinational company, sh&iill maintain multiple independent
archives.

In order to limit the effectiveness of insider attacks, éhex no central index over
shards. Rather, users maintain a private index that mapsdata to shards. This is made
possible by the fact that POTSHARDS enables the recongiruct data from the shards alone.
This private index, which could be contained on a physiclétosuch as a smart-card, allows
normal read operations to take place quickly because theuamad know exactly which shards
to request and how to combine them. If, however, a user Ibs#sindex, or never had one, it
can be regenerated in a reasonable amount of time. By remtivinneed for an omniscient,
central authority, the risk of a malicious insider is mitiggh

4.1.1 Security Techniques

Security in POTSHARDS is provided by two mechanisms: a gbargopulated,
global namespace, and unconditionally secure secretisplitVith secret splitting, an intruder
must collect multiple shards in order to read any data, aedparse namespace makes attacks
more noticeable by increasing the chances that an intrutflelegyuest shards that do not exist.

Secret splitting provides the secrecy in POTSHARDS withgaele of future-proofing
—it can be proven that an adversary with infinite computatigoower cannot gain any of

the original data, even if an entire archive is compromidedrther, these algorithms provide

52



file secrecy without the need for the key and algorithm rotetithat traditional encryption
introduces; perfect secret splitting is unconditionakgwsre. Thus, POTSHARDS is not forced
into maintaining complex key histories.

A number of secret splitting algorithms, known as threstsademes, produce a set
of n shares, anyn < n of which are needed to rebuild the original data. While POABBS
can utilize such schemes, it does not rely on them for thesystreliability. Rather, the small
amount of redundancy these algorithms offer allows POTSH&R handle transient archive
unavailability by not requiring that a reader obtaihof the shards for an object.

In addition to uniquely identifying data entities in POTSRRS and improving at-
tack detection, the global namespace enables the use ef sptitting algorithms by imposing
an ordering over entities. Many threshold schemes, suchas tthat rely on linear interpo-
lation [153], require both the shares and a specific ordesfrigose shares for reconstruction.
Preserving the ordering over a tuple of shards is easilyraptished by naming the shards
in ascending order, according to their location within thi $hard tuple. In this way, names

impose a total ordering over a complete tuple of shards.

4.1.2 Reliability and Availability Techniques

POTSHARDS provides reliability and availability througid distinct recovery strate-
gies. First, as Figure 4.2 illustrates, the shards thatnsoact a data block form a circularly-
linked list, allowing a specific user’s data to be recoverednftheir shards alone. This ring of
shards is generated within the transformation componastsart of the ingestion process. Sec-
ond, the loss of an entire archive is handled using dis&ibiRAID techniques, across multiple
independent archives. This two level approach allows POARBIS to scale the recovery to
the size of the data loss.

In the absence of the index over a user’'s shards, approxipoémeers can be used
to recover data from the shards alone. Such a scenario couold @ a user loses the index
over their shards, or in a long-term time-capsule scenanmhich a future user may be able to
access the shards that they have a legal right to, but hawdeadibw to combine them.

Approximate pointers enable the use of secret splittingrbyiding a built-in method
of “key recovery”; knowing which secret shares to combinanalogous to an encryption key

because it is the secret that transforms ciphertext intotgbet. Without the clues provided by
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Figure 4.2: Approximate pointers point B“candidate” shardsR = 4 in this example) that
might be next in a valid shard tuple. Shagdsnake up a valid shard tuple. If an intruder
mistakenly picks shagd, he will not discover his error until he has retrieved sudfitishards
and validation fails on the reassembled data.

approximate pointers, recovery involves testing evengitds combination of shards, making it
an intractable problem. In contrast, while direct pointgmild make recovery trivial, it would
also compromise security; an adversary with one shard aagdy make targeted attacks for
the rest of the shards. Thus, the advantage of approximattepmis that, by indicating a region
and utilizing namespace sparseness, targeted attacksuaremore difficult, and brute force
attacks would be quite noticeable. Thus, secrecy is notlyradiected, providing a worthwhile
tradeoff for slower recovery times if a block’s shard listdst.

To deal with larger scale losses, the archive layer in POTBHEA consists of inde-
pendent archives utilizing secure, distributed RAID téghas. As Figure 4.1 shows, archive-
level redundancy is computed across setsiroklatedshards, so redundancy groups provide
no insight into shard reassembly. POTSHARDS includes twehmodifications beyond the
distributed redundancy explored earlier [29, 160]. The i&ra secure reconstruction procedure,
described in Section 4.2.3.1, that allows a failed archiggta to be regenerated in a manner
that prevents archives from obtaining additional shardshduhe reconstruction; shards from
the failed archive are rebuilt only at the new archive thaggacing it. Second, POTSHARDS
uses algebraic signatures [148] to ensure intra-archtegiiity as well as inter-archive integrity.
Algebraic signatures have the desirable property thatahigypof a signature is the same as the

signature of the parity.
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4.2 Implementation Details

This section details the components and security model GFSHMARDS, and how
each contributes to providing long-term, secure storagest, F describe how objects in POT-
SHARDS are named, and present two naming dangers thatoifagncould compromise data
security. Second, | describe the POTSHARDS client in detaluding how it produces shards
from objects. Third, | describe the role of the archives)udmg how they securely rebuild
data if an archive is lost. Fourth, | describe the role andtrantion of the user’s private index.
Finally, | describe how approximate pointers are used towerca user’s data from the shards

alone.

4.2.1 Naming

All of the data entities in POTSHARDS, both higher level 8es such as objects,
as well as lower-level secure entities such as shards, witlsh a single 128 bhit namespace.
Each identifier contains two portions. The first 40 bits ofhlaene identify the user in the same
manner as a bank account is identified by an account numberrebhaining 88 bits are used
identify the data entity.

While names for high-level POTSHARDS entities, such asaibjecan be generated
fairly easily, the names of lower-level entities, such asrdh, must be chosen more carefully;
shard names and approximate pointer rings directly afflectirity and recovery. Two naming
and ring formation scenarios in particular have the poé¢mti compromise security. First, a
poorly chosen ring of shards could inadvertently reducesttach space of a targeted attack.
Second, poorly named shards could leave the potential mEmesan-out under-utilized.

Careless naming and ring formation can inadvertently piewn attacker with infor-
mation that effectively reduces the search space for thestmexd. For example, if the shards
in a tuple are ordere§;, S, ..., S, and shardg always points to shar§§, 1, an attacker would
know that the name of the next shard must be greater than thentshard. Now suppose that
shard§ itself is within the range indicated by the approximate paio S 1. As illustrated in
Figure 4.3, the attacker would know tHat< S 1, and thus can narrow down the search space.

To avoid revealing information through shard names, a @mgoidomizing procedure
can be used to permute the total ordering of the shard tupdeairseparate ring order. This

procedure proceeds as follows:
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Figure 4.3. Example of a situation in which careless namiag teduced the search space
indicated by an approximate pointer. If shard ordering israndomized, an adversary would
know thatS; must be greater tha® and thus would only need to search the region al&ve

1. Determine the names that will be used for the shards (9.5, $,Ss))

2. Create the shards and name them in ascending order shehgidsition within the tuple

is preserved by the total ordering imposed by their names
3. Randomize the order of these shards (€%..5,S,Ss))

4. Use approximate pointers to form a ring based on this raimkd order. Thus, the next

shard can exist in any portion of the namespace, regardi¢ss ourrent shard’s name.

Another danger involves the under-utilization of the fart-hat can be achieved with
approximate pointers. Since approximate pointers indieategion, as opposed to a single ad-
dress, they have the potential to greatly increase an aatyé&rsvorkload. An ideal arrangement
is achieved if each shard in a given region points to a differegion. In this scenario, the ad-
versary would need to acquire each shard in each of thosesdivegions. Figure 4.4 illustrates
an example in which the shard names and approximate poareronfigured poorly, resulting
in little fan-out. The effect is a greatly reduced workloadthe adversary— the attacker would
only need to acquire the shards of overlapping regions oatiggr than having to steal a given
shard once for each predecessor that could point to it.

In order to ensure the greatest fan-out, careful shard rgaemd linking is required.
Since users maintain an index of object to shard mappingsingecan proceed with knowledge
of previously named shards. An area of future work could b&utther develop intelligent
naming techniques; the security of the system is greatlyenited by the namespace and the
links between shards, making this a particularly importaet to examine.
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Figure 4.4: Example of a situation in which careless namiag Underutilized the potential of
approximate pointers to increase the fan-out of linkeddshaldeally,S,, S;, andS, would all
point to different regions.

4.2.2 POTSHARDS Client: Data Transformation

One of the primary tasks of the POTSHARDS client is to perftiendata transfor-
mation that produces shards from user data. As Figure 4driites, the client is composed
of four layers, and utilizes three unique data entities. imuthe ingestion of data, the pre-
processing layer is responsible for producing fixed-sizjectsfrom user files. Objects are then
transformed intdragmentsin a secret split tuned for secrecy. A second split occuis,titme
tuned for availability, which transforms fragments irgioards Finally, the placement layer is
responsible for distributing a set of shards to the archigedraction is similar, but reversed;
shards are requested from the archive, combined into fratgn@nd those fragments are com-
bined into objects.

The two levels of secret splitting provide three importagtigity advantages. First,
as Figure 4.5 illustrates, two levels of splitting resuttsitree, providing extra security through
increased fan out; even with all of the members of a sharefwgsi attacker can only rebuild
a fragment, which provides no information about the shaoddHe other fragments. Second,
as secret splitting algorithms present varied featured) sglit can be independently tuned for
a specific property, and can select the algorithm best stot¢ldat property. Third, it enables
recovery by allowing useful metadata to be stored with thagrfrents; this data will be kept

secret by the second level of splitting.

4.2.2.1 Pre-Processing Layer

When a user submits data to the POTSHARDS client for ingestibjects are created
from the user’s files in a three step process. First, eaclsfd&vided into a series of fixed-sized

blocks. As the system is designed for archival workloadssetblocks are on the order of several
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(b) Inputs and outputs for each transformation layer.

Figure 4.5: The transformation component consists of feuels. Approximate pointers are
utilized at the second secret split. Note that locating dreedstuple provides no information

about locating the shards from other tuples.
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Figure 4.6: Data entities in POTSHARDS, with size (in bits)icated above each field. Note
that entities are not shown to scale relative to one anotReis the number of shards that
the fragment producessplitl is an XOR secret split ansblit2 is a Shamir secret split in
POTSHARDS.

hundred kilobytes to a megabyte in size. Second, as Fig6rdetails, an object identifier is

generated and appended to the block. Third, a hash over ¢lo& bhd id is generated and
appended. This hash is used to confirm a successful rebuiligdeads. It does not, however,
compromise security as it included in the unconditionafigise secret split in the later stages

of shard production.

4.2.2.2 Secret Splitting Layers

Fragments are generated from objects at the first of two tsepligs that occurs in
the secret splitting layers. This first split is tuned forreeg, and currently uses an XOR-based
algorithm that produces fragments from an object, all of which are required for reconstruc-
tion. To ensure security, the random data required for XARisg can be obtained through a
physical process such as radio-active decay or thermag nois

As Figure 4.6 illustrates, each fragment contains metdtiataassists in reconstruc-
tion and recovery. First, as in the object, a hash over thieeefnigment serves to confirm a
successful reconstruction. Second, the object identtfiat this fragment contributes to aids
in reconstruction; if a user is able to reproduce all of tikigments, this identifier assists in
combining them into objects. This approach does not comisesecurity, as reconstructing
a single fragment provides no information about which skdodm the other fragments for a
given object. Third, the fragment contains its own id. Hiyaach fragment contains a list of

the shards it produces.
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A tuple of shards is produced from a fragment using anothr laf secret splitting.
This second split is tuned for availability, and therefdne turrent implementation of POT-
SHARDS uses am of n secret splitting algorithm [153]. As mentioned in Subsati.1.1,
this allows reconstitution in the event that an archive swmoer unavailable when a request is
made.

As Figure 4.6 shows, shards contain no information aboufrémgments that they
make up. They do, however, include two pieces of metadatst, Ehey include their own shard
id. Second, they include an approximate pointer to a randwardsfrom the same shard tuple,
as described in Subsection 4.2.1.

The approximate pointers can be implemented using one ofappooaches. First,
the bitmask methodindicates a regionR, by masking off the low-order bits (R = 2") of an
actual address, hiding the true value. The drawback of timealsk method is the coarse level
of granularity that can be achieved. It does, however, hageativantage that the size of the
region indicated by the approximate pointer is relativelf-svident: it is straightforward to see
how many bits are masked off (set to zero) in an address. 8gtwrange methodandomly
selects a value withiR/2 above or below the actual address. In contrast to the bitmashod,
the granularity offered by the range method is quite goodwéler, it is not self-evident from
the approximate pointer how large the range is. Our impleatiem uses the latter approach.

One drawback of the two-level secret splitting approactnésresulting increase in
storage requirements. A two-way XOR split followed by a 2 afeBret split increases storage
requirements by a factor of six; distributed RAID, and matadurther increases the overhead.
If a user desires to offset this cost, data can be submittaccompressed archival form [202];
compressed data is handled just like any other type of data.

4.2.2.3 Placement Layer

During ingestion, the placement layer is responsible fopmitay shards to archives.
The decision takes into account which shards belong in theedaple and ensures that no
single archive is given enough shards to recover data. Batraction, the placement layer is
responsible for requesting shards from archives.

This layer contributes to security in four ways. First, gifiicis part of the data trans-

formation component, no knowledge of which shards belorentobject need exist outside of
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the client. Second, the effectiveness of an insider attatkeaarchives is reduced because no
single archive contains enough shards to reconstitute atay d'hird, the effectiveness of an
external attack is decreased because shards are digirtiouteultiple archives, each of which
can exist in their own security domain. Fourth, the placenteyer can take into account the
geographic location of archives in order to maximize thelakdity of data.

4.2.3 Archive Design

Persistent storage of shards is handled by a set of indepeadshives that actively
monitor their own security, and question the security of atiger archives. The archives do
not, however, know which shards combine to form a fragmeniylich shards contribute to a
given object. Thus, a compromised archive does not prowidedaersary with enough shards
to rebuild user data. Additionally, it does not provide awexdary with enough information
to launch a targeted attack at the other archives. Abseht gracautions, the archive model
would likely weaken the strong security properties prodithy the other system components.

Since POTSHARDS is designed for long-term storage, it igiiable that disasters
will occur, and archive membership will change over time. deal with the threat of data
loss from these events, POTSHARDS utilizes distributed R#&chniques. The space at each
archive is divided into fixed-sized blocks, each holds eisfieards or redundancy data. Archives
then agree on distributed, RAID-based methods over thesidl

As in other distributed RAID systems [29, 160], fault-t@st, distributed storage is
achieved by computing parity across unrelated data in wiele dundancy groups. Given an
(n,k) erasure code, a redundancy group is an ordered &etath blocks and — k parity blocks
where each block resides on onenadlistinct archives. The redundancy group can survive the
loss of up ton—k archives with no data loss. The current implementation of B@ARDS has
the ability to use Reed-Solomon codes or single parity teigeoflexible and space-efficient
redundancy across the archives.

When shards arrive at an archive for storage, ingestionredgouhree steps. First, a
random block is chosen as the storage location of the shawbn8, the shard is placed in the
last available slot in that block. Third, the correspondgagity updates are sent to the proper
archives. The failure of any parity update will result in #-tiack of the parity updates, and
re-placement of the shard into another block.
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An integral part of preserving data, POTSHARDS activelyifies the integrity of
data using two different forms of checking. First, each mekactively monitors the integrity
of its own contents using stored hashes. Second, inteivaraitegrity checking is performed
using algebraic signatures [148] across the redundanaypgroAlgebraic signatures have the
property that the signatures of the parity equals the pafitye signatures. This property is
used to verify that the archives in a given redundancy graegeoperly storing data and are
performing the required internal checks.

Secure, inter-archive integrity checking is achieved ulgitoalgebraic signature re-
guests over a specific interval of data. A check begins whearamve asks the members of a
redundancy group for an algebraic signature over a spedaified/al of data. The algebraic sig-
nature forms a codeword in the erasure code used by the radeydroup, and integrity over
the interval of data is checked by comparing the parity ofdéa signatures to the signature of
the parity. If the comparison check fails, then the arclayé{ violation may be found as long
as the number of incorrect signatures is within the erroremtion capability of the code. This
approach is efficient and secure as signatures are typicallya few bytes, and only leallx
bytes for signatures of length

4.2.3.1 Secure Archive Reconstruction

Reconstruction of data can pose a significant security rslabse it involves many
archives and considerable amounts of data passing betiveen POTSHARDS mitigates this
risk through a secure protocol that allows each archive s@iam the reconstruction of failed
data, without revealing any information about its data.tlkenr; the reconstruction procedure is
performed in multiple rounds in order to prevent collusi@ivizeen archives.

The recovery protocol begins with the confirmation of a pédur whole archive fail-
ure and, since each archive is a member of one or more redeywdaoups, proceeds one re-
dundancy group at a time. If a failure is confirmed, the amhin the system must agree on the
destination of recovered data. This fail-over archive igsgm based on two criteria. First, the
fail-over archive must not be a member of the redundancygbming recovered. Second, the
fail-over archive must have the capacity to store the re@aleata. Due to these constraints,
multiple fail-over archives may be needed to perform rettonton and redistribution. Fu-

ture work will include ensuring that the choice of fail-ovanchives prevents any archive from
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Figure 4.7: A single round of archive recovery in a RAID 5 redancy group. Each round
consists of multiple steps. Archivé contains data and generates random bloaks

acquiring enough shards to reconstruct user data.

Once the fail-over archive is selected, recovery occurstltiple rounds. A single
round of the secure recovery protocol is illustrated in Fégd.7. In this example, the available
members of a redundancy group collaborate to reconstrealdkta from a failed archive onto
a chosen archiveX. An archive, which cannot be the fail-over, is appointed @nage each
round (in Figure 4.7, archivé has been selected). The managing archives determines the
ordering for the round and generates a request containirggdmned list of archives, the id of
the block to regenerate, and a data buffer. Each archivéeilist then proceeds as follows:

1. Requestr involving local blockn arrives at archiveéN.

2. The archive creates a random blogland computea®rp = .

3. The archive computg® = a & n’ and removes its entry from the request
4. The archive sends, directly to archiveX.

5. B is sent to the next archive in the list.

This continues at each archive until the chain ends at ackiand the block is
reconstructed. The commutativity the rebuild processaaldecreases the likelihood of data
exposure by permuting the order of the chain in each roun. prbcedure is easily parallelized
and continues until all of the failed blocks for the redurmlagroup are reconstructed. This
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Figure 4.8: User index stored in POTSHARDS as multiple pagés initial page was created
at timetp, subsequent pages at timesandt, respectively. By knowing just the shards to the
newest page, the user can extract the entire index.

approach can be generalized to any linear erasure codengsdothe generator matrix for the

code is known, the protocol remains unchanged.

4.2.4 User Indexes

While approximate pointers join the shards within the systetheexactnames are
returned to the user during ingestion, along with the aelplacement locations. Typically,
a user maintains this information and the relationship betwshards, fragments, objects, and
files in an index to allow for fast retrieval. In the generaeahe user consults her index and re-
guests specific shards from the system. This index can,nnlverstored within POTSHARDS,
resulting in an index that can be rebuilt from a user’s shaiitts no outside information.

It is important to note that, while the index does containitifermation describing
which shards correspond to fragments and objects, it doggraeide the information needed
to obtain those shards. An attacker with a user’s index willreeed the information needed
to authenticate to the archives containing the user’'s sha@f course, as with any security
scheme, an adversary with enough information — in the caBOIISHARDS, the user’s index
and enough authentication information to sufficiently pasehe user — is assumed to have
acquired full access to the user’s data.

The index for each user can be stored in POTSHARDS as a limdteaf index pages,
with new pages inserted at the head of the list, as shown ur&#8. Since the index pages are
designed to be stored within POTSHARDS, each page is imreuts¢then a user submits a file
to the system, a list of mappings from the file to its shardstigrned. This data is recorded in a
new index page, along with a list of shards correspondinbe@tevious head of the index list.

This new page is then submitted to the system and the sharétlisned is maintained as the
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new head of the index list. These index root-shards can betawaed by the client application
or even on a physical token, such as a flash drive or smart card.

The approach of private, per user indices has a number ohtalyes compared to a
single, centralized index. First, since each user maistais own index, the compromise of a
user index does not affect the security of other users’ @aond, the index for one user can be
recovered with no effect on other users. Third, the systeas dot know about the relationship
between a user’s shards and their data.

While the index over a user’s shard contains the informatiseded to rebuild a user’s
data, it differs from an encryption key in two important wakfgst, unlike an encryption key, the
user’s index is not a single point of failure. If the indexast or damaged, it can be recovered
from the data without any input from the owner of the indexc@uwl, full archive collusion can
rebuild the index. If a user can prove a legal right to datahsas by a court subpoena, than
the archives can provide all of the user’s shards and allewehonstitution of the data. If the
data was encrypted, the files without the encryption key mmghbe accessible in a reasonable

period of time.

4.2.5 Recovery with Approximate Pointers

Recovery through the use of approximate pointers is based i@ graph structure
that approximate pointers impose over a set of shards. Haad $s a named vertex in the
graph, with an edge between it and every other vertex witerégion defined by the shard’s
approximate pointer. The relationships described by t@ply are used to recover data through
the use of two recovery algorithms: theive approach, and the more efficiammg heuristic
Both approaches are based on knowing the spitting parasnetef n, that produced the shards.

With both reconstruction strategies, the process staeséime way. Once a user
determines that she must recover her data, perhaps duedbiadex, she begins by collecting
her shards. As subsection 4.2.1 described, the user'sssbancbe identified by the initial, user
id portion of the shard name. The operation to collect allhef $hards could differ for each
archive. Additionally, releasing all of a user’s shards igotentially dangerous; a lot of data
could be compromised. Therefore, this operation shouldire@ higher level of authorization
and clearance.

In the first recovery strategy, the naive approach, thetisohspace is reduced by
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Figure 4.9: Recovery example where each approximate poimdiezates a region of four shard
names. If shards are produced using a 2 of 4 split, the ringidtieureveals one recovery
candidate based on its circular linked list structurexdctly n four, shards (shaded shards and
dotted approximate pointers). In contrast, the naive agugr of testing paths of length, 2,
would result in many more potential recovery candidates.

limiting reconstruction attempts to paths of length This approach can be useful when less
than the full set of shards are available; with less than lasitl of shards, the user may not
have alln shards that reconstruct a fragment. Unfortunately, a nuroab&actors conspire to
make this approach less than ideal. First, as Figure 4.8tidltes, while still better than a
purely brute force based approach, there are still a fairbaurof paths of lengtim, and there-
fore many possible candidates for reconstruction. Secarmsille effect of the randomization
discussed in Subsection 4.2.1, is that reconstruction le#th than a complete tuple of shards
is time consuming; secret splitting is expensive, and a watr less tham shards does not
have a total ordering, and must attempt recovery on mulfiplenutations. For example, sup-
pose that a user posses a chain of three of the five sh&ydg, S, resulting from a 3 of 5
threshold split. If the inter-shards links were not formeihg the randomization method, but
rather were simply formed using the name order, recongbtrugtould potentially involve test-
ing three shard tuples($;, $, &,0,0), (0,$,$,S,0) and (0,0,S,,S,, ). However, if the
shards were connected using the randomized method, reectitst attempts would need to
include combinations with interspersed empty shards, ag¢h,0,S,,$,, ), (0,$,0,$,S),

<0asi73370732>1 e
The second strategy, the ring heuristic, utilizes the trcstructure of the shard
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tuples, depicted in Figure 4.9. This approach only attertgpteconstruct cycles of length
and provides two important advantages. First, it efficiergbuces the potential solution space
to a manageable number of recovery candidates. Secondjdeettee ring heuristic identifies
all n members of a shard tuple, the shard names impose a full ngde@ne disadvantage of
this approach is that it requires a lot of shards. Howeveergan incomplete set of shards, the
ring heuristic can be used as a first pass algorithm to quigdgver the full shard tuples and
reduce the solution space for the remaining, unrecoverg@tse These can then be recovered
using the naive approach.

In addition to approximate pointers, there are other himtthe structure of the data
entities, illustrated in Figure 4.6, that are useful withthbthe naive approach and the ring
heuristic. First, a hash of the fragment is used to confirmcaessful reconstruction. Second,
each reconstructed fragment includes a list of the secegtishthat it produces. Using this list,
reconstruction of a secret from less thashards will reveal the IDs of the— m shards that
were not used. In a recovery scenario, the shards that porrdgo these IDs can be removed
from the set of unused shards, thereby reducing the rengagulution space. It is important
to note these hints are primarily useffter a block has been reconstructed; less thaof n
shards contaimo information, and the hints themselves are only presentenrdiconstructed
block.

4.3 Experimentation and Discussion

My experiments with POTSHARDS were designed to explore Iio¢hsystem, and
the novel security model that | have developed. First, | wdrtb evaluate the performance
of the system in order to establish its effectiveness, aridantify any potential bottlenecks.
Second, | wanted to demonstrate the ability of POTSHARDStmver from a lost archive.
Third, | wanted to demonstrate the effectiveness of appraié pointers, and understand their
behavior. Finally, | wanted to explore the unique securitydel of POTSHARDS.

The current version of POTSHARDS consists of roughly 1,40€sl of Python ver-
sion 2.5 code. For improved buffer management, versus atdnidlython lists, SciPy ver-
sion 1.1.0 arrays were utilized extensively. Further, @/iost of the current version is im-
plemented in native Python with SciPy code, an exception taghreshold secret splitting

scheme. For this, | utilized an optimized C library, developy Kevin M. Greenan, that in-
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Splitting Parameters
first split, second split | Ingestion (MB/s)| Extraction (MB/s)
(1, 1, null), (1, 1, null) 46.00 16.70
(1, 1, null), (3, 3, XOR) 26.18 16.26
(1, 1, null), (2, 3, Shamir) 8.09 9.25
(1, 1, null), (3, 4, Shamir) 5.05 8.05
(2, 2, XOR), (2, 3, Shamir 4.17 6.12

Table 4.1: Ingestion and extraction performance for a %aé configurations. The splitting
parameters are expressed in tuples of the fomm,algorithm where the first tuple corre-
sponds to the first split, and the second tuple to the secdrid Bpr testing, a pass-through
algorithm named "null” was created which appends metadattaddes no secret splitting.

cludes a&GF(28) arithmetic based implementation of Shamir’s linear inbéaion algorithm [67].

All of my experiments were performed on identical hardwaaegd were the only
processes running aside from basic system processes. Bsiclvds equipped with four dual-
core AMD Opterod™ 2212 processors with 8 GB of RAM and ran Linux 2.6.18-92.el5.

During these experiments, the data transformation comypom#ized object sizes
of 750 KB. Since POTSHARDS is designed for archival stordieck sizes are expected to
be relatively large, on the order of a few hundred kilobytes tnegabyte, and possibly larger.
Additionally, the default approximate pointer widtiR, was 30. Unless otherwise noted, the first
layer of secret splitting used an XOR based algorithm andyred two fragments per object,
and the second layer utilized a 2 of 3 Shamir threshold scheéfrhe workloads consisted of
randomly generated files, all larger than 1MB in size. WHilese files are representative of the
files that a long-term archive might contain, it is importémnote that POTSHARDS sees all
objects as the same, regardless of the object’s origin dentn

4.3.1 Read and Write Performance

My first set of experiments evaluated the ingestion and etitra performance of
the POTSHARDS client. Table 4.1 presents the throughput ihgle POTSHARDS client
at various parameters. A workload of randomly selected exoéd literature totaling 25 MB
was selected as it provided stable throughput numbers,ediedts the type of data likely to be

encountered by an archival system.
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In order to establish a performance upper-bound for the@tctiperations, | created a
pass-through algorithm that did no secret splitting butd#fother client operations — such as
metadata processing and index generation — intact. Thésegith this “null” splitter, seen
in the first line of Table 4.1, show that extraction lags cdasibly behind ingestion. This is
largely a factor of system write caching.

With an upper bound established, my goal was to measure ftiiempance of the
secret splitting operations. As Table 4.1 shows, simple X3pRting is considerably faster
than the compute intensive Shamir algorithm. For referemcésolated tests, my optimized
Shamir implementation achieved secret splitting througigb 7.6 MB/s, and a secret combin-
ing throughput of 19.3 MB/s with a 3 of 5 split. Extraction esiwithm of n secret splitting
algorithms are often faster than ingestion times for twsoea. First, ingestion involves the
overhead of generating random data for the secret splitiggrithms. Second, secret regen-
eration in the extraction process begins as soon as suffilamnes have been obtained; recon-
struction does not need to wait for alshares.

Finally, Table 4.1 shows the client throughput with a firseleXOR split and a second
level Shamir split, the “default” POTSHARDS configuratiofhis arrangement demonstrated
the slowest throughput rates, although this is to be exgdotea number of reasons. First, with
two levels of secret splitting, there are two levels inaugra random data generation penalty.
Second, and more importantly, with an init{@l 2, xor) split, followed by &2, 3, Shamir) split,
the second level splitter is splitting over twice as mucladet the user had submitted. Further
in my experiments, system throughput is measured from thiesyserspective; demands inside

the system are six times those seen by the client.

4.3.2 Archive Reconstruction

The archive recovery mechanisms were run on the local systéng eight 1.5 GB
archives. Each redundancy group in the experiment comtagight archives encoded using
RAID 5. A 25 MB client workload was ingested into the systermgs? of 2 XOR splitting and
2 of 3 Shamir splitting, resulting in 150 MB of client shar@scluding the appropriate parity.
After the workload was ingested, an archive was failed. htheed a static recovery man-
ager that sent reconstruction requests to all of the avaikatchives and waited for successful

responses from a fail-over archive. Once the procedure ety the contents of the failed
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Secrets 10 20 50

2,3) 37.08 94.28 698.89
2,4) 68.01  202.42  1523.41
(3,4) | 1872.14 10305.86 180080.86

Table 4.2: Recovery time, in seconds, for a variety of sespéitting parameters using the
brute-force approach in which approximate pointers araisetl.

archive and the reconstructed archive were compared. Tbéegure was run three times, re-
covering at 14.5 MB/s, with the verification proving sucéeken each trial. The procedure
was also run with faults injected into the recovery procesansure that the verification process

was correct.

4.3.3 User Data Recovery

In the absence of approximate pointers, reconstructing filam a set of shards is a
difficult combinatorics problem. Lacking any outside infation, each shard must be matched
with every other shard and a reconstruction attempt must &genon every chain of length
m. Approximate pointers enable the reconstruction of usés @aa reasonable time. The
experiments of this section were designed to explore tlierdiice between the various recovery
heuristics, and to understand how different naming andtisig/iparameters affect recovery.

4.3.3.1 Recovery Heuristics

In other to establish a recovery baseline, a pure combicatapproach of attempt-
ing reconstruction on every combination mfshard was attempted. This strategy, while still
time consuming, takes advantage of two aids. First, thedsiiames provide at least a partial
ordering. Second, the appended hash can confirm a successinktruction. As expected, the
results of Table 4.2 shows that this approach does not seglend a handful of shards, and
serves only as a baseline or last resort recovery strategy.

With a baseline established, | evaluated usefulness obajpate pointers with both
the naive and the ring heuristic described in Section 4\&/bile user indices provide for effi-

cient read and write performance under most access scengigure 4.10 shows that approxi-
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Figure 4.10: Recovery time, in seconds, for various valudesr@nd n with both the naive
approach and the ring heuristic. Reconstruction plotsubkathe ring heuristic are shown using
a dashed line.

mate pointers can provide adequate recovery performanea amindex is unavailable. As the
number of shards increases, the ring heuristic providewaliaally faster recovery times when

compared to the naive approach, and both are orders of tndgriaster than the approach that
does not use approximate pointers, as shown in Table 4.2 iSlguite apparent when com-
paring the recovery times for data resulting from a 3 of 4tsflhe ring heuristic was able to

recover 2,600 secrets in 1,251 seconds; in contrast, tive agproach took 17,712 seconds.
Even this, however, is an improvement compared to the oute approach which required

over 180,000 seconds to recover just fifty secrets.

Recovery times are largely computationally limited beeansf nthreshold schemes
often rely upon expensive operations. Thus, in additioretmvery times, | can also measure
the efficiency of the strategies based on how often they tsillse shard tuples. By this defi-
nition, perfect efficiency would be achieved if every sharplé¢ selected reconstructed a valid
secret. Figure 4.11(a) shows the comparison of three diftesecret splitting settings and their
recovery efficiency. From my experiments, two things arelem. First, the ring heuristic is
very efficient at selecting valid shard tuples with all thoé¢he secret splitting settings. Second,
larger values ofm adversely affect the efficiency of the naive approach. Ehikie to the fact
that asm increases, the number of paths of lengilincreases greatly. Given a shard with an
approximate pointer that points Rcandidate shards, and a namespace densiy-ef(0, 1],
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Figure 4.11: Efficiency of different recovery strategiegtestotal number of shards increases.
Efficiency of shard tuple selection is the percentage oftsigklected by the recovery heuristic
that reconstruct a valid secret. Efficiency of the Shamirisahe percentage of reconstruction
attempts that reconstruct a valid secret. The ring hecinigdis used with all three secret splitting
parameter settings and each gave similar results. Thus, thk results obtained using the ring
heuristic were averaged and shown as one plot in order tcowvepsiarity.
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there are(RD)™! possible paths. Thus, on avera@éRD)m*l paths must be tested by the
naive approach.

The difference between the ring heuristic and the naivecagh is even more pro-
nounced when the efficiency of the secret splitting opemaeoneasured. Figure 4.11(b) clearly
illustrates two important points. First, the ring heuddienefits from a full shard tuple and thus
a total ordering over the secret shares. Therefore, ea@ntmitshard tuple selected by the
ring heuristic only needs to be tested by the Shamir reaactstn operation once. Figure 4.11
shows the result; the efficiency of the ring heuristic is taee at the shard tuple selection
level as it is at the secret splitting operation level. Intcast, with onlym of the totaln se-
cret shares, the shard names only provide a partial ordefihgs, a shard tuple selected by
the naive scheme must be tested by the secret splittings&action operation up t%ﬁ
times before it can be confirmed as invalid.

It might be tempting to believe the ring heuristic providesaaditional layer of data
secrecy because a user with only a partial set of shards lidautzeutilize the ring heuristic to its
full potential. However, it is important to bear in mind tlatce an intruder has enough shards
to reconstruct data, security is only computationally lhwsubsequently, it must be assumed
that it is only a matter of time until data is revealed. Thhg, $ystem’s goal is to survive long
enough and make attacks noticeable enough to prevent arsadvéom acquiring sufficient

shards to computationally recover plaintext blocks.

4.3.3.2 Population

The populationof an approximate pointer can be described as the numberidf va
shards indicated by each approximate pointer and is cléigelyo the width of the approximate
pointer. For example, a well-formed traditional pointerulbhave a population of one shard
per pointer and a null pointer has (rather appropriatelyppufation of zero shards. Further,
suppose an approximate pointeiindicates a regionp — 2, p+ 2]. If there are three shards
in this range,p— 2, p+ 1, p+ 2, the density ofp is 0.6. Managing population is important
because, if it is too high, it will be more difficult to deteatriuders and will negatively affects
recovery times. On the other end of the spectrum, if the nurobehares per approximate
pointer is too low, an unacceptable portion of the namesjzoeing wasted.

The density of a region, as calculated by dividing the paiuiaP, of a region by its
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Figure 4.12: The effect of the approximate pointers’ popoifes on the time to recover 2,600 se-
crets using the ring heuristic. In these tests, populatnyas modified by adjusting the size
of the region R, indicated by the approximate pointer; density was kepstort.

size,R, affects the ease with which malicious data accesses cagtbeteld. Suppose a fictional
adversary has obtained a shard and is requesting addisbaalls based on the approximate
pointer. Assuming the attacker is restricted to making @ugiest at a time, there are a number
of possible outcomes of a shard request. First, there isrecehapproximately + P/R, that the
attacker will make aimvalid guesdy requesting a shard that does not exist (name assignment
within a region is random, and hence the number of valid shiard region may not be precisely
P). This property is integral to the use of approximate posteith a sparse namespace because
this outcome is very noticeable by an archive, which can hagitivalid access. Second, there
is the chance that a malicious attacker will successfullkerecorrect guessin this scenario,
correctness is defined as successfully requesting the #haréctually belongs to the same
shard tuple as their current shard. Third, there is a chdratetie attacker can makevalid
guess If a guess is valid, then there is an actual shard at the stegl@ddress, but it does
not belong to the same shard tuple as the attacker’s shanas, 8l correct guesses are valid
guesses, but the reverse is not true. Both correct and vadisbgs are difficult to use in detecting
attackers because normal users as well as attackers maie @vever, invalid guesses are
much more often unique to attackers because normal usdrypidally know exactly which
shards they need and not request nonexistent shards.

The population of an approximate pointer also has an effectada recovery times.
Even with the ring heuristic, recovering objects from slsarghen faced with no other outside
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information, amounts to controlling a combinatorics pesblof exponential growth. This is
evident in Figure 4.12 which shows the recovery time for @,68crets at various population
levels per pointer. Population was increased by modifyhey width, R, of the approximate
pointers; the shard density was constant. The tests wernetitiaing the ring heuristic and, as
would be expected, the tests that required cycles of lermythtd be tested grew at a faster rate

than those that only had to test cycles of length three.

4.3.4 Security Model
4.3.4.1 Secret Splitting Parameters

The secret splitting parameters used greatly affect maugcss of the system’s secu-
rity including data leakage, recovery times and efficienidye three aspects of secret splitting
parameter selection include the valuesmh and the difference between the two; m.

Higher values ofm provide a higher level of data protection, but can also lead t
higher recovery times. As Figure 4.13 and Figure 4.14 ilaiet less data was leaked when
larger values oim were used. However, there is the risk that recovery timekheilhigher
if less than the full shard tuple can be acquired. While axiprate pointers and the naive
approach are still useful, Figure 4.10 and Figure 4.11 detnate that higher values afincur
a penalty for recoveries with less than a full seihahards. This scenario can, however, be
mitigated in two ways. First, a hybrid solution can be uétizin which as many secrets as
possible are recovered using the ring heuristic. Then, éh@ining shards can be recovered
using the naive approach. Second, as Figure 4.6 illusiréite list of shard identifiers that
a fragment generates is appended to the fragment. Thus,supoessful reconstruction of a
fragment from onlym shards, the remaining shards can be identified and remaowetitire list
of unused shards. This reduces the solution space for theeguént secret recoveries. The
results of my experiments suggest that larger valuas should be chosen when secrecy is a
priority over potential recovery times.

In anm of n threshold scheme, the value flirectly impacts the storage overhead
and in turn the namespace density. One technique for mapdgmamespace relies on careful
name allocation. Entities that draw security directly frtrair position in the namespace, such
as shards that rely on noticeable attacks, should be plpegdedy. In contrast, entities that do
not draw their security from their position in a namespacdelmdensely packed. For example,
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when performing a two-layer split, the identifiers for thegoral data and the identifiers for

the results of the first split can all be drawn from a small,sgdéy packed portion of the total

namespace. The majority of the namespace, however, camatseppopulated and devoted to
shard names.

Despite their increased namespace overhead, higher vafluredo provide security
benefits. As Figure 4.13 shows, higher valuesxafan be useful for limiting the amount of
information leaked, albeit mostly as a result of allowingter values ofm. To this end, the
experimentation suggests that a higher value, @long with a correspondingly higher value of

m, provides the most protection against lost data.

4.3.4.2 Risk of Data Compromise

While secret splitting and approximate pointers are design make attempts to steal
specific shards easy to detect and survive, there is alsoog®hility that a large scale com-
promise could occur. This could occur in a scenario in whitdrds are stored in a distributed
manner across several data stores. If some of those arar@esther compromised or collude
to reconstruct data, there is the possibility of data beavgaled.

To determine the amount of data that can be revealed fronge ale compromise,
and to better understand how to limit it, | measured the dad& ¢ould be regenerated from
a random subset of secret shares. In my experiment, 2,608tse&cere split using Shamir's
linear interpolation scheme. From the resulting set ofetesinares, an increasing percentage
was randomly selected and as much data as possible was nedovEhe results, shown in
Figure 4.13, indicate two things. First, less data is reddaghen botim andn increase and
n—mis held constant. In my experiment, using a 3 of 4 split ree@dhe least amount of
information. Second, for a fixeah, increasingn reveals an increasing amount of information.
This is not unexpected as the odds of randomly selecting etsslbare from a given tuple
increase as the size of the tuple increases. In fact, tHieshbemes are often used because of
the availability that can be achieved by increasing theevaln.

One approach to minimizing data loss from large scale comjzes is the two-level
secret splitting technique used by POTSHARDS. To test tinefits of this strategy, | utilized
an initialn of n XOR based split. Each of the resulting shares is then sphiguShamir'smof n
threshold scheme. The results, for two different values af the XOR split, are shown in
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Figure 4.13: Percentage of 2,600 total blocks (secretsthdd be recovered by an adversary
in a large-scale compromise. Tests were performed oveoralydselected, partial sets of secret
shares.

Figure 4.14 and indicate that the additional level of sespditting is effective at lowering the
amount of information released. Also, as in the single sialiger values oh — mat the second
layer of secret splitting still resulted in higher amouniténdormation loss.

Our experiments also indicate that a larger split at the lignstl of splitting further
limited the amount of information loss. This is evident irgéiie 4.14(b), which shows that
revealing 20% of the total number of secret shares undertddimsl 3 of 3 split revealed no
data, regardless of the second-level split. The same 20%roonise with a first level split of
two and second level 2 of 3 or 2 of 4 split resulted in 0.42% a®@% of the total number of
secrets being revealed, respectively. Even with 60% ofdta humber of secret shares and a
3 of 4 Shamir split, a first level split of three only revealedaverage of 0.68% of the secrets.
In contrast, with 60% of the secret shares, a first level sptivo revealed 5.46% and the single
layer of splitting alone revealed 24.69%. Of course, 60%heftbtal number of secret shares
represents a very large scale compromise—over half of theeststored for the user have been
acquired; | expect that compromises are more likely to teaul0% or fewer shares being
acquired, given the intrusion detection approaches masklge by sparse namespaces.

Of course, while my results do show that multiple layers afrsesplitting enhance
security, they do incur a storage penalty. As Figure 4.6 shivere is already a constant amount
of storage overhead in the form of hashes and identifierss@ bests are, however, dominated

by the storage blowup intrinsic to secret splitting. Thisiaiion is exacerbated by multiple
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Figure 4.14: Percentage of 1,300 total blocks (secretsthdd be recovered by an adversary
in a large-scale compromise. Tests were performed oveoralydselected, partial sets of secret
shares in which secrets were guarded through two levelscoétssplitting: a top level XOR
split and a lower level threshold split.

78



levels of splitting. For example, a first level split of thieng, with a second 3 of 4 split incurs
a storage blowup of twelve.

A system that distributes secret shares to multiple arshoam further limit data loss
through careful share distribution. In my experimentssatiret shares were pooled and recon-
struction was attempted on a random subset of those sharasstbrage model where shares
are distributed to independent archives, a more likely @gerof large scale compromise is for
an adversary to acquire all of the shares on a single archivis situation, rather than com-
promising a random subset of shares, the compromise woutddpecific subset: shares that
reside on the compromised archives. To this end, carefullaison of shares to archives could
further limit data loss.

4.3.4.3 Chaff Shards

When a shard that does not exist is requested, either midyake due to a ma-
licious user, there are two possible responses: an errcsager a chaff shard. The use of
chaff [21, 140] (fake packets) has been suggested as aneapi@providing data secrecy with-
out encryption. A key difference, however, is that the “¢imgf and winnowing” strategy uses
chaff as its primary secrecy mechanism. In the model that Ireestigating, secrecy comes
primarily from secret splitting. Thus, in my model, when guest is made for a shard that does
not exist, a seemingly valid chaff shard is generated anadmetl to the user.

The primary security advantage of chaff is that the attaé¢kerot alerted that the
request for a false shard has been detected. This is noeunsikent alarm that alerts authorities
without raising the suspicion of the intruder. Thus, the mflchaff is not to slow down recovery
time. In a scenario where a malicious user has obtained isuffishards, it is only a matter of
time before the data is revealed regardless of the existdrateaff. Data secrecy, whether from
encryption or secret sharing, is reducible to a computatigfbound problem once an intruder
has acquired enough ciphertext. Thus, the existence of shafds is similar to an increased
key size in that it makes the problem more difficult but it does fundamentally change the
potential for data exposure.

There are two possible strategies for dealing with a useérdogaests a shard multiple
times in order to test its validity; if a shard is requestedtéybut the returned result is different
each time, it is clear to the user (or attacker) that the sisasimply chaff. First, chaff can
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Figure 4.15: The effect of chaff on the time to recovery 1086rats. Recovery attempts that
utilized the ring heuristic are shown using a dashed line.

be generated using a deterministic process. Alternatitledychaff can be generated randomly
and then stored. One issue with the second strategy is ttsgracauld attempt to intentionally
request false shards in order to pollute a user’s set of shdite aim of such an attack might be
to use the increased recovery time as a type of denial ofcgeattack. In fact, as Figure 4.15
demonstrates, chaff does not dramatically increase ttwveeg time, especially if the user is

able to utilize the ring heuristic.

4.4 Publication History and Status

The publication history of POTSHARDS covers a wide gamutlyian in the project,
two papers were published that document the system’s dawelot. The earliest published
work for the project appeared in 2005, at the Security in&ferWorkshop (SISW) [163]. This
paper represents early design ideas, and has been largphasied by subsequent publications.
Second, in 2006, a short workshop paper was presented ataditag& Security and Survivabil-
ity (StorageSS) workshop that outlined many of the secuhtgats that POTSHARDS was
designed to guard against [162].

The primary POTSHARDS paper appeared in 2007, at the USENIuAl Technical
Conference [165]. The results reported in this paper wesedban a Java based implementation

that suffered from poor performance, but still demonstrdte design’s feasibility and merit.
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In an effort to realize better performance, the entire systas rewritten using Python
and C for computation intensive operations. In additionrtmdpcing better performance num-
bers, this system was also used to perform an in depth ei@iuat the system’s security.
Results gathered from this implementation, along with #iedt design ideas have been doc-
umented, and submitted to the ACM'’s Transactions on Stofa@&) journal. Pending minor
revision, it is due to be published in early 2009.

Long-term security remains a relatively new area, and ttsggdeof POTSHARDS
includes a number of areas that would benefit from furthedystuCurrently, POTSHARDS
depends on strong authentication and intrusion detectideép data safe, but it is not clear
how to defend against intrusions that may occur over manysyeaen if such attacks are
detected. One potential approach would be to refactor ddteas partial progress in an intrusion
can be erased by making new shards “incompatible” with o&tds[196]. Unlike the failure
of an encryption algorithm, which would necessitate whallese-encryption, refactoring for
security could be done over time to limit the window over whaslow attack could succeed.
Refactoring could also be applicable to secure migratiosatd to new storage devices.

Another area of improvement that would increase the fdagiltif POTSHARDS
would be a reduction in storage overhead. Some informatismedsal algorithms may have
lower overheads than Shamir secret splitting. Assumingthieasystem’s information-theoretic

security properties can be maintained, these algorithnysprave useful.

4.5 Conclusion

This chapter discussed POTSHARDS, a system designed tmprescure long-term
archival storage to address the new challenges and newitgegbueats posed by archives that
must securely preserve data for decades or longer. The gt@akreate a security model that
relies not on a large key-space, but on surviving attacksnaaking attacks easy to detect and
respond to.

Experiences with an early implementation show that usensstare data at over
4 MB/s and retrieve user data over 6 MB/s. Since POTSHARDSiarahival storage sys-
tem, throughput is more of a concern than latency, even tinesgtimized throughputs exceed
typical long-term data creation rates for most environment

Experiments also show that the ring heuristic is effectiveeaovering data from
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even a large set of secret shares. From an efficiency staridgfoe total ordering that the ring
heuristic imposes over a potential shard tuple providesuadtic improvement compared to the
naive approach of testing only paths of length Additionally, | demonstrate that increasing
m and utilizing multiple levels of secret splitting can minza the amount of data revealed in
the event of a large scale data compromise. My experimesssalow that chaff shares do not
dramatically increase recovery times. Thus, their bengfirimarily to act as a silent alarm,
which does not alert an adversary that they have been detecte

By addressing the long-term threats to archival data whiteigding reasonable per-
formance, POTSHARDS provides reliable data protectiorifipally designed for the unique
challenges of secure archival storage; the use of seciiitrgpla sparse namespace and ap-
proximate pointers are well suited to the unique secrecyrecalvery demands of archival data
with a potentially indefinite lifetime. Storing data in POHISRDS ensures not only that it will
remain available for decades to come, but also that it wilam secure and can be recovered

by authorized users even if all indexing is lost.
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Chapter 5

Energy-Efficient, Archival Storage

Yetitis in our idleness, in our dreams, that the submerged
truth sometimes comes to the top

Virginia Woolf

An area of scalability largely overlooked by traditionaksm is the ability to scale
over time [18, 19]. With Pergamum, | demonstrate my thesitestent — archival storage is a
first class storage category that requires solutions &léor long-lived data — by describing
a system designed specifically for efficient, long-term d#daage. Unlike traditional systems,
Pergamum favors evolvability and cost efficiency over altgsoperformance, a design choice
that is valid for archival data.

Pergamum introduces several new techniques to disk-bashiVal storage. First,
my system distributes control to the individual devicetheathan centralizing it, by including
a low-power CPU and network interface on each disk; this @gugr reduces power consump-
tion by eliminating the need for power-hungry servers andR@ontrollers. Systems such as
TickerTAIP [26] used distributed control in a RAID, but didtinclude reliability checking and
power management. Second, Pergamum aggressively enstiaeelibbility using two forms
of redundancy: intra-disk and inter-disk. In the formercleaisk stores a small number of
redundancy blocks with each set of data blocks, providingliassifficient way of recovering
from latent sector errors [16,17]. In the latter, Pergamwmputes redundancy information
across multiple disks to guard against whole disk failurewklver, unlike existing RAID sys-

tems, Pergamum can stagger inter-disk activity during datavery, minimizing peak energy
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consumption during rebuilding. Third, energy-efficienteetralized integrity verification is en-
abled by storing data signatures for disk contents in NVRAMuS, using just the signatures,
Pergamum tomes can verify the integrity of their local catgeand, by exchanging signatures
with other Pergamum tomes, verify the integrity of disttdmlidata without incurring any spin
up costs. Finally, the Pergamum architecture allows dadell archives to look like tape: an
individual Pergamum tome may be pulled out of the system ead independently; the remain-
ing Pergamum tomes will eventually treat this event likesk dailure and rebuild the “missing”
data in a new location.

The goal of Pergamum, is to realize significant cost savinygkekping the vast ma-
jority, as many as 95%, of the disks spun down while still g reasonable performance and
excellent reliability. My techniques allow Pergamum toajhg reduce energy usage, as com-
pared to traditional hard drive based systems, making tiaisi@ for archival storage. The use
of signatures to verify data reduces the need to power diskasdoes the reduced scrubbing
frequency made possible by the extra safety provided bg-igk parity. Similarly, stagger-
ing disk rebuilds reduces peak power load, again allowingdaum to reduce the maximum
number of disks that must be active at the same time. Whildidumethese techniques are best
realized in a distributed system such as Pergamum—the usamf low-power CPUs is more
efficient than a few high-power servers—they are also slaitdr use in more conventional
MAID architectures, and could be used to reduce power copamin them as well.

5.1 System Components

The design of Pergamum was driven by a workload that exhibéd, write and delete
behavior that differs from typical disk-based workloadsiding both challenges and oppor-
tunities. The workload is write-heavy, motivated by regoitg compliance and the desire to
save any data thanightbe valuable at a later date. Reads, while relatively infeejuare often
part of a query or audit and thus are likely to be temporallgtesl. Deletes are also likely
to exhibit a temporal relationship as retention policie®ofspecify a maximum data lifetime.
This workload resembles traditional archival storage Waa#ls [127, 202], adding deletion for
regulatory compliance.

The Pergamum system is structured as a distributed netviarikiependent storage

appliances, as shown in Figure 5.1. Alone, each Pergamum &oits as an intelligent storage
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Figure 5.1: High-level system design of Pergamum. Indigid®ergamum tomes, described in
Section 5.1.1 are connected by a commodity network buithfodf-the-shelf switches.

device, utilizing block-level erasure coding to survivedizefaults and algebraic signatures
to verify block integrity. Collectively, the storage amplices provide data reliability through
distributed RAID techniques that allow the system to recdvam the loss of a device, and
inter-disk data integrity by efficiently exchanging haskes of algebraic signatures. As | will
show, this approach is so reliable that disk scrubbing [1#d not be done more frequently
than annually. In addition, lost data can be rebuilt with éoypeak energy consumption by
staggering disk activity; this approach is slower, but mEdupeak power consumption.

The next two sections discuss the design and implementafi®@rgamum and im-
plementation of these techniques. This section describesdividual Pergamum appliance,
or tome including its components, intra-appliance redundancgtesgy, interconnection net-
work, and interface. Section 5.2 then describes how malspbrage appliances work together
to provide reliable, distributed, archival storage, imlthg a description of the system’s inter-

appliance redundancy and consistency checking strategy.

5.1.1 Pergamum Tomes

A Pergamum tome is a storage appliance made up of four maip@oants: a low-
power processor, a commodity hard drive, non-volatile flasmory and an Ethernet controller.
To protect against media errors, erasure coding technigrgessed on both the hard drive and
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Component Power

SATA Hard Drive [191] 7.5W
ARM-based board (w/ NIC) [15] 3.5W
NVRAM <0.6W

Table 5.1: Active power consumption (in watts) of the founmary components that make up a
Pergamum tome.

flash memory.

Each Pergamum tome is managed by an on-board, low-power £Rlddern ARM-
based single board computer consumes 2—-3 W when activeg(asii®0 MHz CPU) and less
than 300 mW when inactive [15]. The processor handles thal usles required of a network-
attached storage device [60, 61] such as network commionsatrequest handling, metadata
management, and caching. In addition, each Pergamum tdbi$ manages consistency
checking and parity operations for the local drive, respgotwdsearch requests, and initiates
communications with other disks to provide inter-disk abliity. The processor can also be
used to handle other operations at the device level, suciuesschecking and compression.

Persistent storage is provided through the unit's SATA<laard drive. The use of
commodity hardware offers cost savings over more costlyl@@& FC drives while providing
acceptable performance for archival workloads. By usiniip litra-disk redundancy and dis-
tributed redundancy groups, commodity SATA-class drivaas grovide excellent reliability for
long-term archival storage [147].

While a single processor could manage multiple hard driesgamum pairs each
processor with a single hard drive. This is done for perferoeamatching, power savings, and
ease of maintenance. As Section 5.3 details, low-poweregsms are not fast enough to run
even a single disk at full speed, so there is little incentdveontrol multiple disks with a single
CPU. Power savings is another issue: a faster CPU and nisittiedntroller would consume
more power than multiple individual low-power CPUs (cuftiprocessor voltage in half results
in half the clock speed but one fourth the power consumptiéimally, the pairing of a CPU
with a single disk and network connection makes it simpleefdace a failed Pergamum tome.
If any part of the Pergamum tome fails, the entire Pergamunets discarded and replaced,

rather than trying to diagnose which part of the Pergamunettaited to “save” working hard
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drives. The system then heals itself by rebuilding the datan fthe failed device elsewhere in
the system. By reducing the complexity of routine mainteearPergamum reduces ongoing
costs.

In addition to a hard drive, each Pergamum tome includes legboo-board NVRAM
for storing metadata such as the device’s index, data sigggmand information about pending
writes. The purpose of the NVRAM is to provide low-power, sistent storage; operations
such as metadata searches and signature requests do nie teguwnit's drive to be spun up.
While the use of flash-type NVRAM provides better persisyeand energy-efficiency com-
pared to DRAM, it does raise two issues: reliability and @ililg. Pergamum tome protects
the flash memory from erroneous writes and media errors gifrthe use of page-level protec-
tion and consistency checking [66], ensuring memory réitgbFlash memory is also limited
in that the memory must be written in blocks, and each blocl¢ ordy be rewritten a finite
number of times, typically 70-1° times. However, since the NVRAM primarily holds meta-
data such as algebraic signatures and index informaticsh) flaites are relatively rare; flash
writes coincide with disk writes. Because this typicallycocs fewer than 1000 times per year,
or 8000 times during the lifetime of a disk, even if the flashhmoey is totally overwritten each
time, such activity will still be below the 10,000 write cgsl that flash memory can support.
Additionally, while the current implementation uses NANRsh memory, other technologies
such as MRAM [173] and phase change RAM [30] could be usedegsttecome available and
price-competitive, further reducing or eliminating thevrite issue.

Finally, each Pergamum tome includes an Ethernet contraiid network port, pro-
viding a number of important advantages. First, a networkection is a standardized interface
that changes very slowly—modern Ethernet-based systemmtsoperate with systems that
are more than fifteen years old. In contrast, tape-basedmsgstequire a unique head unit for
each tape format, and each of those devices may requirecadatiffinterface; supporting legacy
tapes could require the preservation of lengthy hardwaa@shThe use of a network also elim-
inates the need for robotics hardware (or humans) to loadialoéd media; such robots might
need to be modified for different generations of tape medihranst be maintained. Instead,
the system can use commaodity network interconnects, lgalimedia permanently connected

and always available for messaging.
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5.1.2 Interconnection Network

Since Pergamum must contain thousands of disks to conmipetiabytes of data that
long-term archives must hold, its network must scale to simds. However, throughput is not
a major issue for such a network—a modern tape silo with 6t806s typically has fewer than
one hundred tape drives, each of which can read or write att&ifbMB/s, for an aggregate
throughput of 5 GB/s. Scaling a gigabit Ethernet networkujgp®rt comparable bandwidth can
be done using a star-type network with commodity switchéketleaves” of the network and,
potentially, higher-performance switches in the core. &@mple, a system built from 48-port
gigabit Ethernet switches could use two switches as hub4&@witches, each of which sup-
ports 46 disks, with the remaining two connections goingaitheof the two hubs. This approach
would support over 2200 disks at minimal cost; if the centi#bs each had a few 10 Gb/s up-
links, a single client could easily achieve bandwidth ab6¢&B/s. This structure could then
be replicated and interconnected using a more expensivé/Hs@itch, allowing reasonable-
speed access to any one of tens of thousands of drives, \witragt majority remaining asleep
to conserve power.

The interconnection network must allow any disk to conndti any network-connected
client. By using a standard Ethernet-based network runifingergamum ensures thaatydisk
can communicate with any other disk, allowing the systenotb detect newly-connected disks
and allowing them to communicate with existing disks to tap” their own data.

The approach described above is highly scalable, with na@hiistartup cost” and
low incremental cost for adding additional disks. Furth#iciencies could be achieved by
pairing the Ethernet cable with a higher-gauge wire capabMistributing the 14-18 W that
a spun-up disk and processor combination requires. Altieata the system could use disks
that can spin at variable speeds as low as 5400 RPM [191]ciregldisk power requirements
to 7.5 W and overall system power needs to below 11 W, suffigiégow to use standard power-
over-Ethernet. Central distribution of power has sevedahatages, including lower hardware
cost and lower cabling cost. Additionally, distributingvper via Ethernet greatly simplifies
maintenance—adding a new drive simply requires pluggingatan Ethernet cable. While the
disks in the system will work to keep average power load béédwitilization, a central power
distribution system will allow the network switches thetwss to guarantee that a particular
power load will never be exceeded by restricting power ithisted by the switch.
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5.1.3 Pergamum Tome Interface

There are two distinct data views in Pergamum: a file-cemtei and a block-centric
view. Clients utilize the file-centric view, submitting regsts to a Pergamum tome through
traditional read and write operations. In contrast, retpieem one Pergamum tome to another
utilize the block-centric view of data based on redundammoyp identifiers and offsets.

Clients access data on a Pergamum tome using a set of simplmamds and a
connection-oriented request and response protocol. ilyrelients address their commands
to a specific device, although future versions of Pergamuhinglude a self-routing communi-
cations mechanism. Internally, files are named by a file iflenthat is unique within the scope
of a single Pergamum tome. Thew command allocates an unused file identifier and maps it
to a filename supplied by the user. This mapping is used byghe command to provide the
file’s unique identifier to a client. This file id, the device’'sad andwrite commands, and a
byte offset are then used by the client to access their data.

Requests between Pergamum tomes primarily utilize a deta based on segment
identifiers and block offsets, as opposed to files. There @ue rhain operations that take
place between Pergamum tomes. First, external parity epeéguests provide the Pergamum
tome storing parity with the delta and metadata needed tatefts external redundancy data.
Second, signature requests are used to confirm data igteghiird, token passing operations
assist in determining which devices to spin up. Finallyréh&re commands for the deferred
(fosten write operations discussed in Section 5.2.3.1.

Management of Pergamum tomes can be done either with a liggdrdconsole”
to which each Pergamum tome reports its status, or in allistd fashion where individual
Pergamum tomes report their health via LED. For exampléy Pacgamum tome could have a
small green LED that is on when the appliance is working alyeand off when it is not. An
operator would then replace Pergamum tomes whose light;ishi approach is simple and
requires little operator skill. Alternatively, a centralresole could report “Pergamum tome 53
has failed,” triggering a human to replace the failed unihe Pergamum design permits both
approaches.
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Figure 5.2: Layout of data on a single Pergamum tome. Dataedisk is divided into blocks
and grouped into segments and regions. Data validity istaiaed using signatures, and parity
blocks are available to rebuild lost or corrupted data.

5.2 Pergamum Algorithms and Operation

A Pergamum system, deployed as described in Section 5.3ldyhilecentralized,
relying upon individual disks to each manage their own beitaand their own data. Each
disk is responsible for ensuring the reliability of the diitstores, using both local redundancy

information and storage on other nodes.

5.2.1 Intra-Disk Storage and Redundancy

The basic unit of storage in a Pergamum tome are fixed-sizekdlgrouped into
fixed-sizesegmentsas shown in Figure 5.2. Together, blocks and segments fgrasic units
of the system’s two levels of redundancy encoding: intskdind inter-disk. Since the system
is designed for archival storage, blocks are relativelydar128 KB—1 MB or larger—reducing
the metadata overhead necessary to store and index thesagjoach mirrors that of tape-
based systems, which typically require data to be storeargelblocks to ensure high efficiency

and reasonable performance.
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The validity of individual blocks is checked using hashés block’s content does
not match its hash, it can be identified as incorrect; thig@gagh has been used in other file
systems [94,170]. Disks themselves maintain error-comgaodes, but such codes are in-
sufficiently accurate for long-term archival storage beeathey have a silent failure rate of
about 1014, a rate sufficiently high to cause data corruption in larggles long-term storage.
To avoid this problem, each disk appliance stores both a \rsle and a timestamp for each
block on disk. Assuming a 64-bit hash value and a 32-bit titemap, a 1 TB disk will require
96 MB of flash memory to maintain this data for 128 KB blocks.efimg this information in
flash memory has several advantages. First, it ensures |kt ¥alidity information has a
different failure mode from the data itself, reducing theslihood that both data and signature
will be corrupted. More importantly, however, it allows tRergamum tome to access the sig-
natures and timestamps without powering on the disk, emgBlergamum to conduct inter-disk
consistency checks without powering on individual disks.

The hash values used in Pergamum agebraic signatures-hash values that are
highly sensitive to small changes in data, but, unlike SHARtl RIPEMD, are not crypto-
graphically secure. Algebraic signatures are ideallyesutp use in Pergamum because, for
many redundancy codes, they exhibit the same relationgigdgshe underlying data does. For

example, for simple parity:

do®dy- @ dy1=p=>sig(do) ®sig(ch)- - & sig(dn-1) = sig(p)

While 64-bit algebraic signatures are sufficiently long ¢éaluce the likelihood of
“silent” errors to zero; they are ineffective against mlis intruders, though there are ap-
proaches to verifying erasure-coded data using signaturésgerprints that can be used to
defeat such attacks [73, 148].

As Figure 5.2 illustrates, each segment is protected by omaawe parity blocks,
providing two important protections to improve data suabivity. First, the extra parity data
provides protection against latent sector errors [16, lf periodic scrubbing reveals unreadable
blocks within a segment, the unreadable data can be relmdiltzaitten to a new block using
only the parity on the local disk. Second, while simple sbing merely determines whether
the block is readable, the use of algebraic signatures aitgl pbbcks allows a disk to determine
whether a particular block has been read back properlyhicef@rrors that the disk drive itself

cannot [73, 148] and correcting the error without the neexpto up additional disks.
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Figure 5.3: Two levels of redundancy in Pergamum. Indivickegments are protected with
redundant blocks on the same didR).(Redundancy groups are protected by a redundancy
group parity regionR), which contain erasure correcting codes for the other segsrin the
redundancy group. Note that segments used for redundaiticyostain intra-disk redundant
blocks to protect them from latent sector errors.

5.2.2 Inter-Disk Redundancy

While intra-disk parity guards against latent sector ex;r&®ergamum can survive the
loss of an entire Pergamum tome through the use of inter-techendancy encoding. Segments
on a single disk are grouped integions and aredundancy groups built from regions of
identical sizes on multiple disks. To ensure data surveath redundancy group also includes
extra regions on additional disks that contain erasureectan information to allow data to be
rebuilt if any disks fail. Theseedundancy regionare stored in the same way as data regions:
they have parity blocks to guard against individual blodkufe and the disk appliances that
host them store their algebraic signatures in NVRAM.

The naive approach to verifying the consistency of a redoog group would require
spinning up all the disks in the group, either simultanepoaslin sequence, and verifying that
the data in the segments that make up the regions in the ggagmsistent. Pergamum dramat-
ically reduces this overhead in two ways. First, the algelsignatures stored in NVRAM can
be exchanged between disks in a redundancy group and védfiednsistency as described in
Section 5.2.1. Since the signatures are retrieved from NMRifve disk need not be spun up
during this process as long as changes to on-disk data azeteeflin NVRAM. If inconsisten-

cies are found, the timestamps may be used to decide on thepaigpe fix. For example, if a
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Figure 5.4: Trees of algebraic signatures. Tomes in a reahgydgroup exchange the roots
of their trees to verify consistency; in this diagram, thgnsitures marked with a skull are
inconsistent. The roots (LO) are exchanged; since they tionatch, the nodes recurse down
the tree to L1 and then L2 to find the source of the inconsigtefiChildren” of consistent
signatures (signatures outline with a dotted line at L2)mmtefetched, saving transmission and
processing time. The inconsistent block on tome 1 is founathmcking the intra-segment
signatures on each block; only those on tome 1 were incemsisNote that only tome 1's disk
need be spun up to identify and correct the error if it is lizeal.

set of segments is inconsistent and a data segment is “néfaaarthe newest parity segment,
the problem is likely that the write was not applied propedgpending on how writes have
been applied and whether the “old” data is available, théyparay be fixed without powering
up the whole set of segments.

While this approach only requires that signatures, rattean tlata, be transmitted, itis
still very inefficient, requiring the transmission of ngatl00 MB of signatures for each disk to
verify a redundancy group’s consistency. To further redbeeamount of data and computation
that must be done, Pergamum uses hash trees [111] built figehraic signatures, as shown
in Figure 5.4. Using signatures of blocks &sn Equation 5.2.1 shows that signatures of sets
of signatures follow the same relationships as the undeylgata; this property is maintained
all the way up to the root of the tree. Thus, the signatureketdots of each disk’s hash tree
for the region should yield a valid erasure code word whenlionad together. If they do not,
some block in the redundancy group is invalid, and the diskanse down the hash tree to find
the bad block, exchanging the contents at each level towdh® location of the “bad” block.
This approach require®(k) computation and communication when the group is correce—th
normal case—an®(klogn) computation and communication to find an error in a redunglanc
group with a total ofn blocks acros% disks. Since redundancy groups are not laigg 60,
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typically), high-level redundancy group verifications d@ndone quickly and efficiently.

5.2.3 Disk Power Management

Reducing power consumption is a key goal of Pergamum; sipicaisg disks are
by far the largest consumer of power in a disk appliance, ikgeihe disk powered off (“spun
down”) dramatically reduces power consumption. In comttasearlier systems that aim to
keep 75% of the disks inactive [68], Pergamum tries to keé&s 8bmore of the disks inactive
all of the time, reducing disk power consumption by a factbfive or more over existing
MAID approaches. This goal is achieved with several stiategequentially activating disks to
update redundancy information on writes, low-frequeneylsiosing, and sequentially rebuilding
regions on failed disks.

To guard against too many disks being spun up at once, Pergarsesspin-up to-
kens which are passed from one node to another to allow spinfupultiple nodes require a
token simultaneously, the node currently holding the tofegnich may or may not be spun up
at the time) calculates need based on factors such as aaidig'st pending request, the types

of requests it has pending, the number of pending requedtthanast time the disk was spun
up.

5.2.3.1 Reading and Writing Data

When a client requests a data read, the device from whichisl&babe read is spun
up. This process takes a few seconds, after which data caeddeat full speed. While a
Pergamum tome is somewhat slower than a high-power netattakhed disk, its performance,
discussed in Section 5.3, is sufficient for archival stonageeval. Moreover, since the data is
stored on a disk rather than a tape, random access perfoenssignificantly better than that
of a tape-based system.

As with reads, archive writes require a spun-up disk. Peugarolients choose the
disks to which they write data; Pergamum does not impose ieelom users. This is done be-
cause some clients may want to group particular data onfgpdisks: for example, a company
might choose to archive email for an individual user on orieediOn the other hand, a storage
client may query Pergamum nodes to identify spun-up nodlesyiag it to select a disk that is

already spun up.
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Since writes require the eventual update of distributed,dfiey are more involved
than reads. First, the target disk is spun up if it is not ayeactive. Next, data is written to
blocks on the local disk. However, existing data blocks areaverwritten in place; instead,
data is written to a new data block, allowing the Pergamurnrettorcalculate “deltas” based on
the old and new block. These deltas are then sent to the Pengéomes storing the redundancy
regions for the old block’s segment. On the local device,stgment mapping is updated to
replace the old block with the new block. It is important tdaeydiowever, that the old block is
retained until it has been confirmed that all external pdritg been updated.

On the Pergamum tomes storing the redundancy informatiendeéltas arrive as a
parity update request. Since the redundancy update destiraows how the erasure correct-
ing code is calculated, it can use the delta from the datettaigk to update its own redundancy
information; it does not need both the old and new data block; the delta. Because the delta
may be different for different parity disks, however, thedggenum tome that received the orig-
inal write request must keep both old and new data until athefparity segments have been
updated. However, doing updates this way ensures that @ kequires no more than two disks
to be active at any time; while the total energy to write theada unchanged—a write to an
(m,n) redundancy group must still update- m+ 1 disks—the peak energy is dramatically
reduced frorn— m+ 1 disks active to 2 disks active, resulting in an improvenienany code
that can correct more than one erasure.

One problem with allowing writes directed to a specific Perge tome is that the
disk may not be spun up when the write is issued. While thardegin disk may be activated,
an alternate approach is to write the datamy currently active disk and later copy the data to
the “correct” destination [114, 115]. This approach ise@bBurrogate writing and is used in
Pergamum to avoid spinning disks up too frequently. Insteaites are directed to an already-
active disk, and the Pergamum tome to which data will evédigtba sent is also notified. The
data can then be transferred to the correct destinatioly.lazi

5.2.3.2 Scrubbing and Recovering Data

To ensure reliability, disks in Pergamum are occasionaltytsbed: every block on
the disk is read and checked for agreement with the signstored in NVRAM. This procedure
is relatively time-consuming; even at 10 MB/s, a 1 TB diskuiegs more than a day to check.
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However, Pergamum tome’s use of on-disk redundancy to gbhardata in a segment, described
in Section 5.2.1, greatly reduces the danger of data logs latent sector errors, so the system
can reduce the frequency with which it performs full-diskus. Instead, a Pergamum tome
performs a “limited scrub” each time it is spun up, eitheridgiidle periods or immediately be-
fore the disk is spun down. This limited scrub checks a fewdned randomly-chosen locations
on the disk for correctness and examines the drive’s SMARIIS{155], ensuring that the disk
is basically operating correctly. If the drive passes thisak, the major concern is total drive
failure, either during operation or during spin-up, as B&cbh.3.2 describes.

Complete drive failures are handled by rebuilding the dat¢éhe lost drive in a new
location. However, since fewer than 5% of the disks in Perganmay be on at any given time
and redundancy groups that may contain data and parity of018isks for maximal storage
efficiency, itis impractical to spin up all of the disks in @wumdancy group to rebuild it. Instead,
Pergamum uses techniques similar to those used in writitagtdaecover data lost when a disk
fails. The rebuilding algorithm begins by choosing a newatamn for the data that has been
lost; this may be on an existing disk (as long as it is not dlygzart of the redundancy region),
or it may be on a newly-added disk. Pergamum then spins ugdgke ith the redundancy region
one by one, with each disk sending its data to the node on vdaitzhis being rebuilt. The node
doing the rebuilding folds the incoming data into the dataady written using the redundancy
algorithm; thus, it must write each location in the regiorimes and read in— 1 times (the

first “read” would result in all zeros, and is skipped).

5.3 Experimental Evaluation

My experiments with the current implementation of Pergamuare designed to mea-
sure several things. First, | wanted to evaluate the systests én order to ensure that my so-
lution was economically feasible. Second, with the asststeof Kevin Greenan, | wanted to
confirm that Pergamum can provide long-term reliabilityotigh a strategy of multiple levels
of parity and consistency checking using algebraic sigeatuFinally, | wanted to measure the
performance of the implementation to show that Pergamunaitialde for archival workloads
and to identify potential bottlenecks.

The remainder of this section proceeds as follows. Firste$e@nt an analytical eval-

uation of the system’s cost. Then, | recap the results of iIK&reenan’s long-term reliability
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simulations. Finally, | present the results of my perforecatests with the current implementa-

tion of Pergamum.

5.3.1 Cost

Cost in an evolvable, long-lived system can be difficult ttcekate. The advantages
that a heterogeneous structure can provide by allowingtarsy® adapt over time, also conspire
against a simple cost model of capital expenditures ancatipgrexpenditures amortized over a
set accounting period. As devices are constantly arrivirijl@aving the systems — due to scale
out, failures and evolution — all costs are on-going costsus] the ideal way to measure cost
would capture the utility the system provides (capacity)né of time, and a value (dollars).

In the absences of such detailed cost models, the traditapmeoach uses a straight-
forward strategy to calculating system cost by identifysigtic costs (capital expenditures),
and operational costs. The first figure describes the costquir@ the system, and the second
figure quantifies the cost to run the system. Examining basksdogether is important because
low static costs can be overshadowed by the total cost ofatipgrand maintaining a system
over its lifetime.

| do not consider personnel costs in any of the systems | ibesdrassume that all
of the systems are sulfficiently well automated that humamt@aance costs are relatively low.
However, this assumption is somewhat optimistic, espgdiat large tape-based systems that
use complex hardware that may require repair. In contrasgaum is built from simple,
disposable components—a failed Pergamum tome or netwatgsmay simply be thrown out
rather than repaired, reducing the time and personnelteéquired to maintain the system.

Static costs reflect the expenses associated with acqainiagchival storage solution,
and can be calculated by totaling a number of individual co$dne is the system expense,
which totals the base hardware and software costs of a st@mygiem with a given capacity
for storage media. This cost is paid at least once per st@ggfem, regardless of how much
storage is actually required. Media cost, in dollars pealigte, is a second expense. Large
archival storage systems may require several “base” sgstmexample, an archival system
that uses tape silos and robots might require one silo p80Gdpe cartridges, even if the silo
will not be filled initially.

Operational costs reflect those costs incurred by day to gdayation of an archival
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System Media Static cost| Oper. cost| Redundancy
Sun StorageTek SL8500 T10000 tape $4,250 $60 None
EMC Centera SATAHD $6,600 $1,800 parity
PARAID SCSIHD $37,800 $1,200 RAID
Copan Revolution SATA HD $19,000 $250 RAID-5
RAIL ubO2 $57,000 $225| RAID-4 (5+1)
Pergamum SATA HD $4,700 $50 2-level

Table 5.2: Comparison of system and operational costs fétBLOf storage. All costs are
in thousands of dollars and reflect common configurationser&jmnal costs were calculated
assuming energy costs of $0.20/kWh (including coolinggjost

storage system. This cost can be measured using a dollavpgrational period figure, normal-
ized to the amount of storage being managed. Some of the pyricoatributors to a system’s
total operational expenses include power, cooling, floace@nd management. Many of these
are incurred by not only the storage system itself, but bgastfucture such as network and
monitoring devices. As described above, | omit managenstt both because | assume it will
be similar for different storage technologies, and becduiseextremely difficult to quantify.

I also omit the cost of floor space since it is highly variabégpending on the location of the
data center. However, an important, but often omitted, @spieoperational costs includes the
expenses related to reliability: expected replacemeris dosfailed media and the operational
cost associated with parity operations. This cost, alorth pawer and cooling, forms the basis
of the comparison of operational costs.

The static and operational costs must include the cost fpresundant hardware or
storage. However, since existing solutions vary in theliabdity, even within a particular
technology, | have not attempted to quantify the interplagwieen capacity and reliability.
Instead, | assume that a system that requires mirroringlgiogsts twice as much to purchase
and run per byte as a non-redundant system. In this respagafum is very low cost: the
storage overhead for a system with segments using 62 dat @enity blocks and redundancy
groups with 13 data disks and 3 parity disk%y % —1=0.27 times usable data capacity. In
such a system, 1 TB of raw storage can hold 787 GB of user data.

All of these factors—static cost, operational cost, anduneldncy overhead—are

summarized in Table 5.2. Static costs are approximatiosedan publicly available hard-
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ware prices. For operational costs, | have used a constanbf&0.20/kWh for electricity to
cover both the direct cost of power and the cost of coolingpléla.2 shows the costs for a 10 PB
archive for each technology, including sufficient baseesystto reach this capacity. While the
costs reflected in the table are approximate, they are ukefabmparative purposes. Also, |
note that some systems have ranges for redundancy overbeadde they can be configured
in several ways to ensure sufficient reliability; | chose ldaest expensive reliability option for
each technology. For example, the EMC Centera [69] can be& w&l mirroring; doing so
might increase reliability, but will certainly increasddbcost.

The results summarized in Table 5.2 illustrate a number st-eelated archival stor-
age issues. First, as shown by PARAID, even energy-efficieom-archival systems are too
expensive for archival scenarios. Second, media with lonage densities can become expen-
sive very quickly because they require a large amount ofviiarel to manage the high numbers
of media. For example, RAIL uses UDO2 optical media that offigrs 60 GB per disk and thus
the system requires numerous cabinets and drives to hdrellotume of media. Using off-
the-shelf dual-layer DVDs, with capacity under 10 GB pekdigould reduce the media cost,
but would increase the hardware cost by a factor of six becafishe added media; such an
approach would require 100 DVDs per terabyte, making themadibitive. Third, the Copan
and Centera demonstrate two different strategies for dtesttive storage: lower initial costs
versus lower runtime costs. Finally, it is clear that Pergams competitive in cost to Sun’s
StorageTek SL8500 system while providing functionalitygtsas inter-archive redundancy, that
tape-based systems are unable to provide.

An understanding of the costs associated with reliab#ifyriportant because it assists
in matching the data to be protected with an economicallgiefit reliability strategy. Unfor-
tunately, because it is largely dependent on the data,itbelfeconomic impact of lost data is
difficult to calculate. Moreover, many of the costs resgjtfrom data loss are, at best, difficult
to quantify. For example, the cost to replace data can vam frero (don't replace it) to nearly
priceless (how much is bank account data worth?). Anotlworfaopportunity costs, expresses
the cost of lost time; every hour spent dealing with data isss hour that is not spent doing
something else. In a professional setting, data loss mayralslve mandatory disclosures that
could introduce costs associated with bad publicity andsfind/hile 1 do not quantify these

costs, | note that long-term archive reliability is a sesidssue [19].
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Figure 5.5: Mean time to data loss in hours for a single 16 dgiskip. 61+3 intra-disk parity is
nearly equivalent to the “ideal” system, in which latenttses never occur. Note that MTTDL
of 10 hours for 16 disks corresponds to a 1000 year MTTDL for a 10 B&mum system.

5.3.2 Reliability

As in all storage, reliability is an important part of arcilistorage. For long-term
storage, legacy systems, evolving software and migratmaywledge workers are only some
of the factors that make replacing lost data difficult. Indtsrent design, Pergamum provides
two levels of reliability: intra-device and inter-devic®f course, there are many tradeoffs that
influence the reliability of an archival storage system. tbi@csuch as stripe size, both on an
individual disk and between disks, disk failure rate, diskuild time and the expected rate of
latent sector errors must be considered when building aterrg archival system.

A full exploration of the factors affecting the reliabilityf archival storage is beyond
the scope of this work. However, the current and ongoingareseof Kevin M. Greenan,
shows that Pergamum is capable of providing a high degreeliability. Summarized here
(and shown in Figure 5.5), his simulation and modeling shieat & configuration of 3 inter-
disk parity segments per 16 disk reliability group and 3ardrsk parity blocks per 64 block
segment results in an MTTDL of approximately*d@ours.
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5.3.3 Performance

The current Pergamum prototype system consists of appateiyn1,400 lines of
Python 2.5 code, with an additional 300 lines of C code thatweed to implement performance-
sensitive operations such as data encoding and low-lesklagierations. The implementation
includes the core system functionality, including intémealundancy, external redundancy, and
a client interface that allows for basic I/O interactions.itb current state however, the imple-
mentation relies upon statically assigned redundancypgramd it does not include scrubbing
or consistency checking.

For testing, all systems were located on the same gigabérish switch with little
outside contention for computing or network resources. @amcation between the Perga-
mum tome and the client used standard TCP/IP sockets in Ryl maximum compatibility,
| utilized an MTU size of 1500 B.

Each Pergamum tome was equipped with an ARM 9 CPU running @i,
128 MB of DDR2 SDRAM and Linux version 2.6.12.6. The clientsaequipped with an Intel
Core Duo processor running at 2 GHz, 2 GB of DDR2 SDRAM and O&psien 10.4.10. The
primary storage on each Pergamum tome was provided by a 2BOEATA drive format-
ted with XFS. For read and write performance experimentsilited block sizes of 1 MB and
64 blocks per segment. Persistent metadata storage ditili2z65B USB flash drive and Berke-
ley DB version 4.4. The workload consisted of randomly gatest files, all several megabytes

in size.

5.3.3.1 Read and Write Throughput

My first experiment with the Pergamum implementation was \eaiuation of the
device’s raw data transfer performance. As Table 5.3 shtdvesmaximum throughput of a
single TCP/IP stream to a Pergamum tome is 20 MB/s at the elefAgrther tests showed that,
the device could copy data from a network buffer to an on-tliskat about 10 MB/s. Together,
these values serve as an upper limit for the write performahat could be expected from a
single client connection over TCP/IP.

Write throughput using the Pergamum software layer waedest varying levels of
write safety. The first write test was conducted with no inédior external parity updates. As

shown in Table 5.3, writes without data protection ran a#&B/s. While no redundancy
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Test | Client | Server

Raw Data Transfer 20.02| 20.96

Raw Data Write| 9.33 9.98

Unsafe Pergamum Write 4.74 | 4.74

XOR Parity Pergamum Write¢ 4.72 3.25
Reed Solomon Pergamum Write 4.25 1.67
Fully Protected Pergamum Write 3.66 0.75
Pergamum Read 5.77 5.78

Table 5.3: Read and write performance for a single Perganmme tto client connection.

XOR parity writes used 63 data blocks to one parity block sagis1 Reed Solomon writes
used 62 data blocks to two parity block segments. Fully ptetewrites utilize two level of

Reed Solomon encoding and the server throughput reflecesttinfully encode and commit
internal and external parity updates.

encoding was performed in the unsafe write, the system didrithe overhead of updating
segment metadata and dividing the incoming data into fixeeltsdocks.

Testing with internal parity updates enabled was perforodg both simple XOR-
based parity and more advanced Reed Solomon encoding. de tests, the client-side and
server-side throughput differ, as Pergamum utilizes péoigging during writes. Thus, while
the client views throughput as the time taken to simply ihgies data, the Pergamum tome’s
throughput includes the time to ingest the data and updatesttundancy information. The first
test utilized simple XOR-based parity in a 63+1 (63 data lkdcend 1 parity block) configura-
tion. This arrangement achieved a client-side write thhpug of 4.72 MB/s and a Pergamum
tome-side throughput of 3.25MB/s. As Table 5.3 shows, uBlegd Solomon in a 62+2 con-
figuration results in similar client side throughput, 4.2BM. However, the extra processing
and parity block updates results in a server throughput@ UB/s.

The final write test, fully protected Pergamum tome writadizes both inter- and
intra-disk redundancy. Internal parity utilized Reed $odm encoding in a 62+2 configuration.
External redundancy utilized Reed Solomon with 3 data reggim 2 parity regions. In this
configuration, client throughput is reduced to 3.66 MB/shes@PU is taxed with both internal

and external parity calculations. This is evident in thessethroughput, which is reduced to
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0.75MB/s. However, this does reflect the time required toatgdboth internal and external
parity and thus reflects the rate at which a single Pergamume twan protect data with full
internal and external parity.

Profile data obtained from the test runs indicates the sys&@®U-bound. The per-
formance penalty for the Pergamum tome writes appears t@abedblargely on two factors.
First, as shown in the difference between a raw write and safarPergamum tome write in
Table 5.3, Python’s buffer management imposes a perforenpanalty, an issue that could be
remedied with an optimized, native implementation. Secasdeen in the difference between
the XOR Pergamum tome write and the Reed Solomon write, datadeng imposes a Sig-
nificant penalty for lower power processors. This is furteeident by the results of my read
throughput tests. Since a read operation to the Pergamumitmoives less buffer management
and parity operations, throughput is correspondinglyefastwas able to achieve sustained read
rates of 5.78 MB/s.

While the performance numbers in Table 5.3 would be inadegfaa most high-
performance workloads, even the current, prototype imptaation of Pergamum is capable of
supporting archival workloads. For example, 1000 Pergartmmes and a spin-up rate of only
5% can provide a system-level ingestion throughput in exoé475 MB/s, ingesting a terabyte
in 90 minutes and fully protecting it in 8 hours. At this rateck an archive built from 1 TB
disks could be filled in a year.

5.3.3.2 Data Encoding

One of the primary functions of each Pergamum tome’s pracassdata encoding
for redundancy and signature generation. Thus, | wantedrfirm that the low-power CPUs
used by Pergamum to save energy are actually capable ofngdbg encoding demands of
archival workloads.

In my first data encoding test, | measured the throughput ®X®R operation by
updating parity for 50 MB of data. | was able to achieve anagerencoding rate of 20.79 MB/s
on the tome’s CPU. For reference, a desktop class processwy tlhe same library was able to
encode data at 201.41 MB/s. However, this performance asereomes at the cost of power
consumption; the Intel Core Duo processor consumes 31 Wadpo the tome’s ARM-based

processor which consumes roughly 2.5 W for the entire board.
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Encode Operations ARM9 | Core Duo

XOR parity | 20.02 201.41

Reed Solomon; 5 data, 2 parity 3.13 33.68
Data signature (64-bit) 57.44 533.33

Table 5.4: Throughput, in MB/sec, to encode 50 MB of data gigiee Pergamum tome’s
400 MHz ARM9 board drawing 2-3 W and a desktop class 2 GHz [bgge Duo drawing 31 W.

A similar result was achieved when updating parity for 50 MBlata protected by a
5+2 Reed Solomon configuration. As Table 5.4 summarizespribeessor on the Pergamum
tome was able to encode the new parity blocks at a rate of 3B/3.Mror reference, the desktop
processor could encode at average rate of 33.68 MB/s. Abawtjce an order of magnitude
throughput increase at the cost of over an order of magnipogesr consumption increase.

My final encoding experiment involved the generation of datmatures. The cur-
rent implementation of Pergamum generates data signatisiag GF(2%2) arithmetic in an
optimized C-based library. Generating 64 bit signaturesr @2 bit symbols, | achieved an
average signature generation throughput of 57.44 MB/sréference, the same library on the
desktop-class client achieved a rate of 533.33 MB/s.

My results indicate that the low-power processor on the &wargn tome is capable
of encoding data at a rate comparable to its power consump#fidditionally, | believe that it
is capable of adequately encoding data for an archival systerite-once, read maybe usage
model. While the current performance numbers are reasenab} experience in designing
and implementing the Pergamum prototype has shown thaptower processors greatly ben-
efit from carefully optimized code. The early implementatiqprovided more than adequate
performance on a desktop class computer but were somevdwatosl the Pergamum tome’s
low-power CPU.

5.4 Publication History and Status

The publication history of Pergamum is relatively brief.llda POTSHARDS, which
had a number of preliminary publications, the first literatan Pergamum was presented at the
2008 USENIX File and Storage Technologies (FAST) confezgk@8]. This was accompanied
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by a solicited article in the USENIX magaziriegin, covering the same material [167].

While the published literature on Pergamum demonstrates sdthe features needed
in an archival storage system, work remains to turn it intolly effective, evolving, long-term
storage system. In addition to the engineering tasks adsdcivith optimizing the Pergamum
implementation for low-power CPUSs, there are a number obirtgmt research areas to exam-
ine.

The optimality of the choice of one CPU and network connecper disk is also
an open question; the choice is based on both quantitatideqaalitative factors, but other
arrangements are certainly possible. Additionally, it algays been assumed that client ma-
chines would include modern desktop level CPUs that coultbberaged for pre-processing.
Similarly, determining the best network to use to connegtifands of (mostly idle) devices is
an interesting problem to consider.

Large scale, correlated failure will be inevitable with atgyn that numbers in the
hundreds of thousands of nodes. This is largely due to theHatinterconnect failures make
up a sizeable fraction of storage system unavailabilityl.[8@any of these, such as a failed
switch causing network segmentation, are benign in theesthet data may still be safe, it
is simply unreachable. However, the system’s reaction @ suscenario could inadvertently
cause more harm than good; the system may try and immedratalyid all data that it could
not contact. Thus, the system must be able to contend wile lscale failure, especially if it
results in network segmentation.

While the current design includes two levels of redundaimiya-device and across
devices, a geographic level of encoding could be very baakfik cross-site redundancy level
could utilize distributed RAID techniques across geogiegtly diverse installations in order to
protect data from natural disasters or other “act of goduifas.

While mentioned briefly, full evaluation of an evolvablerstge model requires new
cost models that encompass more than simply capital anatigeal expenditures. Evolvable
systems represent a shift away from the traditional, mémolimodel of storage systems, and
their costs are poorly represented by such a simple costlmfeaigrue cradle to grave costs, the
cost model should paint a complete picture of lifespans@ttbrage appliances in a distributed
architecture. The result would be a cost model that captilmesost to produce, purchase,

administer, operate, decommission, and dispose of thealevi
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5.5 Conclusion

This chapter discussed Pergamum, a system designed td@reliable, cost-effective
archival storage using low-power, network-attached dgiiances. Experience with an early
prototype showed that Pergamum’s performance is acceptabhbrchival storage: the use of
many low-power CPUs instead of a few server-class CPUstsdsullisks that can transfer data
at 3—5 MBY/s, with faster performance possible through tleeai®ptimized code.

More importantly, at 2-3 W/TB, Pergamum is far cheaper andenmeliable than
existing MAID systems, though the techniques described hexy be applied to more conven-
tional MAID designs as well. Moreover, a Pergamum systenommarable in cost and energy
consumption to a large-scale tape archive, while providimgh higher reliability, faster ran-
dom access performance and better manageability. The patign of low power usage, low
hardware cost, very high reliability, simpler managemant] excellent long-term upgradeabil-
ity make Pergamum a strong choice for storage in long-tena al@hives.
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Chapter 6

Management in Evolvable Archival Systems

Evolution is not a force but a process; not a cause but a law.

John Morley

As archival storage is still a relatively unexplored ardastands to reason there is
still considerable research to be done. This chapter piesey current ideas in the area of
archival storage management. It demonstrates my thetesrstats — archival storage is a first
class storage category that requires solutions tailoretbfm-lived data — by identifying the
management needs specific to archival storage. In a youagaresearch, it is perhaps just as
important to demonstrate the direction that an area of eapém is headed, as it is to document
what it has already achieved.

Much of archival storage management is directed at the daateasing efficiency,
in order to lower costs. Central to this tenet, managemeptogghes designed for long-lived
data must take into account opportunity costs in an effartdgimize efficiency, Thus hardware
must be managed through its entire lifespan; a long-termagement approach must facilitate
nodes joining the system, manage placement of data anddadcy information, handle node
failure, and gracefully phase out nodes as they age.

To this end, | have started work on Logan, a management lagerans atop a dis-
tributed network of independent storage appliances [1@8Jorder to avoid any single point
of failure, while each node is capable of assuming a numbedofinistrative roles, none are
required to be specialized for that role. Each device istified by a globally unique id, and
maintains a list of named attributes that describe it. Uslmig id and attribute name, Logan
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Figure 6.1: Overview of Logan running a distributed netwoflPergamum tome devices [168].
One device (4) is pending inclusion in the group, while thieeot (0-3) are contributing to
redundancy groups. Data blocks (white) are protected wiitkrmal parity (P) and external

parity (R).

can query and update the node’s attributes using a simplarquget interface. By updating
device attributes, Logan can capture usage effects sutie astelerated wear caused by drive
spin-ups, or the effects of batch correlated failures.

This decentralized, federated architecture offers a nurobadvantages for long-
term, archival data. First, the software component of eaeficd can act as an abstraction layer
to the underlying media, enabling a heterogenous mix ofrtelcigies. Second, using multiple,
low powered processors yields energy savings versus a fgwgowered processors (cutting
processor voltage in half results in half the clock speedhetfourth the power consumption).
Third, an inexpensive node can be treated as an indivisible feplaceable unit; if any part
of the node fails, the entire node is discarded and repladéds reduces the management
overheard associated with locating and replacing indalidomponents.

While each device is independent and actively ensures tiggelaty of its own data,
nodes can cooperate iedundancy group® provide system wide data reliability. Data in each
device is divided into fixed sizelllocks and blocks are grouped into fixed sizgsgmentsDis-
tributed RAID technigues are used over groups of segmemstartdve the loss of a device [160].
Since heterogeneity is inevitable in an evolvable systeawice capacity will vary between ap-

pliances. Thus, unlike a simple RAID system where all drigessthe same size, a device can
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contribute segments to more than one redundancy group ar twditilize all of its local stor-
age capacity. Reliability can be further improved with tieition of intra-block reliability for
recovering from media faults [16, 17, 43, 168].

As the global knowledge required to manage hundreds of #malssof nodes as one
group would overwhelm any single data aggregation poinganodivides devices intman-
agement groupsThese management groups are tasked with a number of athatinges duties.
The first of thesescale out deals with expanding the capacity of the system. It inveliree
creation of redundancy groups, and the assignment of ségrnethose groups. The second
area,recovery determines where data will be recovered to when a nodetisToe final area,
maintenancemonitors the health of the system and actively identifiedesahat are ready to

be decommissioned.

6.1 Design Details

The following subsection details the current design of Loggirst, | detail the hi-
erarchical structure of the logical network. This inclu@gediscussion of leadership election
in a hierarchical network. Second, | describe how Logan mesalevices from their initial

installation, through their operating life.

6.1.1 Logical Structure

While modern network infrastructures allow for fully cormted communication, Lo-
gan arranges the system into a logical hypercube of manageymups. This topology offers
a number of benefits. First, it offers efficient communicagigouting between management
groups[177]. As Figure 6.2 shows, messages are rout®dgnn) time by moving one address
bit closer to its destination with each hop. In Logan, mesgagting occurs in a hierarchical
fashion, with messages first routed between groups, andyfirmalted within the destination
group. Second, hypercubes are well suited to the manner ichwhanagement groups grow
and split; the exponential fan-out of hypercubes allowssistem to grow to a large number of
management groups, while limiting the number of edges thatsengle group must maintain
with its neighbors.

While the inter-management group structure is that of a foyte, the nodes within
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source group

destination group

Figure 6.2: Eight management groups arranged in a hypefudimension 3. Nodes involved
in routing from group 2 to 5 shown in white. Routing is donedfig n) time, since each hop
brings the message one bit closer to its destination.

the management group are arranged in a logical tree. Willénttee, nodes assume one of
three group roles: leader, subordinate or member. As Figudlustrates, at the root of the
tree is aleaderthat facilities operations that require a central coorttinaOne degree away
from the leader are one or moseibordinatenodes. The leader and subordinates are fully
connected; a bidirectional, logical edge connects theele#ml each subordinate, and every
pair of subordinates. Note, however, that not all nodes @ures away from the leader are
necessarily subordinates. Finally, below the leader abdrsiinates are the remaining group
members.

The intra-group structure is designed to limit the amourlbgical network restruc-
turing that occurs between elections. In the normal casenvthe leader’s term expires, the
new leader is chosen from the subordinates, leaving therityapd the spanning tree intact, and
causing little disturbance to the central clique of the é&gaghd its subordinates. Further, as the
subordinate nodes monitor the health of both each othertan®ader, in the event of a leader
failure, a new leader is chosen from the subordinates. Im¢edes, a relatively consistent group

structure simplifies the management of inter-group conmest
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Figure 6.3: Logical structure of two groups. In each grougingleleader(L) forms the root of
the logical tree. One degree from the leader, multiplbordinategS) form a leadership clique
with the leader. These are joined with the leadership ctiqofeother groups in the overall
hierarchy. The remaininmmember®f the group are arranged in acyclic, spanning trees.

6.1.1.1 System Growth

The system begins with a single management group. Nodesrentke system are
added to this group until it reaches a predetermined saiarpbint, at which point it splits into
two groups with, on average, half the membership each. Meshipeand splitting is based on
the LH* family of distributed data structures [96—100]. $anto a traditional hash table, LH*
maps keys to buckets. However, unlike traditional hashetaklhich rely on a static number
of buckets, LH* starts with a single bucket. As the buckesfith capacity, it splits into two
buckets. The algorithm gracefully expands from a singlekbtjcto an effectively unlimited
number of buckets.

LH* offers a number of advantages. First, LH* does not regglobally consistent
data in order to function properly. This property is espcienportant because, in a large scale
system, tight consistency expectations are unrealistezo®d, LH* is self-correcting. In the
event that a client maps a key to a bucket using outdated géeasn the selected bucket will
route the message to the correct bucket, as well as updatdi¢nhe with current parameters.
Third, LH* is a light-weight protocol that does not involvermputationally expensive opera-
tions, but allows the system to gracefully scale from a smatem of just a single management

group to a large system with thousands. Fourth, since graemlmrship is calculated instead
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Figure 6.4: When parerR (node 2), produces a child (node 6), it provides the child with a
list of its grandparent§&1 andG2 (nodes 0 and 3). The child then calculates which, if any of
its bitwise neighbors it needs an introduction to from itargiparent.

of statically assigned, a node can be located from its naoresal

LH* utilizes two variables,n andi, to coordinate all of operations. For routingj,
andi are parameters to the hashing function. Together with tiiddkenap, they dictate which
bucket the key maps to in the algorithm’s current state. S&aoacts a token that facilitates
distributed splitting; when bucketsplits, it passes the token to bucket 1 mod 2. By limiting
bucket splitting to the current token holder, managemesiniplified.

When a group splits, it must establish connections with iiigise neighborsN, in
order to preserve the logical hypercube. As Figure 6.4tiiss, one such connection is from
the child,C, to its parentP. This connection is easy to make. Additionally, it must Bkséa
a connection with each existing group whose name is exacityhot different than its own
name. To perform this, the parent supplies the child withstdf its grandparents;. For
each grandparent, the child calcula@s PV G = N. If N < C, thenC asksG to make an
introduction. IfN > C, then that bitwise neighbor has not yet been formed and niogfuaction

is required.
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6.1.1.2 Management Group Leadership

The group’s current leader forms the root of the logical aed serves three primary
purposes. First, as the leader is known to each member notte igroup, and the leaders
of adjacent groups know each other, the leader is respeniblrouting messages between
groups. Second, the leader is responsible for collectifgnmation from member nodes, and
using those collected statistics to determine group opétions [102, 125, 199, 200]. Third, the
leader manages redundancy group tasks such as failuresrgcmaintenance, and integration
of new devices.

Directly beneath the leader in the logical tree is a groupubosdinate nodes. The
data from the leader is replicated to the subordinates,wise the data for three primary tasks.
First, in order to reduce the load the current leader, subates are also able to route messages
between management groups. Second, as they monitor ths sfaihe leader, they can hold
an election amongst the subordinates in the event that #uelenas failed. Third, when the
leader’s term is over, an election amongst the subordinstesld to determine the new leader.

Under most operating conditions, elections are restritteabdes within the subor-
dinate list. This limited election occurs in scenarios sastthe end of a leader’s term, or the
failure of the current leader. This is done for a number ofoesa. First, the subordinates
already hold a replica of the leader’s information. Secdyd;hoosing a leader from the subor-
dinate list, each election results in less overall chandeddogical tree, simplifying inter-group
connections. Third, as member nodes already form a spamr@agooted at one of the cen-
tral nodes, a limited election is much more efficient thanlbdiection; after a small election
restricted to the subordinates, the results can be comieaiacross the existing spanning
trees.

As Figure 6.5 illustrates, in a limited election, three pipn changes occur. First, a
subordinate node, is promoted to the role of leader. Second, one of the mentmrsrooted
ati is promoted to the subordinate position. Third, the forneader becomes a member node
rooted at one of the current subordinates. Once the chamyesagreed upon [88], the results
can be communicated to the member nodes.

In a limited election occurring at the end of a leader’s tetine, current leader can
consult the data it has collected about its current subatéiin order decide how best to re-

structure the leadership clique. For example, in order tartc& the spanning tree, when the
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Pre-Election Post-Election

Figure 6.5: A limited election where the original lead&r,cedes control to a former subordi-
nate,B. A former member nodd), is chosen byB to become a new subordinate, afvgbins
the tree rooted & to help balance the number of nodes below each subordinate.

outgoing leader chooses a subordinate to become its pd@reat) choose a node with a low
number of children. For example, in Figure 6.5, n&lwas selected to become the new leader,
but the outgoing leader choose to become a member rooted nodeC.

While elections are normally restricted to the nodes withia current subordinate
group, a number of scenarios may require an election ovesfall group’s member nodes.
For example, an existing management group may split [98], the existing leader and all
of its subordinates may wind up in the same group. Other plesscenarios include boot-
strapping a new network of multiple nodes, or a network segati®n that includes no leader
or subordinate.

Full leadership election is a three phase process basecaoiistruction of a span-
ning tree covering the nodes of the group [54, 58]. The firgtsphis theelectionitself, and
involves a candidate node announcing their intention toimecleader. The second phase is the
acknowledgemenand it involves messages traveling back up the tree to nagele The third
and final phase iannouncemenin which the new leader chooses its subordinate nodes, and a

message with the new leader’s identify travels down the yjeahstructed spanning tree.

Phase 1: Election Phase When a nodel, begins an election, it declares its intention to

become the new leader by creating an election messagefieerity the id of the.. The node
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L sends this message to its neighbors, and then waits for amoatddgement from each of the
nodes it has sent the message.

When a node receive an election message from moitieéakes one of two actions.
First, if it recognizes that it has already received a messagthis election based on the id of
L, it immediately sends an acknowledgement.tdf the node has not yet participated in this
election, it sets as its parent in the spanning tree, and forwards the elegiEssage to each of
its neighbors. The node then waits for an acknowledgement frode it has sent the election

message.

Phase 2: Acknowledgment The acknowledgment message has two important pieces of in-
formation. First, it includes the id df so that the acknowledgement can be associated with the
correct election. Second, it includes the id of the sengertent in the spanning tree. If the re-
ceiver is the parent indicated in the message, it adds tlirgenode to its list of children nodes,
and removes the sender from the list of nodes from which itigittng an acknowledgment.

If the receiver is not the parent, then it simply removes tdsr from the acknowledgment
waiting list. When the receiver has heard from all the notleas sent an election message, it
then sends an acknowledgment message to its parent.

Optionally, the acknowledgement phase can also be usedllextcdata about the
network. In this strategy, an acknowledgment message tmdlde’s parent includes a list
aggregating information for the current node, and thatemirnode’s children. In order to
reduce the amount of information on the wire, acknowledgemessage to non-parent nodes

should not include the list of aggregated data.

Phase 3: Announcement In the final phase of the election algorithm, an announcemest
sage travels down the newly formed spanning tree. It is is piiase that the new leadér,
names it subordinate&y, ..., S,. To each of the subordinateS, the announcement includes
two components: the identity of the leaderand the full list of subordinates. The first portion
is used to confirm the identity of the group’s leader. The sdquortion is used to ensure that
the subordinates and leader form a clique. With this logstalcture in place, the leader can
proceed to replicate pertinent group data to its suboreiand a leadership announcement can

be sent along the newly constructed spanning tree.
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6.1.2 Device Management

Since a system designed for long-lived data is expecteddddnger than any given
node, Logan enables evolution by proactively guiding eamtterthrough its entire lifespan.
Figure 6.6 illustrates each device’s lifecycle, startingghwnstallation, and ending with the
eventual decommissioning and removal of the device.

When a node enters first enters the system, it places its#léimew state, obtains an
IP address and announces its presence to the system. Thisr@ement can be done through
a combination of broadcast communication, and directednoonication to a distinguished
node identified by an automatic configuration service sucbHEP. After it has made its
announcement, as Figure 6.6 illustrates, the node enere e state, and waits for a response.

In most scenarios, a node in theNE state receives a response from an existing node,
and places itself in theLOATING state, signifying that it has made contact with system, bst h
yet to be integrated into its management group. The respgortbe new node’s announcement
supplies the information needed to calculate its place énhlerarchy of groups [98]. After
that node has determined which group it belongs to, it askiifther assistance in routing an
introduction to that group’s leader. The response from tioeg leader will inform the node
whether it is a subordinate node, or simply a member. If npaese to its introduction arrives,
the new node may have entered a network in the midst of a segtioen in which case it begins
a leadership election.

In a brand new system, a node in theNE state may not receive a response because it
is the first node. In this scenario, it will wait in th®NE state until is receives an announcement
from the next node to join the system. In this scenario, traeninitializes itself to the default
values for a new installation [98], makes itself a memberhaf hewly created management
group, responds to the new node with an acknowledgementegids a leadership election.

Once a node has joined a management group, it is not immbdiategrated into
redundancy groups, but rather is placed intoB&DING state. This design provides a number
of benefits. First, this allows the node to undergo a seltkrad burn-in period in order to
reduce the impact of infant mortality and batch correlatatlifes. Second, when it is time to
expand the available storage in the system, Logan is ableke smarter management decisions
by utilizing the devices in th@ENDING pool, as compared to an approach that immediately

integrates every node as soon as it arrives.
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Figure 6.6: Nodes in Logan are managed through their eiiftiésphn, from their installation to
their eventual decommissioning. Under most conditionslesawill spend the majority of the
life in the CONTRIBUTING state. In this state, the node has been integrated into ome
redundancy groups, and is actively providing resourcekdsystem.
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Once a device has enteredsNDING state, the management group leader can query
the device, and update the statistics is keeps about thg'grdavices. This information is
used during the administrative functions to identify exgea devices, in terms of utility versus
resources consumed, without requiring administrator tingtor example, this approach can
identify a group’s most power-hungry device. Further, g#pproach can determine how power-
hungry that device is in comparison to the average of thegjsalevices.

In order to make good management decisions, | am exploriagugle of heuristic
algorithms such as simulated annealing [84]. These algostattempt to solve an optimization
problem by utilizing heuristics to repeatedly perform nmringodifications to a partial solution.
To this end, these algorithms utilize three main componédfitst, the solution spac is the
space of all possible solutions from which the answer willdbawn. Second, the neighbor
function, N, heuristically chooses a new solution that is “close” to ¢herent solution in the
solution space. Finally, an objective functidh,measures the “goodness” of a solution, and is

the value that the heuristic algorithm attempts to minintizenaximize.

6.1.2.1 Scale Out

Logan monitors the system, and performs a scale out operafien it detects that
available free space in a management group has dropped lefpwdetermined low water
mark. When this occurs, the management group leader usasféinenation it has collected
about the nodes in its group, and the existing redundanaypgimdecide how best to increase
the amount of available storage.

For scale-out operations, each management group mairgtdisisof its redundancy
groups and the devices assigned to those groups. Thisdistgilted and updated based on two
redundancy group operations. First, Logan can form a neuwngahcy group. Second, Logan
can expand an existing redundancy group. The latter syrasggossible because redundancy
groups have a population range. Logan does not always fapylate new redundancy groups.
Rather, it creates partially populated groups that stilktitee system’s reliability criteria, thus
allowing the system to expand capacity, even when therenardficient devices to create an
entirely new redundancy group. For example, the systemtmégiuire parity groups to be of
the formn+ 3 disks, where 6 n < 13. This would mean that a redundancy group would have
a minimum of 9 disks and a maximum of 16 disks, and be able ta fp@m 9 to 16 gradually
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over time if needed.

At the device level, each management group maintains aflis$ devices and their
unassigned, or free, segments. From this pool, Logan camadsvice segments to redundancy
groups from two primary sources. First, Logan can utilizevpusly unassigned segments from
a device in thecONTRIBUTING state. Second, it can utilize segments froPEaIDING device.

Naturally, this would cause the device to transition toditesTRIBUTING state.

6.1.2.2 Recovery

As with any storage system, and especially a long-term aathystem, failure is in-
evitable. Additionally, since the system must be cost @fitiit is not enough to simply recover
data to the first available free space. To address this pmlhlegan uses similar heuristic search
techniques to determine where data should be recoveredhe &vent of a device failure.

For algorithms such as simulated annealing, an instandeeafeicovery problem so-
lution space is a mapping of segments to redundancy groupsadh iteration of the algorithm,
some subset of free segments are mapped to the segmentsfailétedevice. The primary
constraint to enforce during recovery is that each membarrefiundancy group is a different

device.

6.1.2.3 Maintenance

The goal of maintenance is to determine if there is a managegneup configuration
that can offer better service for the same or lower resouocesumption. For example, the
amount of power required per active hard drive spindle gesge much slower than the capacity
of hard drives is growing. Thus, there is an opportunity ésstie with keeping a hard drive
based device in a system indefinitely. The challenge is totiiyewhen the migration and
disposal costs warrant the replacement of older devicémipursuit of a net efficiency increase.

As in previous management group operations, the state afytbtem consists of a
mapping of device free segments to redundancy groups. Hawievthe case of maintenance,
the redundancy group list consists of all the existing reldumey groups. At each iteration,
devices that are likely to be decommissioned based on tkp&ated lifetime or high energy
costs per segment are randomly swapped with available sggmior this operation, a valid

solution enforces two constraints. First, that a deviceardy be decommissioned if all of its
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Figure 6.7: During maintenance, the current leader (L) mthe statistics it has gathered to
see that one node (grey), is using a lot of power relativedstbrage it offers. It can be replaced
with the pending node, resulting in more available storgges, and less power consumption.

committed segments have a replacement, and that thoseeemats conform to the standard
redundancy group constraints. Second, the total free speaitable after a node has been
decommissioned and its segments replaced, is at least dsfreacspace as before the device
has been decommissioned.

Unlike recovery and scale-out, which are performed as saotie heuristic com-
pletes, maintenance chores can be handled opporturigtiéatievice that has been identified
for decommissioning can wait until a scrubbing event orvecpevent occurs in order to defray
the power costs associated with a wholesale migration oflasioomplete contents. Animpor-
tant factor that enables this opportunistic approach isttieoptimizations that maintenance
seeks to achieve are not critical to data safety. When thebemg decommissioned activates,
it can check to see if the units slated to takes its place inrréancy groups are still available.

If they are not, the decommissioning can be cancelled, orreplacements can be chosen.

6.2 Publication History and Status

Logan is, admittedly, in its formative stages, but preliaminwork has been published
at the 2008 Petascale Data Storage Workshop (PDSW) [164]litEhature presented indicated
the direction that the management layer is taking. As th@gptds still relatively young, there
are a number of areas to validate and explore.

Current effort on Logan is focused on refining the skelet@scdbed in the previous
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section. Much of this work is directed towards exploring tise of heuristic algorithms in mak-
ing sound management decisions. Additionally, the bemanfithe system is being explored to
help determine the correct size of management groups; tge #nd the group leaders are over-
whelmed, too small and the resulting splitting results imesessary management overhead.
Finally, | am examining the boot-strapping problem; while system is designed to scale up to
hundreds of thousands of nodes, it must inevitably stah aiiie.

Further along in the research plans, the best way to dealavgh-scale disasters and
network partitions will be explored. In a long-term storaystem, these sorts of events are in-
evitable, and must be survived gracefully, and with a minmaf needless energy expenditures.
Many such events, such as a failed switch causing a netwatitiqua, are benign in the sense
that data may still be safe, it is simply unreachable. Howdhe system'’s reaction in such a
scenario could inadvertently cause more harm than googystem may try and immediately
rebuild all data that it could not contact.

As previously discussed, large archival systems are wigdlgto recovery procedures
that allow the response to be scaled to the size of the proknrently, Pergamum utilizes a
two level scheme of intra-device and inter-device religbi/A third level, across geographically
diverse sites, would be useful in order to protect data fratnal disasters or other “act of god”
failures.

The dependency list of a given device describes the nodesdhgibute to the reli-
ability of a given node’s data. Put another way, if a devidks fall of the devices in the failed
device’s adjacency list will need to contribute data dutimg recovery process. Thus, the size
of the dependency list could have considerable impact acm rédibility, and during recovery,
energy consumption. A large redundancy group allows greeatellelization during recovery,
and implies greater diversity in the redundancy group’sasy In contrast a smaller adjacency
list requires less devices to spin up during recovery. Glamgig these and other potential trade-
offs, an understanding of how adjacency affects religbéitd power consumption could allow
us to tailor optimization methods to their ideal size.

Another intersection of reliability and power can be seea failed devices recovery
schedule. That is, the amount and ordering of paralletinathat occurs during rebuild. With a
fuller understanding of power use during rebuild Logan daldtermine not only the placement
of recovered data, but also the order that recovery showickd. This area is complicated by
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the affect of very transient system states. For examplaecel@opulation changes much slower
than the list of currently spun up devices.

Currently, the election algorithm relies on each node gctiorrectly and altruisti-
cally. In areal system, it may be useful for the algorithm éarésistant to malicious collusion.
Taken a step further, the election algorithm could be exdrid be Byzantine fault tolerant in
the face of nodes that behave incorrectly [27].

Another deficiency of this election strategy is rooted intin@stly random nature of
the current algorithm; the node that begins the electiosssmrtially nominating itself. Further,
the subordinates are automatically assigned; the suladeditodes themselves have no control
over whether they are selected or not. In an effort to betteommodate a gradually evolving
system, the algorithm could be extended to take node clegistats into account for both nom-
inations, and subordinate selection [178]. Ideally, thetesy would choose the most capable
and healthiest nodes to burden with extra responsibility.

6.3 Conclusion

This chapter presented my current work in the area of archigamagement. While
long-lived systems are well served by a distributed archite, such a design introduces the
management challenges of heterogeneity in an evolving gimg) &ystem. Further, as part of
a comprehensive cost strategy, such a system should counsilyuseek ways to maximize the
utility it offers for the resources it is consuming. This végs a system that can manage a node
through its entire lifespan; unlike a traditional systentghival management must be able to
integrate new devices with minimal administrator inputg @®vice removal cannot hinge on

failure or wholesale system removal.
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Chapter 7

Conclusion

Now this is not the end. It is not even the beginning of the
end. Butitis, perhaps, the end of the beginning.

Winston Churchill

My thesis demonstrated measurable progress in the arean@ftdom archival re-
search, and indicates where the current research is he&gedifically, my work focused on
the security, cost-efficiency and management of evolvatakial storage. Of course, as the
area is still rather young, there is considerable worktstilccomplish. To that end, this chapter
proceeds as follows. First, | present some new directionsutare archival storage research
(specific work is discussed in the relevant chapter). Rméalecap the contributions made by
the three systems | developed: POTSHARDS for long-termrigg@nd recoverability, Perga-

mum for cost-efficiency and reliability, and Logan for maeagent and evolvability.

7.1 Future Work

While my research has been concerned primarily with prasgmhe bits that make
up files; understanding the bits is an orthogonal problernrthest also be solved. Others have
begun to address this problem [63], but maintaining the séimmeanings of bits over decades-
long periods may prove to be an even more difficult problem gecurely maintaining the bits
themselves.

While POTSHARDS presents several approaches to long-tate screcy and re-
coverability, there are many more security properties télgton strategies ill-suited for long-
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term assurance. While some work has been done on providimguimg integrity and account-
ability in archival systems, long-term security is stilldatively young area [176].

Quite often, laboratory-based projects in storage rebeare testbeds for exploring
a very focused problem. For example, POTSHARDS was develtopexplore data secrecy
and recoverability in long-term scenarios. Of course,austrs tend to want multiple features,
and many common storage techniques are incompatible whehiged in an ad hoc manner.
To that end, exploring the interactions between mechantsmlsl be a fruitful area of research.
For example, while some progress has been made in explagihgpdication and security [161],
there is considerable work to be done. Similarly, as withuggcmechanisms, deduplication
may be at loggerheads with a number of energy conservatamitgues; if data chunks are
spread across multiple, idle disks, a data read may invgivengg up a number of devices.

One of the most valuable resources for long-term storagddame experience with
a large, long-term storage system in a real-world archigognario. This would provide two
important bodies of research information. First, filesysteaces would provide useful work-
load specifics that could help guide low-level design detatbecond, at a higher level, user
and administrator input could help validate the assumptinade about how archival storage is
used; disruptive technology is often utilized in scenadisinct from its intended application.
In this respect, archival storage still feels like a youngdolIn contrast to other areas of storage

research, long-term storage is still largely guided by eciujre and assumptions.

7.2 Conclusion

Businesses and consumers are becoming increasingly oasggithe value of archival
data. In the business arena, data preservation is oftenatehtdy law [2, 3], and data mining
has proven to be a boon in shaping business strategy. Feidudis, a shift has occurred in
how cultural histories are recorded. The artifacts of ousgeal narratives — photos, videos,
correspondences, legal and medical records — are all besated and stored as digital informa-
tion. Unfortunately, traditional storage systems are msighed to meet the needs of long-term,
archival data [18, 19].

I have shown in my thesis that archival storage is a firstscié@rage category that re-
quires solutions specifically tailored for data with an ifidige lifespan. POTSHARDS demon-

strated that many common assumptions, such as the efieesisef cryptography, are invalid
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in long-term scenarios. Pergamum demonstrated that canagile energy efficiency can be
achieved by exploiting the different access patterns &f,daid metadata, while still providing
very high levels of reliability. Finally, Logan establighéhe need for aggressive system max-
imization, and the need for administration that can autaraly manage a device through its
entire lifespan; the great paradox with archival storagg il the inverse relation between the
value of archival data and need to aggressively pursue tiasercy.

In developing POTSHARDS, | made several key contributieansedcure long-term
data archival. First, the use of multiple layers of secrdittgm, approximate pointers, and
archives located in independent authorization domainagare secrecy, shifts security of long-
lived data away from a reliance on encryption. The combamatif secret splitting and approxi-
mate pointers forces an attacker to steal an exponentiabauaf shares in order to reconstitute
a single fragment of user data; because he does not know \hiticular shares are needed,
he must obtairall of the possibly-required shares. Second, | demonstraggdatiuser’s data
can be rebuilt in a relatively short time from the stored skanly if sufficiently many pieces
can be acquired. Even a sizable (but incomplete) fractioth@fstored pieces from a subset
of the archives will not leak information, ensuring thatalatored in POTSHARDS will re-
main secret. Third, with approximate pointers and a spaaseespace, intrusion detection is
made easier by dramatically increasing the amount of infdion that an attacker would have
to steal, and requiring a relatively unusual access pattemount the attack. Fourth, long-term
data integrity is ensured through the use of RAID algoritlam®ss multiple archives, allowing
POTSHARDS to utilize heterogeneous storage systems watlalbility to recover from failed
or defunct archives and a facility to migrate data to newatagfe devices.

The novel architecture of Pergamum featured several adwagats and demonstrated
the feasibility of a distributed design consisting of loawger, intelligent storage appliances.
The two-level reliability model of Pergamum allows the reisge to the scaled to the size of
the problem: intra-disk redundancy allows an individualide to automatically rebuild data in
the event of small-scale data corruption, while inter-dst#ilundancy provides protection from
the loss of an entire device. Fixed costs are kept low thrahghuse of a standardized network
interface, and commodity hardware such as SATA drivesesgach Pergamum tome is essen-
tially “disposable”, a system operator can simply throw wviaulty nodes. Operational costs

are controlled by utilizing ultra-low-power CPUs, poweamaged disks and new techniques
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such as local NVRAM for caching metadata and redundancyrnmdition to avoid disk spin-
ups, intra-disk redundancy, staggered data rebuilding hash trees of algebraic signatures for
distributed consistency checking.

Logan, while still in a relatively formative stage, lays tip@undwork for a manage-
ment layer that runs atop, a distributed network of enefjgient, intelligent storage appli-
ances [168]. Nodes are arranged in redundancy groups, \ahsths data to be recovered from
a lost node. To manage redundancy groups, and to faciliyatera-wide communication, Lo-
gan arranges devices into management groups. Furthernlamjl@cts information about the
nodes in each management group and uses this data to mdkgantenanagement decisions.
Logan helps control archival storage costs by automatingnabxer of common administrative

tasks, and opportunistically decommissioning old haréwar
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