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Abstract

Secure, Energy-Efficient, Evolvable, Long-Term Archival Storage

by

Mark W. Storer

Users are storing ever-increasing amounts of information digitally, driven by many

factors including government regulations and the public’sdesire to digitally record their per-

sonal histories. Unfortunately, we have yet to demonstratethat we can reliably preserve digital

data for more than a few years, putting a generation’s cultural legacy at risk. Much of the prob-

lem is rooted in our approach to building long-term storage systems; currently archival systems

are developed using the same approaches, access patterns and techniques used to design higher-

performance, shorter-term storage systems. As a result, current archival storage systems still

rely on strategies that fail in long-term scenarios, waste money and energy, and perpetuate the

endless cycles of “fork-lift” upgrades and wholesale migrations needed to remain efficient and

up to date.

In my thesis, I demonstrate that archival storage is a first class category of storage

that requires specialized solutions. To this end, I presentseveral techniques tailored specifi-

cally for the unique demands of long-lived data. To explore the security needs of archival data,

I have developed POTSHARDS, which offers secrecy through unconditionally secure secrecy

techniques, and survivability through increased attack detection and built-in data recovery. To

study cost savings, I have created Pergamum, a distributed system of intelligent storage appli-

ances that stores data reliably with multi-level encoding and a hierarchical auditing scheme, and

energy-efficiently by leveraging existing MAID techniques, while extending them by exploit-

ing the different access patterns of data and metadata. Running atop of Pergamum is Logan, a

management layer being developed that actively identifies and decommissions wasteful devices

in order to continuously maximize system efficiency. These systems combine to demonstrate

significant progress towards effective, secure, energy-efficient, and evolvable archival storage.
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Chapter 1

Introduction

Whereof what’s past is prologue, what to come in yours and

my discharge.

William Shakespeare

The ability to store and maintain massive quantities of datais becoming increas-

ingly important, as scientists, businesses, and consumersare increasingly aware of the value

of archival data. Scientists have long attempted to preserve data archivally, though such ef-

forts have sometimes fallen short. For businesses, data retention is mandated by law [2, 3], and

data mining has proven to be a boon in shaping business strategy. For individual consumers,

archival storage is being called upon to preserve sentimental and historical artifacts such as pho-

tos, movies and personal documents [106, 107]. Unfortunately, traditional storage systems are

not designed to meet the needs of long-term, archival data [18, 19, 119].

Paradoxically, despite the increasing value of archival data, high cost is one of the

biggest obstacles to applying traditional storage techniques to design systems to house archival

data; the goal of cost-efficient, long-term storage is to enable the potentially indefinite reten-

tion of all data thatmightone day prove useful [35, 103]. With current systems, it is simply too

expensive to store everything indefinitely (if they can provide any long-term persistence guaran-

tees at all). Archival storage therefore needs to inexpensive to obtain (static costs), inexpensive

to operate (operational costs), easy to scale over time (evolvable), and secure enough to safely

store private information indefinitely.

At the core of my thesis is the premise that archival storage is a distinct class of stor-

1



age that is poorly served by general-purpose storage systems [18]. More specifically, compared

to traditional workloads, the long data lifetimes of archival storage marks a fundamental dis-

tinction that requires solutions specifically tailored to data with a potentially indefinite lifetime.

I demonstrate this need by examining three areas of archivalstorage: security, cost efficiency

and management. While solutions to all three problems existwithin the scope of traditional,

enterprise storage, my thesis demonstrates that, within anarchival setting, all three require spe-

cialized solutions.

It deserves to be noted, however, that long-term digital storage is not a wholly techni-

cal problem, nor can it be answered with a wholly technical solution. Instead, digital preserva-

tion requires an examination of storage at a higher level than media, file systems or even storage

systems; long-term preservation of digital information must involve critical thought at the level

of people and organizations [34, 106, 107]. Truly, just as archival storage is well served by an

evolvable solution that adapts gracefully over time, the human talents of digital custodians must

also adapt. To that end, an important goal of evolvable archives is to preserve data long enough

so that future advances in application preservation can be applied.

Long-term preservation of data is still a relatively young,and increasingly active area

of study. The work presented in this thesis covers an on-going exploration of topics within

archival storage, a fact reflected in the diverse range of maturity in the projects that comprise

this study. POTSHARDS was constructed to investigate security and survivability for data

with an indefinite lifetime. It is relatively mature work that has produced several publications.

Pergamum was created to explore a reliable, cost-efficient archival storage architecture that ag-

gressively realizes static and operational cost savings. Pergamum progressed fairly rapidly, and

while mature enough to produce a fully formed publication, it is still relatively young. Logan is

the youngest of the three projects, and was designed to explore archival storage management.

It has only recently reached the stage where preliminary designs can be presented. Logan came

about as a result of the capabilities enabled by Pergamum.

1.1 Security

While storage security has long been an active, well-researched area, the indefinite

lifetimes of archival storage introduce a number of new challenges [19, 62, 162]. One of the

biggest challenges is that mechanisms such as cryptographywork well in the short-term, but

2



are less effective in the long-term. The use of computation-bound encryption in an archival

scenario introduces the problems of lost keys, compromisedkeys, and even compromised cryp-

tosystems. All this is exacerbated by the numerous key rotations and cryptosystem migrations

that will inevitably occur over the course of several decades; this must all be done without

user intervention because the user who stored the data may beunavailable. Thus, security for

archival storage must be designed explicitly for the uniquedemands of long-term storage.

Since security covers a large set of properties, I focused onthe long-term implications

of a few fundamental features: data secrecy and data accessibility. More specifically, planning

for long-term data storage requires an examination far above the level of the storage system

itself, involving critical assessment at the organizationlevel and higher. Thus, I focused my

examinations on those aspects of secrecy and availability that traditionally make organizational

assumptions that are invalid in long-term scenarios. First, for data secrecy, both internal and

external attackers must be considered; even an altruistic organization can change over time to

become a primary threat to data secrecy. Second, with indefinite data lifetimes, it is unreason-

able to assume that key authorities will survive past the immediate future. For data accessibility

this means that data must be available and accessible in plaintext form for valid users without

relying on the survival of a third party for key management; it is just as unacceptable to recover

only ciphertext, as it would be to reveal plaintext to unauthorized users.

To address the many security requirements for long-term archival storage, I have de-

signed and implemented POTSHARDS (Protection Over Time, Securely Harboring And Reli-

ably Distributing Stuff), which uses three primary techniques to provide security for long-term

storage. First, secret splitting [?] is used to produce a tuple ofn secret sharesfrom a block of

data,mof which must be obtained to reconstruct the block. Unlike encryption, secret splitting is

unconditionally secure; it can be shown that combining fewer thanmshares revealsno informa-

tion about the original block. Second, POTSHARDS uses a global data namespace that is used

to identify data entities. The namespace introduces an element of diversity [53] into the model,

since it is sparsely populated and treated in a similar fashion to a heap. Third, POTSHARDS

utilizes approximate pointers, which differ from traditional pointers in that they indicate are-

gion in the namespace as opposed to an exact address. Approximatepointers enables secure

recovery from only the data itself by associating related secret shares in a way that does not

unduly compromise security.
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1.2 Cost Efficiency

Many storage systems designed for long-term data preservation rely on sequential-

access technologies, such as tapes, that decouple media from its access hardware. While ef-

fective for back-up workloads (write-once, read-rarely, newer writes supersede old), such sys-

tems are poorly suited to archival workloads (write-once, read-maybe, new writes unrelated to

old writes). With as many as 50–100 tapes per drive, a requirement to keep tapes running at

full speed, and a linear media-access model, random-accessperformance with tape-media is

relatively poor. This conspires against many archival storage operations — such as auditing,

searching, consistency checking and inter-media reliability operations — that rely on relatively

fast random-access performance. This is especially important in light of the preservation and

retrieval demands of recent legislation [2, 3]. Further, many data retention policies include the

notion of a limited lifetime, after which data is securely deleted; selective deletion is difficult

and inefficient in linear media. Finally, the separation of media and access hardware introduces

the need to preserve complex chains of hardware; reading an old tape requires a compatible

reader, controller and software.

Recently, hard drives have dropped in price relative to tape, making them a poten-

tial alternative for archival storage [126]. The availability of high-performance, low-power

CPUs [15] and inexpensive, high-speed networks have made itpossible to produce a self-

contained, network-attached storage device [60, 138] withreasonable performance and low

power utilization: as little as 500 mW when both the CPU and disk are idle. The use of disks

instead of tapes means that heads are packaged with media, removing the need for robotics

and reducing physical movement and system complexity. Using standardized communication

interfaces, such as TCP/IP over Ethernet, also helps simplify technology migration and long-

term maintenance. By using randomly-accessible disks instead of linear tapes, systems can

take advantage of inter-media redundancy schemes. Unfortunately, many existing disk-based

systems incur high costs associated with power, cooling andadministration because of design

approaches that favor performance over energy efficiency. However, recent work on MAIDs

(Massive Arrays of Idle Disks) has demonstrated that considerable energy-based cost savings

can be realized while maintaining high levels of performance [39, 122, 188], though such sys-

tems still often favor performance over even greater energysavings.

While my design leverages MAID techniques, it also extends it by removing the need
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for centralized controllers, and by exploiting the different access patterns of data and metadata.

Pergamum takes an approach similar to that used in high-performance scalable storage sys-

tems [144, 189, 192], and is built from thousands of intelligent storage appliances connected by

high-speed networks that cooperatively provide reliable,efficient, long-term storage. Each ap-

pliance, called a Pergamumtome, is composed of four hardware components: a commodity hard

drive for persistent, large-capacity storage; on-board flash memory for persistent, low-latency,

metadata storage; a low-power CPU; and a network port. Each appliance runs its own copy of

the Pergamum software, allowing it to manage its own consistency checking, disk scrubbing and

redundancy group responsibilities. Additionally, the CPUand extensible software layer enables

disk-level processing, such as compression and virus checking. Finally, the use of standardized

networking interfaces and protocols greatly reduces the problem of maintaining complex chains

of dependent hardware.

1.3 Management

In contrast to traditional storage systems, which are typically more concerned with

scalability in performance and capacity, an archival system designed for long-lived data must

scale over many dimensions, including time, vendors and technologies [19]. The goal, therefore,

is to move away from an endless series of migrations and “fork-lift” upgrades, to a continuously

evolving system. To realize this goal, I have begun development on Logan, a software-based

management layer that runs atop a distributed architecturesuch as Pergamum [168]. While

devices in such an architecture can operate independently,their full potential is realized when

they cooperate in inter-device redundancy groups to provide data reliability and ensure data

longevity. Further, since the storage nodes are intelligent, each device contains specialized

software that acts as an abstraction layer between the system, and the device’s underlying hard-

ware. This flexibility provides the potential for an adaptable system that changes gradually with

technology; while individual components may change, the overall system evolves gracefully.

Although a fully distributed system is well suited to an evolvable design, it introduces

the problem of managing the global state of a fully decentralized system. It is impractical for

each node to maintain global knowledge—keeping just 10 KB per node for each of a million

nodes would require 10 GB of storage per node. Moreover, keeping that information current

would require far too many messages to be exchanged between nodes. While recent work has
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made great strides towards efficiently aggregating data over very large networks of distributed

nodes [199, 200], even these approaches may be insufficient in a system that could easily en-

compass millions of nodes. Instead, a million-node distributed system must facilitate nodes

joining the system, manage placement of data and redundancyinformation, handle node fail-

ure, and gracefully phase out nodes as they age with only partial knowledge of the whole system

and more complete knowledge of a small part.

Further, as archival systems become more useful as their cost decreases, long-term

storage management must recognize that energy efficiency requires constant, proactive opti-

mizations. While some earlier systems have addressed energy efficiency [39, 68, 121, 122, 188],

none have examined how opportunity costs affect a system over its lifetime. Since drive capac-

ity, real estate values and power costs are always increasing, system efficiency must be measured

against what is currently achievable, not simply what wasonceachievable. For example, most

storage systems assume that drives are replaced due to failure or wholesale system upgrades,

suggesting that drives may remain in use well past the point of being economically efficient.

Further, proactive decommissioning could also improve system reliability; earlier work has

shown that the previously-held bathtub failure model for hard drives may not be valid [147],

and that even small numbers of sector failures can presage overall drive failure [16, 17].

The remainder of my thesis proceeds as follows. Chapters 2 and 3 provide a brief

background on the subjects covered in this thesis, and placemy work in the context of exist-

ing research. Following that, Chapter 4 presents POTSHARDS, a system I designed to ex-

plore long-term data secrecy and recoverability. Chapter 5discusses Pergamum, a system I

designed that provides reliable, cost-efficient archival storage in an architecture that enables

system evolvability. Chapter 6 provides an overview of Logan, an early stage project that indi-

cates current progress towards evolvable system management. Finally, in Chapter 7 I summarize

my results, and conclude my thesis.
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Chapter 2

Background

Knowledge is of two kinds: we know a subject ourselves, or

we know where we can find information upon it.

Samuel Johnson

The purpose of this section is to present the background information needed to eval-

uate my work on archival storage. This involves a number of important topics. First, I present

a discussion on storage security, and establish a lexicon that will be used throughout my thesis.

The former includes an examination of cryptography and secret splitting from a long-term per-

spective. The latter is important, as many security terms are heavily overloaded. Second, as I

did with security, I provide a discussion of data deduplication, a popular technique for improv-

ing storage efficiency. Third, I summarize the design motivations that developed over the course

of my study, and my conversations with long-term data custodians. The final section is a brief

aside. It provides an abbreviated discussion on application preservation and long-range think-

ing. While this issue is largely orthogonal to the work I haveaddressed, it is worth mentioning

and tends to arise in any discussion of long-term, data archiving.

2.1 Security Mechanisms

Storage security is a multifaceted area with many overloaded terms, and is too broad

to be discussed completely within this thesis. The goal of this discussion, therefore, is to re-

move any ambiguity resulting from commonly used security terms, and to establish the role of
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security in a long-term, archival perspective. To that end,the remainder of this section proceeds

as follows. I begin with a short discussion on security mechanisms in general. This includes

a discussion of mechanisms versus policies, and a summary ofthe categories used to describe

how resistant security mechanisms are to attacks – an important factor to consider when eval-

uating the long-term security implications of a mechanism.Then, I provide some background

information on one of the most common security mechanisms: encryption. Following that, I

cover secret splitting, another common security mechanism.

In general, systems that claim to be secure enforce three primary policies [90]: se-

crecy, integrity and availability. While all of these are important properties, they do not rep-

resent the complete gamut of security policies. For example, various approaches have been

developed to enforce anonymity [37, 133, 135, 180], plausible deniability [13, 37], accountabil-

ity [120, 150, 151, 203], and more. That being said, the modelthat I am concerned with (secure,

long- term archives) focuses primarily upon providing secrecy, integrity and availability for data

with a potentially indefinite lifetime.

An important distinction to make is the difference between asecurity policy and a

security mechanism. Policy is a description of a system’s intendedbehavior. For example,

a secrecy policy might state that data should only be readable by authorized users. In con-

trast, mechanisms are concerned withimplementation. Continuing with the previous example,

a secrecy policy could be implemented using encryption. Putanother way, policies describe a

system’s security goals, while mechanisms are how those goals are achieved. This distinction

is important to make, as policies for short-lived data can bevery similar to policies concerning

long-lived data. Unfortunately, problems often arise whenthe same mechanism is used for both

short-lived and long-lived data.

A security mechanism’s resistance to computation based attacks can be described us-

ing a four category framework [158] (summarized in Table 2.1). First,computational security

states that a cryptosystem cannot be compromised in less than a specified number of steps.

While many systems would seem to fall into this category, in truth, it is very difficult to defini-

tively state that a system is computationally secure; a mechanism’s resistance to different types

of attacks can vary widely. It is important to note that computationally secure does not merely

mean that it is computationally feasible to circumvent a mechanism, but also that it can be shown

to be possible within a certain number of operations. Thus, an important distinction must be
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Security Level Description

Ad-hoc argued to be secure without any rigorous evidence

Computational secure against an opponent allowed to perform aspecificnumber of operations

Provable reducible to a well-known, intractable problem

Unconditional secure even to an opponent with an unbounded amount of computation

Table 2.1: Classifications used to describe a security-mechanism’s resistance to computation
based attacks (ordered by resilience from weakest to strongest).

made between computationally secure and computationallybound. The later means that, given

enough computational time, the mechanism can be compromised. This is a critical point when

dealing with long-term security. The second category,provable security, reduces the attack to

another, well-known problem. For example, a cryptosystem might be shown to be provably

secure based on the difficulty of factoring large, prime numbers. Despite what the name might

suggest, provable security is only a proof relative to another, usually intractable, computational

problem. It is not the same as a proof that shows that an adversary with infinite computational

time cannot compromise the mechanism. Third,unconditional securityis secure in the face of

an opponent with an unbounded amount of computation. This isthe strongest security class.

It implies that, even to an adversary with infinite computational time, it can be proven that the

mechanism is secure. A fourth class, and by far the weakest,ad-hoc securityis also mentioned

on occasion. It describes mechanisms that are argued to be secure but for which no rigorous

analysis can be made. So-called “security through obscurity” techniques often fall into this cat-

egory. It should also be mentioned that almost nothing is completely secure. Even mechanisms

that are unconditionally secure can fall prey to human levelcryptanalysis techniques such as

social engineering or physical coercion (so-called rubberhose cryptanalysis techniques).

While the ad-hoc security level may seem to describe mechanisms that are without

value, quite the opposite is true. One such example, randomness, has become increasing pop-

ular. In the area of application security, considerable effort has gone into increasing an adver-

sary’s workload through the introduction of randomness [53]. Attacks that rely upon memory

exploits are often based on the fact that information is located in very predictable and con-

sistent locations. Randomization is a means of forcing an adversary to analyze each copy of

the program they are attacking. This increased difficulty does not, however, makes the attack
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impossible. Thus, the increased attack time can be combinedwith other strategies, such as

signature-based attack detection [83, 182, 198]. However,an important difference between ap-

plication protection and data protection is that a user’s data is unique and personal. Thus, even

one compromise could mean that unique data has been lost.

2.1.1 Encryption

Encryption is one of the most common mechanisms encounteredin the area of com-

puter security. The traditional introduction to encryption involves users, Alice and Bob, who

wish to communicate in a way that they can understand each other while their fictional ad-

versary, Oscar, cannot. Using a predetermined key, Alice encrypts her plaintext message into

ciphertext. When Bob receives the message, he is able to decrypt the ciphertext back into

plaintext– he also has the predetermined key and he knows thecryptosystem that Alice used in

the original encoding. If Oscar obtained the ciphertext message, he would be unable to decrypt

it because he does not have the key. An important observationto make is that it is assumed

that Oscar knows the cryptosystem that Alice and Bob used. Kerckhoff’s principle states that a

cryptosystem’s security comes from the adversary not knowing the encryption key; it is assumed

that the adversary always knows what cryptosystem is being used [158].

With a few exceptions, most encryption algorithms are provably secure. In other

words, the most secure that the cryptosystem can be reasonedto be is based on the difficulty

of a related, intractable problem. For example, some public-key cryptosystems rely on the

difficulty of factoring large numbers. While unconditionally secure cryptosystems exist, one-

time-pad systems for example, they often incur a managementcost that makes them unwieldy

at best. As the security of encryption is based on upon the difficulty of a related problem, the

struggle between cryptography and cryptanalysis can be viewed as an arms race. For example,

a DES encrypted message was considered secure in 1976; just 23 years later, in 1999, the same

DES message could be cracked in under a day [158]. From a long-range perspective, it is

very difficult to predict the future of cryptanalysis. For example, advances such as quantum

computing have the potential to make many modern cryptographic algorithms obsolete. While

cryptography works reasonably well for short-term data secrecy, it does introduce a number

of issues that become magnified as data lifetimes grow longer. At the extreme end, data with

indefinite lifetimes (as is the case for long-term archival storage), these effects can be dramatic.
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Cryptosystems are generally divided into two categories based on their key arrange-

ment: symmetric-key and public-key. In a symmetric-key cryptosystem [152], the key that is

used to encrypt the message is the same as the key used to decrypt the message. Thus, in the

previous example, both Alice and Bob share the same symmetric-key. In contrast, public-key

cryptosystems utilize two keys: a public-key and a private-key[151]. In this key arrangement,

Alice encrypts messages for Bob using Bob’s public key, and Bob decrypts messages using his

private key.

While cryptosystems themselves can be described by their key arrangement (sym-

metric versus public-key), the use of cryptography can be described based on the lifetime of

the ciphertext. In long-lived encryption, such as for an encrypted file in an archival storage sys-

tem, the data is indefinitely persistent. In contrast, thereare also short-lived uses of encryption.

These uses may not suffer from the same pitfalls as long-lived encryption, owing to their low

persistence requirements.

Examples of short-lived encryption include the use of cryptographic primitives in

authentication and authorization policies. Many such systems rely upon the idea that key dis-

tribution, if carefully controlled, can imply a user’s identity [116, 150]. This often requires the

use of a trusted key generating authority with the ability toauthenticate users. Further, this trust

issue can be extended to include capability granting, in which the key generator also provides

users with “tickets” that can be redeemed for services [92, 156]. In this model, the loss of an

encryption key does not pose a great problem, as new tickets can be generated with relative

ease.

Another example of short-lived encryption is session security. Some protocols, such

as transport layer security (TLS) [44], are concerned with protecting data transmissions from

eavesdroppers, replay attacks and message forging. Othersprovide anonymous communica-

tions using encryption as way of masking the source and destination [46, 133]. In these schemes,

a message is routed through a pre-determined number of hosts. The sender shares a unique key

pair with each host that the message will be routed through, and uses these keys to “wrap” the

message in multiple layers of encryption. As the message is routed through the hosts, the re-

ceiving node decrypts their layer of the message and passes the message onto the next host. As

with other short-lived uses of encryption, the loss of an encryption key is not catastrophic.

In contrast to short-lived encryption, key management in long-lived encryption is con-
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siderably more problematic. With persistent ciphertext, anumber of scenarios would motivate

the need for eventual re-encryption. Examples include key rotations, compromised keys, com-

promised encryption algorithms and access revocation. In the very least, the computationally-

bound nature of cryptographic security implies that, when data lifetimes are long enough, re-

encryption is inevitable; processing power is monotonically increasing. In some cases, re-

encryption may only be needed for a few files, but in other cases, many petabytes of data might

need re-encryption.

Especially when required due to a key compromise or algorithm exploit, re-encryption

of data must be done in a timely manner, However, the time to apply the new encryption tech-

nique to a large amount of data will probably not be the limiting factor; rather, issues with

obtaining keys and reading the old data quickly may be more critical. Even this assumes that

a custodian exists to oversee such a process. Further, optimizations to speed migration likely

come with an associated management cost. For example, if a system chooses to save time by

encrypting over the old algorithm, it must have a way of dealing with key histories and key

distribution. With long data lifetimes this becomes increasingly complicated, as key histories

would need to be preserved. In contrast, if the system chooses to decrypt the data before apply-

ing the new algorithm, then it must have access to the users’ encryption keys. Both scenarios

must also take into account the threat from malicious insideattackers. If an insider has access

to a user’s encryption keys, the security of the system is intrinsically weakened; encryption as a

security mechanism relies on carefully controlling accessto keys.

Another problem introduced by the long-term usage of encryption is the threat of key

loss. In an archival storage system, data can be very difficult to reproduce; the software, hard-

ware and even users that produced the data may no longer be available. Encryption keys are a

single point of failure and key loss is effectively equivalent to short-term data deletion. Unfor-

tunately, it is not equivalent to secure data deletion. The loss of the encryption key renders the

data temporarily unavailable. While the cryptosystem is valid, access times are negatively (and

drastically) impacted. Unfortunately, due to the computationally-bound nature of cryptography,

the data may be readable in time, and is therefore not securely deleted. To mitigate the problem

introduced by key loss, many systems that utilize encryption include a key-management aspect.

Unfortunately, this often introduces an implicitly trusted key authority, which in turn increases

the risk of a malicious inside attack.
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The fear with any long-term use of cryptography is that an attacker with enough time

and computational resources can compromise any policy enforced using encryption. Numerous

examples exist of archives being lost or misplaced [25, 108,109, 123, 201]. In such a scenario,

a malicious user that obtains encrypted data would merely need to wait for cryptanalysis tech-

niques to catch up to the cryptosystem used to protect the data. Thus, it must be assumed that an

adversary with enough computational time can circumvent any policy that utilizes cryptographic

primitives. It is, therefore, fair to say that encryption only provides adequate security when the

relevant lifetime of the data is shorter than the time neededto compromise the cryptosystem.

2.1.2 Secret Splitting

While keyed cryptography is the mechanism most often associated with data secrecy,

another popular mechanism is secret splitting [33, 74, 124,129, 130, 195], in which a secret is

distributed to a number of share holders. The unconditionally secure nature of some secret

splitting schemes suggested from a very early stage that they might be well suited to long-term

security [163, 166].

There are two general classes of secret splitting techniques: n of n schemes andmof n

threshold schemes. Each of these classes is comprised of a number of different algorithms that

differ in their security, performance and feature set. Bothtechniques produce a set ofn shares

from the data to be kept secret. With ann of n scheme, alln of the shares are required in order

to reconstruct the data. In contrast, withmof n threshold schemes, the secret is used to generate

n pieces, anym≤ n of which can be used for reconstruction; bothn andmare determined at the

time of splitting [153].

The classic, if not slightly morbid, example of secret splitting is the distribution of

missile launch codes. In this scenario, the goal is to distribute the weapons’ launch codes to

a number of trustees, such that a quorum of shareholders mustagree to provide their share in

order for the missiles to be launched. Anmof n scheme could allow the launch of the weapons

even if some of the shareholders are either unavailable or unwilling to provide their share of the

launch code1.

The performance of different secret splitting algorithms varies widely. The binary

XOR operation, a computationally inexpensive operation, forms the basis of a relatively straight-

1According to aTime Magazinearticle, control of Russian nuclear weapons relied upon a 2 of 3 threshold scheme
with secret shares distributed to the President, Defense Minister and the Defense Ministry [157]
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Figure 2.1: A simplen of n XOR based secret splitting scheme in which a secret,S, is split into
n pieces all of which must be recombined in order to reconstruct S. In this algorithmR1 through
Rn−1 andS′ are distributed amongst the secret shareholders.

forward technique. Illustrated in Figure 2.1, it is fast enough to provide security in systems

which must provide relatively low-latency data access [13,169]. Then of n XOR-based algo-

rithm operates as follows:

1. Randomly generaten−1 pieces of data (R1 throughRn−1) equal in size toS (the secret

to split)

2. XORR1 throughRn−1 andSto produceS′. (R1⊕R2⊕ . . .⊕Rn−1⊕S= S′)

3. Securely dispose ofSand distributeR1 throughRn−1 andS′ to the secret share trustees

While the simplen of n XOR approach is relatively fast, other approaches rely on far

more expensive operations, and thus, are considerably slower. For example, Shamir’s original

m of n threshold scheme relies on linear interpolation and proceeds as follows. The secret

S is divided into shares using anm− 1 degree polynomialq(x) = S+ a1x+ . . . + am−1xm−1

whereai is randomly generated. The first share is generated by calculatingq(1), the second by

calculatingq(2), and so forth up toq(n). Thus, it stands to reason that anym of these values,

and their index, is sufficient to deduce the value ofS, while less thanm reveals no information.

However, as linear interpolation is more expensive than a binary XOR operation, Shamir’s

threshold scheme is slower than then of n XOR based scheme.

A useful characteristic of some secret splitting schemes isperfect secrecy. In such

schemes, it can be proven that combining any fewer than the pre-determined number of shares,

m≤ n, revealsno information about the original secret. For example, as Figure 2.2 shows, us-

ing the XOR based algorithm, with less thann shares, all possible values ofS are all equally

likely. This unconditional secrecy, as described in Table 2.1, is fundamentally different than the

computationally-bound security provided by most keyed cryptosystems. Thus, uncondition-

ally secure secret splitting schemes can provide rigorously provable, future-proof security; the
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Owners Adversary

R1 1100 1100

R2 1010 1010

R3 1110 1110

R4 0101 ????

S 1101 ????

Figure 2.2: Example of the unconditionally secure nature ofan XOR based secret splitting
algorithm with perfect secrecy (S= R1⊕ . . .⊕R4). Even with three of the four secret shares (R1

– R3), the adversary is no closer toSbecause all values ofR4 are equally likely (assuming that
Ri are all randomly generated). Thus all values ofSare equally likely as well.

inevitable need for re-encryption in largely avoided. Further, secret splitting is well suited to

long-term archival usage, since the slower speeds of many secret sharing schemes, compared to

encryption, are not a major detriment in archival workloads.

While displaying several useful characteristics, it is important not to assume that se-

cret splitting is a cure-all panacea for the shortcomings oflong-lived encryption, or that it can

be effectively used as a drop-in replacement for cryptography. In any system that utilizes secret

splitting, there are several concerns that must be addressed.

One problem with secret splitting is ensuring that a malicious adversary, who is able

to obtain one share, cannot easily determine and find the other shares needed for reconstruction.

This is especially true when guarding against malicious insiders. With cryptography, a system

can store encrypted data and, without the corresponding encryption key, there is a relatively low

chance that the data will be readable by an unauthorized userin the short-term. If the key is

not stored with the data, even the abilities of a malicious insider are mitigated. However, with

secret splitting, a malicious insider, with knowledge of which shares reconstruct the data, and

where those shares are stored, can easily launch a targeted attack and obtain the data.

As with keyed encryption, secret splitting must takes precautions against the loss of

key material. Knowing which secret shares to combine is analogous to an encryption key; it

is the secret that transforms ciphertext into plaintext. Recovering data from secret shares is a

difficult problem in the absence of any assistance, as the na¨ıve approach would involve testing

every possible combination of shares. Thus, the use of secret splitting must include a secure
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recovery mechanism that does not inadvertently empower an attacker (inside or outside the

system).

Storage overhead is another problem with secret splitting.In bothn of n andm of n

algorithms, storage blow-up is typically on the order ofn times. Some schemes require less stor-

age overhead [129], but in return offer less than unconditionally secure secrecy guarantees. This

is in stark contrast to encryption, which incurs minimal storage overhead. The increased storage

requirements imposed by secret splitting provide further evidence of the need for economically

efficient, archival storage.

Secret splitting is well suited for long-term, archival storage for a number of rea-

sons. First, it is unconditionally secure, and thus can provide long-term security. Second,

threshold schemes do not suffer from the single point of failure that encryption introduces.

Finally, archival workloads can accommodate the computationally expensive, and therefore

slower speeds, of many secret splitting algorithms. They are not, however, a drop in replace-

ment for encryption, and require designs that take in account the need for data recovery and the

threat of malicious insiders.

2.2 Single Instance Storage

A common technique found in some archival storage systems iscontent-based nam-

ing [69, 127, 205, 206]. This technique uses a hash of the dataas the data’s name and offers

a number of benefits. First, content-based naming simplifiesdata-reliability checking as the

name of the data provides an easy way to check data integrity.Second, content-based naming

has been utilized as a means of reducing storage overhead; ifmultiple users posses the same

file, a storage server would only need to store that file once.

Taking single instance storage a step further, data deduplication can be applied not

only at the level of entire files, but can also be used to identify matching blocks within files.

The first intra-file technique is exemplified by the Venti archival storage system [127]. In Venti,

files are broken into fixed sized blocks before deduplication, so files that share some identical

contents (but not all), may still yield storage savings. Thesecond, and most flexible form, breaks

files into variable-length “chunks” using a hash value on a sliding window; by using techniques

such as Rabin fingerprints [128], chunking can be done very efficiently. This technique has

been used in a variety of communications and storage systems[14, 113, 202].

16



T
im
e

Malicious

User

Unverified, Deduplicated

Chunk Store User

t0
IDmon:Crandom

"IDtue exists, ignore Ctue"

"...due Monday..."

"...due Tuesday..."

IDmon

IDtue

IDtue:Crandom

IDwed:Crandom

IDthu:Crandom

IDfri:Crandom

IDtue:Ctue

Chunk ID

...

...

Figure 2.3: Targeted-collision attack in which a malicioususer exploits predictable data (in this
example, a form letter with a due date) to generate valid chunk IDs, and associate those IDs with
invalid chunks. If the user is the first to submit the ID, subsequent chunks will be deduplicated
to a garbage value.

Unfortunately, conflicts can arise when attempting to utilize deduplication techniques

in a secure storage system. Deduplication takes advantage of data similarity in order to achieve

a reduction in storage space. In contrast, the goal of cryptography and other secrecy mecha-

nisms is to make ciphertext indistinguishable from theoretically random data. Thus, the goal of

a secure deduplication system is to provide data security, against both inside and outside adver-

saries, without compromising the space efficiency achievable through single-instance storage

techniques.

One strategy for combining deduplication with security is convergent encryption [48,

161]. This technique uses a function of the hash of the plaintext of a chunk as the encryption

key: any client encrypting a given chunk will use the same keyto do so, so identical plaintext

values will encrypt to identical ciphertext values, regardless of who encrypts them. While this

technique does leak knowledge that a particular ciphertext, and thus plaintext, already exists, an

adversary with no knowledge of the plaintext cannot deduce the key from the encrypted chunk.

In addition to the difficulty of combining security mechanisms with deduplication,

single instance storage opens up the possibility of targeted collision attacks. In a deduplicated
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chunk store, a targeted-collision attack could be used to associate a false value with a given

key. The pivotal difference between random collisions and targeted collisions is that a user can

exploit the predictable content of some data — in Fig 2.3 the malicious user utilizes similarities

in form letters — to generate valid chunk identifiers. If an adversary can be the first to submit

those identifiers with a garbage chunk, and if the chunk storecannot verify the correctness of

the identifiers, subsequent submissions that have the same identifier will be deduplicated to the

garbage chunk.

While content based naming, and more generally deduplication, may be useful for

increasing a system’s storage efficiency, it does raise a number of concerns in long-term archival

storage. First, while the mean time to data loss is not affected by deduplication, multiple files

may be compromised from the loss of a single chunk. Second, itdoes add another level of

complexity, as retrieving a file now relies upon two distinctactions: identifying the blocks to

retrieve, and locating each of the respective blocks. Third, as discussed, it can complicate the

integration of other desired storage properties, such as security. Finally, as the next section

discusses, it may remove a level of transparency that some custodians of long-term data prefer.

2.3 Archival Design Guidelines

During the course of the research for this thesis, and through discussions with long-

term data custodians, a number of design motivations and archival needs have become increas-

ing evident. Of course, as part of the challenge of building effective long-term storage systems,

finding the right compromise between conflicting needs can bedifficult. This section identi-

fies some of the core directives that should guide the design of a storage systems intended for

long-term data.

2.3.1 Capacity Scalability

Archival storage is well served by a scalable storage system. More specifically, this

relates to two facets of scalability: granularity, and scale-out potential. The first, granularity,

describes the size of each scale-out unit. The second, scale-out potential, describes the upper

limits that a system can scale to before requiring a wholesale system replacement.

Capacity scalability is especially important in an archival storage scenario, because
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accurate storage-need forecasts can be notoriously difficult to calculate; quite often, once the

value of archival data has been recognized, custodians discover that they have underestimated

the amount of data that is worth preserving [103]. This scenario is further exacerbated by the

growth in file sizes. In addition, an effective archival system should present a low barrier to

entry. This is important, as a long-term storage system should be able to grow with a data

producer.

2.3.2 Efficiency

In keeping with the goal of enabling the preservation of all data thatmightone day be

useful, archival storage must be concerned with cost efficiency. Put more succinctly, archival

storage must be inexpensive. Further, since efficiency gains are relatively low when considered

as an afterthought, cost efficiency must be a central goal from the very beginning of the design

process. In this respect, its analog can be seen in computer security; while early system security

was largely a tacked-on afterthought, it is widely held today that security must be present as a

motivating design directive in order to be most effective [12]. Of course cost efficiency is not a

discrete value, but rather the aggregation of a number of distinct design decisions.

A common approach to controlling costs is the use of commodity hardware [59, 68,

69]. Often times, the assumption in such a system is that higher failure rates are tolerable, or

that the marginal cost of performance from enterprise classhardware is either unneeded or too

costly. It is important to note that the cost savings yieldedin such a strategy may be offset by

an increase in management costs. For example, a system that expects higher failure rates from

consumer class equipment may not factor in the additional administrator workload incurred

from replacing these more frequent failures.

Administrative efficiency describes the effort to manage a system. Part of what makes

this particular facet of efficiency difficult to measure is the scope of what it includes [11]. The

management costs of a system should entail everything from initial planning to (in a traditional

system) the end of life decommissioning of a system. Thus, administrative efficiency covers

everything from the ease of integrating a system into an existing storage hierarchy, to the indus-

trial design of a system’s components. For example, in a large storage system, a large amount

of an administrators job is replacing failed drives. A design that makes it difficult to locate and

replace failed drives can drastically reduce administrative efficiency.
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Figure 2.4: The nominal price of energy from 1973 to 2008 for three markets: residential,
commercial, and industrial.
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Recently, energy efficiency is an area that has been the focusof quite a bit of atten-

tion [121, 122, 188, 208]. In storage, energy efficiency is made up of two primary components.

First, there is the energy to actually power the system itself. Second, there is the associated cost

of cooling the equipment; as modern power supplies are not 100% efficient — typical power

supplies are often only 65–75% efficient — they generate enormous amount of excess heat.

Unfortunately, most systems fail to address the opportunity costs associated with en-

ergy efficiency. In traditional storage systems this is not amajor problem, since most systems

will only be used for a few years. However, in a system that is to evolve over time, the concept

of energy inflationmust be addressed. As Figure 2.4 illustrates, the price of energy is increas-

ing [51]. Further, as Figure 2.5 shows, hard drive capacities have been growing at an exponential

rate [1]. In fact, Kryder’s Law states that hard-drive capacities are increasing even faster than

processor speeds; since 1956, hard drive capacity has increased 50-million fold [181]. Thus,

there is a huge opportunity cost associated with aging hard drives. Combined, these two factors

mean that every dollar spent on energy returns a monotonically decreasing amount of utility as

measured by the storage capacity. In archival storage, the goal of an evolvable system means

that it is insufficient to view energy efficiency as a static target. Rather, it must be dealt with

proactively. Put more succinctly, if a system is not gettingmoreefficient, energy inflation means

that it is gettinglessefficient.

Storage efficiency is a measurement of how much usable storage is yielded from

a given amount of raw storage. For example, reliability schemes that create a single mirrored

copy of data reduce storage efficiency by half. Thus, for archival storage, the goal is to maximize

storage efficiency without unduly sacrificing required levels of reliability.

2.3.3 Evolvability

Current storage systems tend to operate with a hardware lifespan of approximately

five years. At the end of this lifespan, data is migrated to a new system, and the old system

is replaced in what is sometimes called a ”fork-lift” upgrade. Inadequate performance levels,

increasing failure levels, or equipment end of life accounting often motivates this upgrade. Un-

fortunately, with its ever increasing corpus of data, such upgrades conspire against the cost

efficiency needs of archival storage; such upgrades often incur a high cost in energy and admin-

istrator time.
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Thus, archival solutions should be designed to scale acrosstime [18, 19]. This has

been elaborated as the ability to scale across changes such as technology, protocols, and ven-

dors. One approach to achieving this evolvability is to abstract away the details of technology

specific design, and export a very simple protocol, such as file levelput andget methods;

abstraction layers can map complex protocols to a set of fundamental operations. Further, this

approach forces designers to call into question assumptions associated with an implicit, whole-

sale system migration. For example, in a long-term evolvable system, a drive cannot be left to

participate until it fails; the amount of capacity an old drive provides for the power it consumes

does not justify its existence.

2.3.4 Reliability

By its nature, the contents of archival storage can be very difficult to replace. Often

times the people, knowledge, systems or input needed to recreate data may no longer exist. In

other scenarios, such as with scientific computing and modeling, the time required to regenerate

data may be prohibitive. Therefore, archival storage must be reliable.

At times, archival systems are called into use as a holding area for cold data before

it is either relocated, or deleted. Ironically, in this scenario, archival storage must be reliable

enough to safely store data until a custodian has had the opportunity to review its contents and

potentially delete it. In such a situation, all data must be assumed to be irreplaceable until stated

otherwise.

2.3.5 Reasonable Performance

The workloads of archival storage allow it to relax the need for ultra-low latency

access if it returns gains in other areas. For example, a spundown disk results in energy savings,

but may incur a spin-up fee of a few seconds. This is not to say,however, that random access

performance is not important to archival storage. Continuing the example, a penalty of a few

seconds to spin up a disk may be acceptable, but the scale of a few minutes to locate data on tape

is an unacceptable delay. The key insight is that random access performance can be relaxed, not

ignored,if it results in useful gains elsewhere in the system.
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2.3.6 Transparency

A design property that is rarely identified in traditional near-line storage, yet often

comes up in regards to archival storage, is that of transparency. In an ideal system, an ever

increasing corpus of static data would eventually reside ona slowly changing, evolvable system.

This, however, introduces data vulnerability in the form ofvendor dependence; with storage

higher in the hierarchy, lower level backups and replication can provide backup access. Thus,

archival system should provide simple file level access methods that can serve as a worst-case

exit strategy.

The issue of transparency often comes up in the discussion oftechniques that op-

erate at a sub-file level. For example, data deduplication using file chunks may work against

transparency if chunks are distributed across many devices. Thus, while such an approach

may increase storage efficiency, the implicit metadata and mapping involved with translating a

chunk-level data view to a file-level data view may be unacceptable to many data custodians.

2.4 Application Preservation

Projects in the area of long-term data preservation often fall into one of two cate-

gories: data preservation and application preservation. Data preservation, the area that my work

is concerned with, is about maintaining bits. In contrast, application preservation is concerned

with making sense of the interpreted meaning of those bits [22, 63]. While application preser-

vation is orthogonal to the scope of my work, it is an interesting problem and inevitably comes

in up in any discussion of long-term storage. Therefore, thegoal of this section is to provide a

basic understanding of application preservation issues.

As mentioned earlier, long-term preservation of digital data is not a purely technical

problem, and is poorly served by purely technical solutions. Considerable work, therefore, has

gone into the human and organization level challenges. For example, The National Archives of

Australia has made a concerted effort to detail a series of best practices to ensure that migration

and digital custodial work can proceed as effectively as possible [75]. Part of this effort involved

establishing a clear point of responsibility to replace themostly ad hoc efforts spread across

disparate organizations. More interestingly, their work identifies the break that digital records

represent compared to physical artifacts; originality is no longer the issue, rather the capture and
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playback of a temporal “performance” of a digital artifact is the aim. Specifically, they identify

a three stage model of digital preservation: thesourcedata, the combination of hardware and

software comprising theprocessneeded to interpret the source, and the actualperformancethat

is rendered to the screen.

Efforts to preserve the process and performance aspects of application preservation

generally fall into one of two camps: migration and emulation. The first, migration, involves the

effort of data custodians that perform audits to detect endangered formats that can be translated

to safer formats. To this end, work such as the PDF/A specification has been focused on pro-

ducing formats that are well suited to long-term data [134].The PDF/A specification is a subset

of the complete PDF specification that limits features to those that can be reliably included

in a self-contained, self-describing PDF file. The second, emulation, maintains the original

source and performance components, and utilizes one or morevirtualized environments for the

performance phase [63].

At the current time, one of the critical aspects of application preservation is saving de-

scriptive metadata. To this end, Howard Besser’s advice is to, “save any metadata that is cheap

and easy to capture” [22]. Further, metadata preservation has a number of important implica-

tions to preservation chores ranging from searching for data within bodies of long-term data,

to assisting in data and format migration. Ironically, while metadata plays an important role

in preserving long-term archival data, it also complicateslong-term integrity; it is not enough

to simply preserve data, metadata and the connection between metadata and data must also be

preserved.

Within the context of my work, Chapter 5 discusses the designof Pergamum, which

separates the internal storage of metadata and data, while encapsulating it within a single device.

This is done for a number of reasons. First, in an effort to be cost efficient, the unique needs

of metadata and data — metadata currently has lower capacityneeds, but is accessed more

frequently than data — are addressed with two different media types; archival storage cannot

afford the luxury of excess, therefore the scale of the solution must match the scale of the issue.

Second, while internally data and metadata are treated separately, externally they are unified

into one field replaceable unit. Third, the needs of data and metadata may evolve along separate

paths; while the total capacity needed for data eclipses metadata, some predict that eventually

metadata may one day be larger than the data itself. By establishing a strategy of treating the
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two as unique, it is much easier to adapt newer devices to their changing needs.

Taking a step back from the specifics of computer storage, there are a number of

on-going projects in the area of long-term thought and design. Two of the most famous are

the Clock and Library of the Long Now [24]. Both endeavors arekey projects of the Long

Now Foundation, and illustrate the group’s 10,000 year viewof the future. Their philosophy of

“slower is better” serves as a counterpoint to what they see as the current “faster and cheaper”

mentality.
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Chapter 3

Related Work

The moments of the past do not remain still; they retain in our

memory the motion which drew them towards the future,

towards a future which has itself become the past, and draw us

on in their train.

Marcel Proust

The current corpus of storage research consists of a wide gamut of systems and stor-

age models. As with many terms in computer science, even the narrower scope of “archival

storage” is overloaded and involves numerous, sometimes conflicting, models. For example,

public archival systems are often built expressively to ensure open access; library-like systems

are designed to ensure equal access to all potential readers. In contrast, other systems are de-

signed specifically to provide data secrecy.

The disparate needs of long-term preservation, and traditional, performance-oriented

storage, warrant a solution specifically designed for archival storage’s workload, access model

and data lifetimes. My work is important because it directlyaddresses archival storage security,

energy-efficiency and evolvability. To that end, the two goals of this section are to present

my work in the context of existing research, and to demonstrate that no current systems fully

addresses the needs of long-term, secure storage.

The remainder of the chapter consists of an overview of several important areas of

relevant research. I begin by describing the trend towards domain specific systems. That is,

storage systems designed for very specific workloads and access patterns. Second, as distributed

architectures are well-suited to evolvable storage, I discuss the intentions and designs of several
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prominent, distributed storage systems. Third, I present an overview of systems designed for a

wide variety of security properties. Finally, I discuss several approaches that have been taken to

address the high costs of data storage.

3.1 Workload Specific Storage

A growing trend in storage systems is the development of systems designed with

very specific workloads in mind. Often times, these domain orapplication specific systems are

optimized for a unique access patterns or requirements. While this presents the challenge of

how best to optimize for key operations, it also presents opportunities. Domain specific systems

are often able to relax constraints that would prevent them from being suitable as a general

purpose system. For example, in archival storage, reasonable access latency penalties may be

an acceptable trade-off for gains in energy efficiency.

The purpose of the archival model that my research is concerned with is to preserve

relatively static data that has been purposely prepared forlong-term storage. This class of data

tends to exhibit a write-once, read maybe workload. In a business setting this would be data

such as documents that have been finalized and require retention. This is becoming increasingly

important as legislation increases the retention and recovery demands of such data [2, 3]. In a

personal setting this would include such family history information as legal documents, medical

records, images, videos and correspondences.

As the contents of a secure, archival storage system are relatively static, I am con-

cerned with a position that is adjacent to the traditional storage hierarchy [76, 194]. During

data’s production life cycle, content destined for long-term archiving exists within the storage

hierarchy. In this phase of its life, it warms and cools and thus ebbs and flows between the

gradation’s layers. However, upon reaching its final staticform, it is prepared for long-term

preservation. Part of this procedure involves migrating the data out of the hierarchy and into the

class of archival storage system that my work is concerned with.

Finally, the protection goal of long-term secure storage isto provide secrecy over the

data’s entire, potentially indefinite, lifetime. More over, the security approach must effectively

balance secrecy with availability. On one hand, the data secrecy must be sufficiently secure that

it does not require attention from a data shepherd. However,it must simultaneously be flexible

enough to be readable by an authorized viewer with no outsideinformation about the data.
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GPFS is a file system designed for high performance cluster-based computing [146].

These installations are often used in domains such as scientific computing, where workloads are

marked by large numbers of concurrent accesses to the same file (although not necessarily in

the same location within the file). To deal with this concurrent heavy workload, GPFS divides

each file into equal sized blocks and these blocks are distributed on different disks within the

storage environment. This allows multiple clients to hold locks on different portions of the file.

This distributed locking allows the file system much greaterefficiency for parallel access. Dis-

tributed locking is based on a central lock manager that distributes capability tokens to clients.

Subsequent accesses to the data do not require further contact with the lock server. Allow-

ing clients to lock a specific byte-range as opposed to a whole-file, or even whole-block lock

further optimizes locking. In the write once, read maybe workloads of archival storage, such

heavy-weight locking strategies are unnecessary, and onlyadd unneeded complexity.

The author’s of Slash [117] are concerned with the data starvation problems in large,

HPC environments. Their view of archival storage is that of tertiary storage. The high data

production rates found in HPC workloads must provide cost effective storage for large volumes

of data, while still supplying data consumers in an efficientmanner. Slash is an abstraction

layer between low level, archival storage and higher level storage. Their solution is composed

of metadata servers, a cache component and an archiving component. The system has two goals.

First, it acts as a cache for storage higher in the hierarchy.Second, it acts a gateway between

the archival system and the upper level, HPC compute system.

Dynamo is a distributed key-value store that Amazon relies upon for many of their

internal applications [42]. The system provides ”always-on” write reliability and favors avail-

ability over consistency. Making this distinct from archival storage is the system’s insistence

on low latency SLA’s, and fairly high levels of administrator input for certain operations. How-

ever, similar to archival storage is the need for incremental scalability, non-specialized peers,

and decentralization. One area of interest is that this system utilizes ”hinted handoffs” which

are similar to the idea of foster writes [114].

The Google File System [28, 59] is another example of a file system that was made

for optimal performance under a very specific workload. In this particular case the workload

was marked by a number of very large files that are rarely deleted, and where most mutations

come in the form of appends rather than writes to the middle ofthe file. The basic design of the
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Google File System involves a number of storage hosts and a central master server. Files are

divided into fixed sized chunks throughout the system and replicated a fixed number of times in

order to adequately deal with failures within the system. This strategy works as the system are

designed with the specific file workload in mind. Other, more general purpose storage systems

have specifically provided flexible redundancy schemes thatallow files to specify their desired

level of reliability [4, 190]. In GFS, Client requests are sent to the master server and include

the file name and the calculated chunk index. In an archival scenario, this presents a number of

problems. First, the master servers present a centralized point of control that introduces a point

of failure, and complicates evolution. Second, the system’s fixed replication rate is suitable to a

workload such as Google’s that has no strict permanence guarantees, but would be inadequate

for the long-term survivability requires of archival data.

FAWN (Fast Array of Wimpy Nodes) was created as power aware system for a work-

load dominated by seek-dominated key, value storage [10]. While this workload is almost the

exact opposite of the write dominated archival space, this is the sort of workload that a DNS

server, or other look-up service might encounter. Their solution involves a number of rela-

tively high powered front-end systems, with an array of low-powered, DRAM based devices for

storage. Unfortunately, the current design of FAWN does notaddress the reliability problems

associated with flash outside of straight replication. Additionally, static costs are not addressed

by their system, and their reliance on flash suggests that this might be rather high. Additionally,

the front-end nodes are fully aware of each node in the system, and are updated on each node

entrance and exist (it is, therefore, not a fully distributed system). They do, however, utilize

a Chord like DHT arrangement. Although, as stated earlier, fast lookup times rely heavily on

caching and a front-end system that can route the queries directly to the correct node.

3.2 Distributed Storage

Distributed systems, including storage systems, have beenan active area of research

for some time. Designs that avoid a monolithic architecturein favor of a decentralized approach

have been applied to a wide range of pursuits including resource utilization, survivability, and

performance. Archival storage is well suited to a decentralized architecture, especially when the

interface between components is designed to facilitate graceful system evolution. Of course, as

with any fundamental design shift, opportunity comes with challenges to overcome.

30



As even moderately powerful computer systems often have local storage that goes

underutilized, attempts have been made to aggregate this distributed resource and present it as

a single pool of storage [36]. One such example, Frangipani was designed for trusted networks

and utilizes a layered approach [175]. At the lowest layer are the physical disks. Above this

is Petal, which presents multiple physical disks as distributed virtual disks [91]. Frangipani

is layered atop this, and presents views of virtual “file servers”. Frangipani is designed to be

used on a cluster of machines under a common administrator. Thus, while block-level secrecy

is important, the system’s security primarily stems from trusted operating systems and secure

communications channels.

Other attempts to utilize contributed storage widened the source of participating sys-

tems, forcing designers to take a harder look at system security; on a public system, such as the

Internet, users may not know which nodes their data will resides upon [7, 81]. These systems,

therefore, often utilize secrecy through encryption. For example, the authors of PAST [143] ex-

plicitly assume that it is computationally infeasible to break their encryption. Often times, as in

OceanStore [86, 137], the system itself does not directly address the use of encryption beyond

stating that data entering the system must be encrypted. In such a strategy, the onus introduced

by encryption — such as key management, re-encryption, and key rotations — is left to the user

or outside solutions.

Another use of contributed storage, and a useful technique well suited to archival stor-

age, is the use of geographic diversity to increase data survivability [82, 145, 186]. One example

of this approach, Glacier [70], utilizes extensive use of erasure codes and redundant distribu-

tion. The central idea is that high levels of redundancy provide high levels of reliability. While

the approach does incur a high storage cost, the authors mitigate the problem by aggregating

smaller objects and utilizing garbage collection. Lastly,while such geographic diversity can

introduce latency delays, Glacier, like other such systems, is not intended to be a primary store.

Instead is exists alongside a primary store that users utilize for low-latency access while Glacier

is used for long-term accessibility.

An accessory to geographic disparity, data encoding if often utilized in place of

straight replication. Stonebraker and Schloss introduceddistributed RAID [160] to provide

redundancy against site failure via geographic distribution and RAID-style algorithms. This

technique was further refined by Myriad [29], which uses a logical disk abstraction in conjunc-
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tion with groups of data blocks and parity blocks that are produced using erasure codes. While

such cross-site redundancy strategies do introduce an additional level of management overhead,

studies show that cross-site redundancy techniques add considerably to data reliability, even

when less than optimal encoding techniques are utilized [29].

Outside of extensibility, distributed storage enables high degrees of parallelism; in-

stead of a single, monolithic storage controller, requestscan be routed to any number of storage

hosts [26, 41]. Taking the idea a step further, several systems utilize dedicated metadata nodes

and storage nodes, further reducing potential bottlenecks[110, 118, 189, 190]. For example,

Ceph is comprised of intelligent object storage devices (OSD), a cluster of metadata servers,

and clients. Scalability is provided by placement groups, and a function which provides inode

to block mapping (as opposed to a static table) [77].

Intermemory exploits distributed systems for both reliability and lower access time [31].

Intermemory’s design was created based on the report by the task force on archiving of digi-

tal information. Intermemory implements a block level substrate that can be used to build

larger more complex data structures. They use two levels of splitting, which is similar to POT-

SHARDS, but each level relies on an IDA, as there is no explicit need for secrecy. The reason

that Intermemory does two levels is to reduce the amount of network connections needed for a

rebuild. It is unclear however if the splitting parameters at the two levels or fixed or tunable.

Unfortunately, while the increased fan-out achieved with two levels of splitting can benefit ac-

cess patterns, it can also result in significant management overhead. As it stands in Intermemory

there is a lot of mappings that needed to managed.

Of course, while contributed storage can offer a number of benefits, it can also in-

troduce problems, such as ensuring that participants are well behaved [20]. This is especially

important in open, communal arrangements where each participating node acts as both a client

and a storage node. One approach to the free rider problem, where a node does not actually

fulfill its storage obligations, is the use of periodic requests and the looming threat of the end of

a mutually beneficial relationship [85, 95]. Another approach relies on mathematical properties

of erasure coded storage [73, 148]. The key insight into thisapproach is that the signature of the

parity is the same as the parity of the signatures. While these systems can provide short-term

data reliability through replication and geographic disparity, such an approach on its own is ill

suited to long-term storage. These systems provide no guarantees about the persistence of each
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replica, and often require a user to take a rather active rolein ensuring the proper behavior of

their storage hosts.

Similarly PAST is a peer-to-peer model that attempts to fairly balance the storage

demands on each node in the system [143]. The system is arranged as an overlay network and

uses Pastry [142] as a lower level that handles routing chores. One of the novel aspects of PAST

is its methods for normalizing the storage usage on member nodes. Names are evenly distributed

and identifiers are created by hashing the file’s name, the owner’s public key and a randomly

chosen salt. PAST does utilize smart cards to manage the symmetric key operations. A novel

aspect of PAST is the effort that has been put into storage management. This is understandable

based on the fact that it is hinted that PAST would be a “pay forplay” sort of system. Storage

management is handled in two key ways: replica and file diversion. Replica diversion allows

a node that is not one of thek numerically closest drives to store a file in response to a node

without the necessary storage space. File diversion occurswhen all of a node’s leaf set is

reaching capacity.

3.2.1 Distributed Communication

While distributed architectures offer a number of benefits over monolithic architec-

tures, they also introduce a number of problems. As the system must deal with numerous, often

transient, nodes, communication in distributed systems isa rich area of research.

As distributed systems are composed of loosely coupled, independent devices, system

wide knowledge can be challenging. An extreme approach is the pursuit of global awareness,

in which a fully connected graph allows one-hop communications between any two nodes.

For example, in Name-Dropper, the system converges on global knowledge by having nodes

randomly sending a neighbor a list of all the nodes it knows about [72]. The receiving node then

adds these to the list of nodes that it knows about. Unfortunately, the per node storage overhead,

and proliferation of messages with these strategies make them suitable for only relatively small

systems.

Another problem with systems that attempt to achieve globalknowledge is the diffi-

culty of determining a termination point. The work of Kutten, Peleg and Vishkin relies upon

either knowledge of the total number of nodes in the system, or by knowing the maximum total

number of nodes (perhaps based on the naming techniques capacity) [87]. Their solution works
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by transforming tall trees of links into stars, and then merging stars into a tree. The work of

Abraham and Dolev does not require prior knowledge of the system’s size [6]. Their approach

involves the search for a leader node. As each node enters thesystem, it assumes that it is

the leader, and then iteratively contacts other nodes in an attempt to either merge leadership or

assume leadership.

Unlike systems that attempt to maintain a full list of network membership on each

node, a number of approaches have shown that adequate coverage can be achieved through the

use of randomization. The “small-world” phenomenon demonstrates that a k-nearest neighbor

approach with even small amounts of randomization nets has aprofound reduction of hops in

peer to peer message routing [184]. Based on this behavior, SCAMP only requires each node to

maintain a partial membership list [55]. The SCAMP approachinvolves subscription requests

that can be forwarded along a randomly generated path, but cannot be dropped. The authors

show through simulation that this process has coverage rivaling a system that requires each node

to maintain a full membership list.

Related to the problem of global knowledge, is the problem ofglobal consensus [88,

89]. Chlebus and Kowalski explored the use of gossip with thegoal of getting large groups of

nodes to agree on a common value [32, 187]. Their solution involves nodes maintaining and

trading arrays of information through the use of collectorsand disseminators. The problem is

the huge amount of information that is transmitted. The authors use two metrics to measure

their solution: time and the number of point to point messages. Unfortunately, in an array of

n nodes, each node maintains three arrays of lengthn. Further, all three of these arrays are

transmitted as a part of the update process.

Further work has extended gossip based communication approaches, making it Byzan-

tine fault tolerant [89, 93]. The goal of this solution is to be stable in the face of Byzantine

failures as well as resistant to free riders that do not act out of altruism (they only work for their

own benefit). The solution is based on pseudo-randomness that attempts to take advantage of

the benefits that randomness leads to gossip protocols, while still functioning in a deterministic

fashion. Additionally, they use public-key encryption to enforce accountability on the basis that

proof of misbehavior is a sufficient deterrent. This, along with delayed gratification, ensures

that clients stick to established protocols.

In contrast to the lofty goals of global knowledge, a distributed hash table (DHT) is
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a distributed data structure that maps keys to nodes. Given akey, these algorithms can, with

knowledge of only a subset of the total nodes in a system, cooperatively route a message to the

node responsible for the given key [132, 142, 207]. For example, in Chord, nodes are organized

using a circular namespace and, in a naive case, can simply berouted around the circle until

they arrive at the correct node [159]. To optimize this, eachnode maintains a “finger table” that

contains increasing large steps along the circle. In this way, through a greedy algorithm, the

system can resolve lookups in log time. Additionally, as with most DHT algorithms, Chord is

compatible with dynamic membership; nodes are able to enterand leave at any time. Similarly,

Pastry involves an overlay network based on nodeIDs, and a three tiered routing table [142].

As requests are routed through the system, each node passes it along to a node that is ”closer”

to the nodes responsible for housing that requested object.In this way, the authors show that

message arrive at their intended destination in a logarithmic number of steps.

Information management systems attempt to provide system level awareness, while

still maintaining a decentralized, distributed architecture. Some, such as SDIMS and Shruti,

utilize DHT algorithms as part of their foundation [199, 200]. These information management

systems aggregate information about a distributed system’s state, and make it available in a

way that does not collect all of the information in a central point of failure. Another approach

to data aggregation is seen in Astrolabe, which eschews DHTs, in favor of a gossip-based ap-

proach [136]. Unfortunately, this approach is inefficient with certain workloads, and focuses

more on data summaries that data aggregation.

3.2.2 Distributed Leadership Election

While distributed architectures offer the promise of relief from centralized points of

failure, there are still a number of tasks that require a central coordinator. Thus, for tasks as

varied as key distribution, routing and data aggregation, afeasible distributed system must have

the ability to identify and reach consensus on a centralizedleader. Of course, as with many

problems within the space of distributed systems, the situation is complicated by the presence

of dynamic networks in which nodes may enter and leave and anytime.

The problem of leader election is traditionally, and succinctly described as having the

goal of eventually electing a unique leader from a set of fixednodes. To this end, a number

of algorithms have been developed that solve this core problem within the context of different
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network topographies and communications models.

One of the common approaches to leader election relies on thetopology of a ring

network. A global extrema, bully algorithm was devised to recover tokens in a token ring

network based on each node’s individual id [101]. The core ofthe algorithm involves each node

sending its id to each of its neighbors. If a node receives an id greater than its own, it passes the

id along. If a node receives its own id, by virtue of the network’s logical ring structure, it has

the largest id, and therefore becomes the network’s leader.

The other common approach to leader election relies on diffused computation over

spanning trees [45, 54, 58]. In this approach, elections begin when a potential leader begins a

diffused computation. Each node propagates the election message to its neighbors, and sets the

node it received the message from as its parent. An acknowledgment back to the parent node

is sent only after all of a node’s children have responded. Multiple simultaneous elections are

often dealt with using a bully approach in which the electionrooted at the highest node id wins.

Beyond the basic problem, domain specific constraints colorthe problem, and moti-

vate the need for domain specific solution. For example, wireless sensor networks complicate

the basic leader election problem with a physical network structure that is subject to change;

nodes may be moving in and out of range [52, 178, 179]. Further, as in an evolvable system,

the capabilities and health of the nodes can vary widely as nodes may exhibit different battery

levels and hardware designs. To this end, a number of solutions have included modifications

to the basic algorithm to take node characteristics into account in order to intelligently elect an

appropriate leader.

3.3 Storage Security

Security continues to be an important driving force in storage research [139]. While

numerous stopgap solutions exist, it has become generally accepted that a secure, modern sys-

tem must include security as part of its fundamental design.This section presents an overview

of the wide gamut of problems addressed by current research.First, I present an overview of

systems that provide data secrecy, both for short and long-term data lifetimes. Following that, I

discuss systems that address integrity and accountabilityin storage systems.
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System Secrecy Authorization Integrity Blocks for Compromise Migration

FreeNet encryption none hashing 1 access based

OceanStore encryption signatures versioning m (out ofn) access based

FarSite encryption certificates Merkle trees 1 continuous relocation

PAST encryption smart cards immutable files 1

Publius encryption password (delete) retrieval based m (out ofn)

SNAD / Plutus encryption encryption hashing 1

GridSharing secret splitting replication 1

PASIS secret splitting repair agents, auditing m (out ofn)

CleverSafe information dispersal unknown hashing m (out ofn) none

Glacier user encryption node auth. signatures n/a

Venti none retrieval n/a

LOCKSS none vote based checking n/a site crawling

POTSHARDS secret splitting pluggable algebraic signatures O(Rm−1)

Table 3.1: Capability overview of a sampling of storage systems that enforce specific protec-
tion policies. “Blocks to compromise” lists the number of data blocks needed to brute-force
recover data given advanced cryptanalysis; for POTSHARDS,we assume that an approximate
pointer points toRshard identifiers. “Migration” is the mechanism for automatic replication or
movement of data between nodes in the system.

3.3.1 Secrecy

The facet of security that immediately springs to mind tendsto be secrecy. As Ta-

ble 3.1 illustrates, many systems were designed to offer some aspect of protection. However,

not all were designed for archival workloads. In this subsection, I focus on systems that aim

to control who can read information. While many designs utilize the rather straight-forward

application of encryption, others have opted towards unconditionally secure mechanisms such

as secret splitting. None the less, I show that these systemsdo not fully address the specific

needs of secure, long-term storage.

While a number of systems identified a need for security in order to function over

public networks [86, 143], others view data security as their central goal [9, 92]. These systems,

such as SNAD [112], utilize encryption as part of a robust security solution [12]. While data is

encrypted on the client machine, and stored in its encryptedform, SNAD also provides enough

information to authenticate both readers and writers. The authors go so far as to suggest that

the storage nodes may not need to authenticate incoming requests. The computationally bound

nature of cryptography makes the viability of this practice, as a long-term solution, dubious at
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best; solutions that work well for shorter data-lifetimes do not always translate to long-term,

archival scenarios.

Unexpected results can occur when multiple demands call forstrategies that inadver-

tently conflict with one another. For example, a common approach to storage efficiency is the

use of data deduplication. By identifying common chunks of data both within and between

files and storing them only once, deduplication can yield cost savings by increasing the utility

of a given amount of storage. Unfortunately, deduplicationexploits identical content, while

encryption attempts to make all content appear random; the same content encrypted with two

different keys results in very different ciphertext. Whileinitial work has improved the secu-

rity of deduplicated storage, it still suffers from the usual problems associated with long-lived

encryption [48, 161]. It remains to be seen how to combine unconditionally secure operations

with data deduplication.

A number of systems attempt to offer security with reliability by encrypting data, and

then generating a set of erasure coded shares from the ciphertext. Popular reliability encoding

techniques include algorithms such as Reed Solomon [67], and Rabin’s Information Dispersal

Algorithm (IDA) [129]. These functions take data as input, and producesn shares, anym of

which can be used to rebuild the input data. Compared to unconditionally secure secret splitting,

IDA algorithms are less secure. However, they often incur far less storage overhead.

In e-Vault [79], files to be stored are sent to a set of archives, where integrity in-

formation is calculated over slices of data; each archive only keeps only the data slices that

belong to them. These partial signatures are combined to form the full data signature. In the

commercial space, CleverSafe has used this approach for secure, on-line archival data hosting

using a custom six of eleven IDA algorithm [38]. Allmydata has extended this approach with

the addition of Merkle trees for ensuring the integrity of data [193], a technique also used by

e-Safe [8]. Evaluated as a viable long-term storage solution, all suffer from a reliance on en-

cryption, and the problem of an inside attacker; in order to relieve the customer from having to

ensure the long-term survivability of their keys, such services assume that the service provide

can be trusted with users’ keys.

SafeStore [85] is another example of system that utilizes information dispersal and

encryption as a way of providing long-term durability. Their solution is a hierarchical, dis-

tributed system with clients at the top and Storage Server Providers (SSP) at the bottom. Data
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is encoded into a number of pieces, and each of those pieces issent to an independent SSP.

There, it is further protected using another layer of encoding. The effect is both inter-SSP and

intra-SSP redundancy. The second part of the SafeStore design is an auditing system based on

cryptographic hashes and spot checks. The node being audited provides a report of the data that

they are holding, and the auditor challenges that report by asking for random blocks that it can

then hash and test against the reported manifest. There are two concerns with this approach.

First, encryption occurs at the server. This implies that a user other than the data owner has ac-

cess to the encryption keys. Second, providing full blocks as part of the auditing systems opens

the potential for slow data leaks; even when chosen randomly, over the course of many years,

auditing can reveal numerous blocks. An alternative that limits the amount of data revealed

would be the use of algebraic signatures [148].

Just as with encryption, one of the direct uses of secret splitting is as a mechanism to

provide data secrecy. Two systems in particular, GridSharing [169] and the Steganographic File

System[13], utilize fast XOR style secret splitting. GridSharing is designed for a collaborative

work environment that stresses low-latency disk access. Thus, the secret-splitting algorithms

usable by GridSharing are restricted to those which can offer fast encode and decode operations.

As archival storage stresses data throughput over low-latency access, a system built specifically

for archival storage is able to take advantage of a wider variety of secret splitting schemes, and

more complex splitting policies. The Steganographic File System (SFS) is designed to provide

security as well as plausible deniability. In SFS, the disk holds a number of random blocks of

data. A set of these blocks, chosen using a deterministic algorithm, is used as the random input

in the basic XOR scheme. The resulting block,S′ in the example illustrated in Figure 2.1, is

written to disk; to an attacker, it is indistinguishable from the random blocks. The authors of

SFS utilize XOR based secret splitting because the input blocks can be pre-generated; they are

simply random blocks. The security of SFS is based on the factthat knowing the password and

which blocks of data to combine will reconstruct data, whilean adversary cannot even ascertain

whether the data even exists on the system.

One of the prominent systems utilizing threshold secret splitting, PASIS [65, 197] was

designed for long-term data survivability. The system consists of a number of decentralized

storage nodes and a PASIS agent, which resides on the client’s system. My work differs from

PASIS in a number of ways. First, PASIS uses versioning as an important mechanism for
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audit based security. The mostly static content of long-term archival storage largely mitigates

the effectiveness of versioning strategies. Thus, my work focuses more on protection through

unconditional security and noticeable access patterns. Second, the authors of PASIS specifically

state that they aim to provide performance comparable to existing low-latency storage; my work

relaxes this constraint, as it is designed specifically for an archival usage model. Third, PASIS

utilizes a directory service to translate object requests to share requests. While this provides

enhanced performance, it does provide a potential target for attack. Moreover, it could provide

a malicious insider with the information needed to launch a very effective, targeted attack.

3.3.2 Integrity and Accountability

While many assume that protection implies data secrecy, LOCKSS [104, 105] is de-

signed to guard against an adversary attempting to censor orchange public documents. The

purpose of LOCKSS is the long-term preservation and access of static public works such as

journals and essays. The protection aspects of LOCKSS are particularly interesting. It strives

to enforce a security policy that specifically does not contain a secrecy aspect but emphasizes

the integrity of the system’s contents. The current versionof LOCKSS uses a two-level polling

model with an inner-circle of more trusted peers and an outercircle of newer peers. The hosts

positioned in each circle are changed through a system of churning in order to avoid dependence

on any particular set of peers. Additionally, there is a system of effort-based challenges. These

help guard against Sybil attacks[47], where a single entityposes as multiple systems in order to

unfairly influence voting.

In addition to data secrecy, encryption has been used to enforce a variety of security

policies. For example, Freenet [37] is designed for the anonymous publication of information,

and uses encryption to absolve users of legal responsibility for contents stored on a their nodes.

The central idea is that node owners can reasonably claim that they do not know the true con-

tents of the encrypted data. Another important aspect of Freenet is communications anonymity.

The system relies on a network in which each node only knows about their direct neighbors.

Resources are located through the use of hashes, and requests are limited in the number of hops

they can make. Results backtrack over the request route, copying the requested data to each

node along the path. This arrangement is well suited to replicating popular data, but it does not

provide for the long-term persistence of its contents.
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Mnemosyne is a peer-to-peer system offering plausible deniability, and extends ideas

presented in the Steganographic File System [13, 71]. Thus,the basic system involves a collec-

tion of random blocks that mask the existence of real blocks.When a new disk is added to the

system, it is fully populated with random data. Real blocks consist of encrypted data, stored at

an address determined through a deterministic process. Ironically, the inclusion of replicated

blocks introduces the need to balance replication and the risk of overwriting a real block. As

the authors themselves point out, the “birthday paradox” [40] makes this a non-trivial risk. To

extend the local system into a peer-to-peer system, the block address and node address can be

treated as a matrix. The authors claim that this achieves data hiding in two ways. First, data is

striped across multiple nodes. Second, each node has a substrate of random blocks to hide data

within.

Publius [180] is an example of a system that uses secret splitting as a key management

method. A content management and publishing system, the goal of Publius is to provide both

content-producer and connection anonymity [46, 133, 135] (albeit the later is through the use

of third party systems). This is accomplished by replicating encrypted content and using secret

splitting to distribute the key amongst a group of servers. Thus, the servers do not know what

they are hosting. Users access data though special URLs, that encodes the shares location

as well as a content-based name. While the system uses encryption, the worse case key-loss

scenario is that content would become read only. Publius supports a unique usage model, best

be described as write occasionally and read maybe, and is well suited to web based publishing.

The concern, from a long-term perspective, is that write-level access is controlled through the

use of cryptographic primitives. Thus, the loss of an encryption key would render data as read-

only in the short term but could potentially, in time, open the system up to unauthorized content

modification

In contrast to the problem of plausible deniability, an increasing demand for account-

ability has seen the use of encryption as an auditing tool. The authors of CATS [203] cite the

“trust but verify” model as the basis of their threat model. They have created a system (for use

as the building block of a larger system) that makes all players accountable for their actions.

They state that three properties must be true of a correct operating system: undeniability, fresh-

ness and completeness. CATS achieves this through extensive use of asymmetric cryptography.

The design proposed by Peterson et. al. [120], aims to address another aspect of accountability.
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In their system, users commit to a storage state such that an audit can confirm that the data has

been retained, has not been modified, and is accessible. A recent slew of legislation [2, 3] places

specific demands on data retention, and has made such assurances a valuable commodity. The

Peterson system is based on cryptographic hash functions and chains linking the current version

of the “version authenticator” with the previous version. One issue with these systems, and a

common element in systems that rely on public-key cryptography, is the implicit, trusted author-

ity. Choosing a suitable third-party for a long-term accountability solution could be difficult;

predicting the long-term stability of any given organization is difficult at best.

SLTAS, extends the idea of asymmetric encryption for digital signatures by tailoring

their strategy specifically for long-term archival storage[176]. To this end, the authors’ ap-

proach utilizes two important design decisions. First, an independent time-stamp authority pe-

riodically resigns the data. This occurs over all previous signatures, producing what the authors

describe as an increasingly large “onion”. Second, in orderto guard against the eventual obso-

lescence of computationally bound cryptosystems, the time-stamp authority uses an increasing

large key each time the onion is signed. Unfortunately, as with previous work, this approach

does not guard against the catastrophic failure of cryptosystems — such as the discovery of a

polynomial time prime-factorization algorithm. Additionally, it assumes that the time-stamp au-

thority will exist for the entire lifetime of the data, and that it can properly manage and preserve

the necessary keys.

Similarly, the authors of SUNDR[94] ensure the integrity ofshared data on untrusted

servers using a combination of content based naming, and signed, updated logging. The idea is

that, if two users are able to see each other’s changes, then they can detect changes that either

one makes to a shared file. The authors stress a concept of forkconsistency, in which the only

way that one server can perform an undetected change is to fork the file and maintain a separate

branch. Similar to other accountability solutions, SUNDR involves a fair amount of public-

key signatures. Additionally, SUNDR does not provide data secrecy; an issue that the authors

address by suggesting the use of encryption.

3.4 Cost Savings

While many systems are designed to provide new functionality, others attempt to

improve on a facet of existing strategies. For example, the purpose of a number of systems
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System Media Workload Redundancy Consistency Power Aware Comm HW

PARAID disk server clusters RAID Yes No

Nomad FS disk server clusters none Yes No

Google File System disk OLTP replicas relaxed No Yes

Copan Revolution 220A disk archival RAID 5 SHA 256 Yes Yes

Sun StorageTek SL8500 tape backup N+1 WORM media No No

RAIL optical backup, archival RAID 4 opt. write verify No Yes

Pergamum disk archival 2-level R.S. algebraic sig. Yes Yes

Table 3.2: Sampling of storage systems designed for economic efficiency, illustrating their
diverse workloads and cost strategies.

has been lower costs, while maintaining specific service levels. As Table 3.2 illustrates, these

systems have been designed for a variety of workloads, and employ different strategies in pursuit

of cost savings.

Many have sought to achieve cost savings through the use of commodity hardware [59,

188]. Typically, this strategy assumes that cheaper SATA drives will fail more often than server

class hardware, requiring that the solution utilize additional redundancy techniques. An exam-

ple of this approach is the Google File System, which utilizes a number of storage hosts and

a central master server. Thus, in GFS, files are divided into fixed sized chunks throughout the

system and replicated in order to adequately deal with failures within the system. Recent stud-

ies, however, cast this assumption in a new light, showing that SATA drives often exhibit the

same replacement rate as SCSI and FC disks [147].

In addition to efforts to lower storage costs through low priced media, a related effort

has been spent on increasing the utility that each piece of media provides. Several systems,

such as the EMC Centera system [69], Farsite [48] and the Windows Single Instance Store [23]

perform deduplication on a per-file basis. Other systems, such as LBFS [113], Shark [14], and

Deep Store [202], utilize a more comprehensive variable-sized chunking approach.

A number of systems equate archival storage with data backups, and favor media such

as tape or optical storage over hard drives [49, 78, 172, 204]. In this strategy, removable media

is utilized in an attempt to achieve cost-efficiency. Unfortunately the cost savings available

with such media are often offset by the need for additional hardware (e.g. extra drive heads

and robotic arms). Additionally, the random access performance of these systems is often quite
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poor, which complicates distributed redundancy schemes, auditing and consistency checking.

For example, Redundant Array of Inexpensive Libraries (RAIL) stores data on optical disks,

and utilizes RAID 4 redundancy, but only a very high level; for every five DVD libraries, a sixth

library is solely devoted to storing parity [172]. Other systems have used striped tape to increase

performance [49]; later systems used extra tapes in the stripe to add parity for reliability [78].

Venti is an interesting system that combines deduplicationwith removable media[127].

In Venti, files are broken into fixed-sized blocks before deduplication. These blocks are coa-

lesced into fixed-sized groups, called arenas, that are designed to facilitate the use of removable

media. Unfortunately, while it presents itself as an archival system, Venti makes a few design

decisions that may compromise its long-term usefulness. First, the use of removable media in-

troduces the need to either migrate data as media evolves, ormaintain aging hardware. Second,

the system utilizes a centralized directory over media. While each arena includes an index over

its own data, thus making the central index rebuildable, as the corpus increases this becomes

increasing unfeasible.

Commodity hardware, however, is not the only avenue for realizing cost savings. An

increasing amount of focus has fallen on energy efficiency asa means of cutting data center

costs. One of the primary culprits of rising energy costs hasbeen in dealing with the excess

amount of heat generated by inefficient power supplies. While power supplies with an energy

efficiency of 90% do exist, the typical power supply’s efficiency is closer to 65-70% [174]. The

resulting inefficiency usually results in excess heat, a factor contributing to high cooling costs.

According to one analysis, up to 60% of energy costs are goingto cool equipment [64].

The development of Massive Arrays of Idle Disks (MAIDs) generated large cost sav-

ings by leaving the majority of a system’s disks spun down [39]. Interestingly, using a simu-

lation and super computing workload, the authors found thatdedicated cache disks had a very

detrimental effect on the system. However, this was due to the lack of locality in the authors’

evaluation workload (something that might also be common inan archival workloads).

Further work centered on the use of idle disks has expanded onthe idea by incorporat-

ing strategies such as data migration, the use of drives thatcan spin at different speeds, spinning

up subsets of disk, and power-aware redundancy techniques [121, 122, 188, 208]. While these

systems realize energy savings, they are not designed specifically for archival workloads, in-

stead attempting to provide performance comparable to “full-power” disk arrays at reduced
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power. Thus, they do not consider approaches that could saveeven more power at the expense

of high performance. For example, some MAID systems, such asthose built by Copan Sys-

tems [68], use a relatively small number of server-class CPUs and controllers that can control

dozens of disks. However, this approach is still relativelypower-hungry because the CPU and

controllers are always drawing power, reducing energy efficiency. A Copan MAID system in

normal use consumes 11 W/TB [68]; this is only slightly less than the 12–15 W/TB Perga-

mum would requireif all disks were powered on simultaneously, and is much higher than the

2–3 W/TB that Pergamum requires if 95% of the disks are powered off.

Ironically, the relatively recent introduction of idle disks has sparked new interest

in a comparatively old idea, that of log-structured file systems (LFS) [141, 185]. The original

motivation behind the development of log structured file systems was that, as caches grew larger,

fewer reads would be serviced from the disk, and therefore workloads at the lowest level of the

storage hierarchy would become distinctly write heavy. Thekey insight for the connection LFS

and disk spin-down is that a system that appends writes to theend of a data log intrinsically

obviates the need to try and predict accesses [56]. While thestorage hierarchy may not have

provided quite the cache levels expected by the authors of the original work, there may be the

potential for such data structures in the write dominated workloads found in archival storage.

The StorageTek 5800 is a Sun Microsystems product derived from the HoneyComb

project [171]. It is designed for unstructured, static data(archival). The system is fully dis-

tributed as requests for data can be directed to any node in the system. Each node is a self-

contained unit including a high-power processor, multipledrives, multiple Ethernet ports and

a power supply. Cost savings come from the use of commodity hardware such as SATA hard

drives, low licensing costs, and low management overhead. For reliability, they utilize Reed

Solomon encoding in 5+2 arrangement. While designed for archival workloads, the system

does not take power in consideration. The processors they use are very high power, and the

placement algorithm does not take into account the number ofdisks that must be spun up. In

some cases, they cite that sixty disks will be involved in a single write. Lastly, while they

discuss scrubbing, they do not indicate at what frequency this occurs [149].

HYDRAstor is another system developed specifically for secondary storage[50]. The

system consists of a number of back-end storage appliances,and a front-end of access nodes.

In order to achieve high storage efficiency, HYDRAstor stores files as a series of immutable,
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variable-sized blocks. Content based addressing providesfor a level of deduplication over

blocks. Cost savings come from the use of commodity hardware, however the selection of

highly reliable server-grade equipment could incur a heavyprice tag. Further, the system is

not designed for low energy utilization, and its hash based placement algorithm for chunks

conspires against disk spin-down strategies.

IBM’s brick storage project, IceCube, uses federated groups of intelligent storage de-

vices to provide low-latency, reliable storage [192]. Eachbrick holds on the order of tens of

small drives and a relatively high power desktop processor.Currently each brick supplies on

the order of a single terabyte, but requires 200W. Their system is designed for front line storage

and allows administrators the flexibility to choose their own reliability versus cost trade offs.

One of the interesting notes is that they believe that bricksshould minimize internal redundancy

in order to lower costs. The primary cost savings in IceCube comes from the system’s strat-

egy of deferring management to a convenient time, as opposedto a more ambitious goal of

self-management. To this end, the system still includes centralized administrator nodes and re-

quires administrative input. Surprisingly, despite the system’s use of intelligent storage devices,

IceCube rejects the notion of evolvability in several ways.First, the current version relies on

highly specialized interconnects and water-cooled racks.Second, the three dimensional struc-

ture of the system prevents failed, interior nodes from being removed. This choice wastes floor

space, and suggests that a fork-lift upgrade is inevitable.

Another brick storage project, BitVault, follows the modelof utilizing numerous,

intelligent storage devices [205, 206]. Like Pergamum, theauthors of BitVault identify archival

storage’s need for cost efficient storage. Unfortunately, there are three issues that prevent their

solution from maximizing the cost saving potential of disk based archiving. First, BitVault

does not address power efficiency (although it is identified as an area of future work). Second,

BitVault achieves reliability through the use of file replication. While the advantage of this

design is that it facilitates the use of per file replication choices, it adversely affects the storage

efficiency of the system. Third, BitVault utilizes a global knowledge approach to routing, which

further lower storage efficiency and reduces its scalability.

An active area of research, storage management tools are designed to provide admin-

istrators with the knowledge they need to make good decisions [82, 183]. Hippodrome takes a

very proactive role in storage management, as the authors express the belief that administration
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is quickly becoming one of the dominant costs in modern storage systems [11]. The core of the

authors’ algorithm involves an iterative process made up offour key components. First there

is the analyzer that is used to obtain a custom workload. Thenthere is a performance modeler

and solver that is used to produce a working and valid storagelayout model. Finally there is an

implementor that is used to migrate the system to the new model. There are two issues that I

feel the authors did not address in their implementation. The first issue that I feel was omitted

was the safety of their migration technique. One might imagine that any migration would come

with an inherent risk. The second issue, which is related to the first, is the question of simula-

tion. The field of optimization theory is an area rich with techniques and rigorous models for

modeling and optimizing systems. The authors fail to mention if any of these models might be

useful.

Similarly, the authors of Zodiac focus on policy-aware impact analysis [154]. Cen-

tral to its design is a session based component that allows administrators to pose queries to the

system. Being a session based model, the queries have the flexibility of being incremental in

nature. This is in contrast to SQL type queries in which each query is separate and atomic. Fur-

ther, a policy classification mechanism assists in gathering relevant SAN data in order to reduce

the solution space for a number of key optimizations. For example, Zodiac includes a caching

mechanism in which SAN metadata is distributed throughout the system thus providing faster

access. The authors state that this improves impact analysis due to the commonality of data

accessed. Additionally, Zodiac includes a system of aggregation, which helps improve the per-

formance of certain queries. All of this is used by an evaluation and visualization components

that provides the administrator with visual feedback over the SAN structure that was input to

the system.

As part of an eventual goal of fully automatic system administration, Self-* has fo-

cused on performance tuning, providing administrators andtuning agents with the ability to

model changes to basic tuning parameters [5, 57]. The authors make the claim that such man-

agement abilities must exist in systems as a fundamental feature, drawing an analogy to early

attempts at security that amounted to add-ons to existing systems. Their solution consists of

a management layer, above the storage layer, populated withautomation agents and admin-

istrative interfaces. A key point that their early work identifies is the need to track and log

information per request. In this manner, logged data provides a complete picture of the re-
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quest’s life cycle; isolated information makes it difficultto identify bottlenecks and correlated

events.
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Chapter 4

POTSHARDS, Long-Term Archival Security

One never reaches home, but wherever friendly paths intersect

the whole world looks like home for a time.

Hermann Hesse

Few would disagree that there has been a tremendous shift towards writing business

data and our personal histories as digital data. In the professional sector, the demand for data

security is not surprising. However, even for personal artifacts, there is a distinct need for

long-term data protection. For individuals, archival storage is being called upon to preserve

sentimental and historical data such as photos, movies and personal documents. This informa-

tion often needs to be stored securely [131]; data such as medical records and legal documents

that could be important to future generations must be kept indefinitely but must not be publicly

accessible.

While storage security is a relatively mature area of research covering a large corpus

of work, the long lifetimes of archival storage demand a thorough reexamination of a number of

fundamental assumptions. With POTSHARDS, I demonstrate mythesis statement — archival

storage is a first class storage category that requires solutions tailored for long-lived data — by

describing an approach to security designed specifically tomeet the needs of long term data

storage.

The goal of a secure, long-term archive is, therefore, to provide security for rela-

tively static data with an indefinite lifetime. More specifically a secure archive seeks to provide

three, long-term features: secrecy, recoverability and integrity. The first, long-term secrecy,
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aims to ensure that the data stored must only be viewable by authorized readers. The second,

recoverability, is akin to availability and stipulates that data must be available and accessible to

authorized users within a reasonable amount of time, even tothose who might lack a specific

key. The third, integrity, ensures that the data read is the same as the data written.

The privacy aspect of POTSHARDS is achieved through unconditionally secure mech-

anisms, increased attack survivability and malicious activity detection. Secret splitting provides

attack resilience because, unlike pure encryption, it is unconditionally secure and requires the

adversary to collect multiple pieces of data to reconstitute any portion of the original block.

Further, the likelihood of detecting malicious data accessis probabilistically increased through

a sparse namespace; requests for shares that do not exist areeasy to detect. Compounding the

attack detection’s effectiveness, an attacker that attempts to use the approximate pointer to make

a targeted attack would need to steal every share in the indicated region along with every share

in the region indicated by those shares and so forth.

The recovery and availability strategy of POTSHARDS enables the reconstruction of

data from the secret shares alone. Thus, even with no outsideindex to connect data blocks and

secret shares, a user’s data can be recovered. This is especially important in long-term archival

scenarios in which data may have a potentially indefinite lifetime [19, 162]. My approach is

based upon the use of approximate pointers, which provide clues about inter-share relationships.

These clues supply enough information to allow recovery butrequire a lot of shares, a necessity

that is difficult for an adversary to meet.

4.1 POTSHARDS Overview

Since POTSHARDS was designed specifically for secure, long-term storage, I iden-

tified three basic design tenets to help focus my efforts. First, I assume that encrypted data

can be read by anyone given sufficient CPU cycles and advancesin cryptanalysis. Put another

way, if an attacker obtains encrypted data, the plaintext will eventually be revealed. Second,

for long-term survivability, data must be recoverable without any information from outside the

set of archives; fulfilling requests in a reasonable time cannot require any outside data, such

as external indexes or encryption keys. Third, I assume thatindividuals are more likely to be

malicious than an aggregate. Thus, the system trusts groupsof archives, even though it does

not trust individual archives. The chance of every archive in the system colluding maliciously
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Figure 4.1: An overview of POTSHARDS showing the data transformation component of the
client application producing shards from objects, and distributing them to independent archives.
The archives utilize distributed RAID algorithms to securely recover shards if an archive is lost.

is small; the system allows rebuilding of stored data if all archives cooperate.

POTSHARDS is structured as a client application communicating with a number of

independent archives. Though the archives are independent, they assist each other through

distributed RAID techniques to protect data against archive loss. Users store their data within

the system using a POTSHARDS client, which splits their datait into secureshards. These

shards are then distributed to a number of archives, where each archive exists within its own

security domain. The read procedure is similar, but reversed; a user utilizes the POTSHARDS

client to request shards from archives and reconstitute thedata.

Users access the system through a POTSHARDS client, which has three primary

functions. First, the client handles alldata transformationduties. For writes, as shown in

Figure 4.1, this involves generatingshardsfrom objectsthrough the use of secret splitting tech-

niques. For reads, the process is reversed, shard identifiers are used to fetch shards from the

archives, and objects are reconstructed. Second, the client is responsible for distributing shards

to archives such that no single archive has enough shards to reconstruct data. Third, as the client

resides on a system separate from the shards, the POTSHARDS client is responsible for han-
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dling communication between the user and the archives. The advantage of this arrangement is

that data never reaches an archive in unsecured form, and multiple CPU-bound data transforma-

tion processes can generate shards in parallel for a single set of physical archives. Of course, as

in any security application, careless implementation of the POTSHARDS client can introduce

unforeseen compromises; adversaries can take advantage ofcarelessly cached passwords and

other such key material.

Shards are stored in a series of independent archives, that function similar to financial

banks; they are relatively stable and they have an incentive(financial or otherwise) to monitor

and maintain the security of their contents. While securityis strengthened by distributing shards

amongst the archives, it is important that each archive can demonstrate an ability to protect

its data. Other benefits of archive independence include reducing the effectiveness of insider

attacks and making it easier to exploit the benefits of geographic diversity. For these reasons,

even a single entity, such as a multinational company, should still maintain multiple independent

archives.

In order to limit the effectiveness of insider attacks, there is no central index over

shards. Rather, users maintain a private index that maps their data to shards. This is made

possible by the fact that POTSHARDS enables the reconstruction of data from the shards alone.

This private index, which could be contained on a physical token such as a smart-card, allows

normal read operations to take place quickly because the user would know exactly which shards

to request and how to combine them. If, however, a user loses their index, or never had one, it

can be regenerated in a reasonable amount of time. By removing the need for an omniscient,

central authority, the risk of a malicious insider is mitigated.

4.1.1 Security Techniques

Security in POTSHARDS is provided by two mechanisms: a sparsely populated,

global namespace, and unconditionally secure secret splitting. With secret splitting, an intruder

must collect multiple shards in order to read any data, and the sparse namespace makes attacks

more noticeable by increasing the chances that an intruder will request shards that do not exist.

Secret splitting provides the secrecy in POTSHARDS with a degree of future-proofing

—it can be proven that an adversary with infinite computational power cannot gain any of

the original data, even if an entire archive is compromised.Further, these algorithms provide
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file secrecy without the need for the key and algorithm rotations that traditional encryption

introduces; perfect secret splitting is unconditionally secure. Thus, POTSHARDS is not forced

into maintaining complex key histories.

A number of secret splitting algorithms, known as thresholdschemes, produce a set

of n shares, anym< n of which are needed to rebuild the original data. While POTSHARDS

can utilize such schemes, it does not rely on them for the system’s reliability. Rather, the small

amount of redundancy these algorithms offer allows POTSHARDS to handle transient archive

unavailability by not requiring that a reader obtainall of the shards for an object.

In addition to uniquely identifying data entities in POTSHARDS and improving at-

tack detection, the global namespace enables the use of secret splitting algorithms by imposing

an ordering over entities. Many threshold schemes, such as those that rely on linear interpo-

lation [153], require both the shares and a specific orderingof those shares for reconstruction.

Preserving the ordering over a tuple of shards is easily accomplished by naming the shards

in ascending order, according to their location within the full shard tuple. In this way, names

impose a total ordering over a complete tuple of shards.

4.1.2 Reliability and Availability Techniques

POTSHARDS provides reliability and availability through two distinct recovery strate-

gies. First, as Figure 4.2 illustrates, the shards that reconstruct a data block form a circularly-

linked list, allowing a specific user’s data to be recovered from their shards alone. This ring of

shards is generated within the transformation components,as part of the ingestion process. Sec-

ond, the loss of an entire archive is handled using distributed RAID techniques, across multiple

independent archives. This two level approach allows POTSHARDS to scale the recovery to

the size of the data loss.

In the absence of the index over a user’s shards, approximatepointers can be used

to recover data from the shards alone. Such a scenario could occur if a user loses the index

over their shards, or in a long-term time-capsule scenario in which a future user may be able to

access the shards that they have a legal right to, but have no idea how to combine them.

Approximate pointers enable the use of secret splitting by providing a built-in method

of “key recovery”; knowing which secret shares to combine isanalogous to an encryption key

because it is the secret that transforms ciphertext into plaintext. Without the clues provided by
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Figure 4.2: Approximate pointers point toR “candidate” shards (R = 4 in this example) that
might be next in a valid shard tuple. Shards0X make up a valid shard tuple. If an intruder
mistakenly picks shard21, he will not discover his error until he has retrieved sufficient shards
and validation fails on the reassembled data.

approximate pointers, recovery involves testing every possible combination of shards, making it

an intractable problem. In contrast, while direct pointerswould make recovery trivial, it would

also compromise security; an adversary with one shard couldeasily make targeted attacks for

the rest of the shards. Thus, the advantage of approximate pointers is that, by indicating a region

and utilizing namespace sparseness, targeted attacks are much more difficult, and brute force

attacks would be quite noticeable. Thus, secrecy is not unduly affected, providing a worthwhile

tradeoff for slower recovery times if a block’s shard list islost.

To deal with larger scale losses, the archive layer in POTSHARDS consists of inde-

pendent archives utilizing secure, distributed RAID techniques. As Figure 4.1 shows, archive-

level redundancy is computed across sets ofunrelatedshards, so redundancy groups provide

no insight into shard reassembly. POTSHARDS includes two novel modifications beyond the

distributed redundancy explored earlier [29, 160]. The first is a secure reconstruction procedure,

described in Section 4.2.3.1, that allows a failed archive’s data to be regenerated in a manner

that prevents archives from obtaining additional shards during the reconstruction; shards from

the failed archive are rebuilt only at the new archive that isreplacing it. Second, POTSHARDS

uses algebraic signatures [148] to ensure intra-archive integrity as well as inter-archive integrity.

Algebraic signatures have the desirable property that the parity of a signature is the same as the

signature of the parity.
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4.2 Implementation Details

This section details the components and security model of POTSHARDS, and how

each contributes to providing long-term, secure storage. First, I describe how objects in POT-

SHARDS are named, and present two naming dangers that, if ignored, could compromise data

security. Second, I describe the POTSHARDS client in detail, including how it produces shards

from objects. Third, I describe the role of the archives, including how they securely rebuild

data if an archive is lost. Fourth, I describe the role and construction of the user’s private index.

Finally, I describe how approximate pointers are used to recover a user’s data from the shards

alone.

4.2.1 Naming

All of the data entities in POTSHARDS, both higher level entities such as objects,

as well as lower-level secure entities such as shards, existwithin a single 128 bit namespace.

Each identifier contains two portions. The first 40 bits of thename identify the user in the same

manner as a bank account is identified by an account number. The remaining 88 bits are used

identify the data entity.

While names for high-level POTSHARDS entities, such as objects, can be generated

fairly easily, the names of lower-level entities, such as shards, must be chosen more carefully;

shard names and approximate pointer rings directly affect security and recovery. Two naming

and ring formation scenarios in particular have the potential to compromise security. First, a

poorly chosen ring of shards could inadvertently reduce thesearch space of a targeted attack.

Second, poorly named shards could leave the potential namespace fan-out under-utilized.

Careless naming and ring formation can inadvertently provide an attacker with infor-

mation that effectively reduces the search space for the next shard. For example, if the shards

in a tuple are orderedS1,S2, . . . ,Sn and shardSi always points to shardSi+1, an attacker would

know that the name of the next shard must be greater than the current shard. Now suppose that

shardSi itself is within the range indicated by the approximate pointer toSi+1. As illustrated in

Figure 4.3, the attacker would know thatSi < Si+1, and thus can narrow down the search space.

To avoid revealing information through shard names, a simple randomizing procedure

can be used to permute the total ordering of the shard tuple into a separate ring order. This

procedure proceeds as follows:
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Figure 4.3: Example of a situation in which careless naming has reduced the search space
indicated by an approximate pointer. If shard ordering is not randomized, an adversary would
know thatS3 must be greater thanS2 and thus would only need to search the region aboveS2.

1. Determine the names that will be used for the shards (e.g.:(S0,S1,S2,S3))

2. Create the shards and name them in ascending order so that their position within the tuple

is preserved by the total ordering imposed by their names

3. Randomize the order of these shards (e.g.:(S2,S1,S0,S3))

4. Use approximate pointers to form a ring based on this randomized order. Thus, the next

shard can exist in any portion of the namespace, regardless of the current shard’s name.

Another danger involves the under-utilization of the fan-out that can be achieved with

approximate pointers. Since approximate pointers indicate a region, as opposed to a single ad-

dress, they have the potential to greatly increase an adversary’s workload. An ideal arrangement

is achieved if each shard in a given region points to a different region. In this scenario, the ad-

versary would need to acquire each shard in each of those diverse regions. Figure 4.4 illustrates

an example in which the shard names and approximate pointersare configured poorly, resulting

in little fan-out. The effect is a greatly reduced workload for the adversary— the attacker would

only need to acquire the shards of overlapping regions once,rather than having to steal a given

shard once for each predecessor that could point to it.

In order to ensure the greatest fan-out, careful shard naming and linking is required.

Since users maintain an index of object to shard mappings, naming can proceed with knowledge

of previously named shards. An area of future work could be tofurther develop intelligent

naming techniques; the security of the system is greatly influenced by the namespace and the

links between shards, making this a particularly importantarea to examine.
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Figure 4.4: Example of a situation in which careless naming has underutilized the potential of
approximate pointers to increase the fan-out of linked shards. Ideally,S2, Sa, andSx would all
point to different regions.

4.2.2 POTSHARDS Client: Data Transformation

One of the primary tasks of the POTSHARDS client is to performthe data transfor-

mation that produces shards from user data. As Figure 4.5 illustrates, the client is composed

of four layers, and utilizes three unique data entities. During the ingestion of data, the pre-

processing layer is responsible for producing fixed-sizeobjectsfrom user files. Objects are then

transformed intofragmentsin a secret split tuned for secrecy. A second split occurs, this time

tuned for availability, which transforms fragments intoshards. Finally, the placement layer is

responsible for distributing a set of shards to the archives. Extraction is similar, but reversed;

shards are requested from the archive, combined into fragments, and those fragments are com-

bined into objects.

The two levels of secret splitting provide three important security advantages. First,

as Figure 4.5 illustrates, two levels of splitting results in a tree, providing extra security through

increased fan out; even with all of the members of a shard tuple, an attacker can only rebuild

a fragment, which provides no information about the shards for the other fragments. Second,

as secret splitting algorithms present varied features, each split can be independently tuned for

a specific property, and can select the algorithm best suitedto that property. Third, it enables

recovery by allowing useful metadata to be stored with the fragments; this data will be kept

secret by the second level of splitting.

4.2.2.1 Pre-Processing Layer

When a user submits data to the POTSHARDS client for ingestion, objects are created

from the user’s files in a three step process. First, each file is divided into a series of fixed-sized

blocks. As the system is designed for archival workloads, these blocks are on the order of several

57



(a) Four data transformation layers in POTSHARDS.

Module Input Output

Pre-processing file object

Secrecy split object set of fragments

Availability split fragment set of shards

Placement set of shards msgs for archives
(b) Inputs and outputs for each transformation layer.

Figure 4.5: The transformation component consists of four levels. Approximate pointers are
utilized at the second secret split. Note that locating one shard tuple provides no information
about locating the shards from other tuples.
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Figure 4.6: Data entities in POTSHARDS, with size (in bits) indicated above each field. Note
that entities are not shown to scale relative to one another.S is the number of shards that
the fragment produces.split1 is an XOR secret split andsplit2 is a Shamir secret split in
POTSHARDS.

hundred kilobytes to a megabyte in size. Second, as Figure 4.6 details, an object identifier is

generated and appended to the block. Third, a hash over the block and id is generated and

appended. This hash is used to confirm a successful rebuild during reads. It does not, however,

compromise security as it included in the unconditionally secure secret split in the later stages

of shard production.

4.2.2.2 Secret Splitting Layers

Fragments are generated from objects at the first of two secret splits that occurs in

the secret splitting layers. This first split is tuned for secrecy, and currently uses an XOR-based

algorithm that producesn fragments from an object, alln of which are required for reconstruc-

tion. To ensure security, the random data required for XOR splitting can be obtained through a

physical process such as radio-active decay or thermal noise.

As Figure 4.6 illustrates, each fragment contains metadatathat assists in reconstruc-

tion and recovery. First, as in the object, a hash over the entire fragment serves to confirm a

successful reconstruction. Second, the object identifier that this fragment contributes to aids

in reconstruction; if a user is able to reproduce all of theirfragments, this identifier assists in

combining them into objects. This approach does not compromise security, as reconstructing

a single fragment provides no information about which shards form the other fragments for a

given object. Third, the fragment contains its own id. Finally, each fragment contains a list of

the shards it produces.
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A tuple of shards is produced from a fragment using another layer of secret splitting.

This second split is tuned for availability, and therefore the current implementation of POT-

SHARDS uses anm of n secret splitting algorithm [153]. As mentioned in Subsection 4.1.1,

this allows reconstitution in the event that an archive is down or unavailable when a request is

made.

As Figure 4.6 shows, shards contain no information about thefragments that they

make up. They do, however, include two pieces of metadata. First, they include their own shard

id. Second, they include an approximate pointer to a random shard from the same shard tuple,

as described in Subsection 4.2.1.

The approximate pointers can be implemented using one of twoapproaches. First,

the bitmask method, indicates a region,R, by masking off the low-orderr bits (R= 2r ) of an

actual address, hiding the true value. The drawback of the bitmask method is the coarse level

of granularity that can be achieved. It does, however, have the advantage that the size of the

region indicated by the approximate pointer is relatively self-evident: it is straightforward to see

how many bits are masked off (set to zero) in an address. Second, therange methodrandomly

selects a value withinR/2 above or below the actual address. In contrast to the bitmask method,

the granularity offered by the range method is quite good. However, it is not self-evident from

the approximate pointer how large the range is. Our implementation uses the latter approach.

One drawback of the two-level secret splitting approach is the resulting increase in

storage requirements. A two-way XOR split followed by a 2 of 3secret split increases storage

requirements by a factor of six; distributed RAID, and metadata further increases the overhead.

If a user desires to offset this cost, data can be submitted ina compressed archival form [202];

compressed data is handled just like any other type of data.

4.2.2.3 Placement Layer

During ingestion, the placement layer is responsible for mapping shards to archives.

The decision takes into account which shards belong in the same tuple and ensures that no

single archive is given enough shards to recover data. During extraction, the placement layer is

responsible for requesting shards from archives.

This layer contributes to security in four ways. First, since it is part of the data trans-

formation component, no knowledge of which shards belong toan object need exist outside of

60



the client. Second, the effectiveness of an insider attack at the archives is reduced because no

single archive contains enough shards to reconstitute any data. Third, the effectiveness of an

external attack is decreased because shards are distributed to multiple archives, each of which

can exist in their own security domain. Fourth, the placement layer can take into account the

geographic location of archives in order to maximize the availability of data.

4.2.3 Archive Design

Persistent storage of shards is handled by a set of independent archives that actively

monitor their own security, and question the security of theother archives. The archives do

not, however, know which shards combine to form a fragment, or which shards contribute to a

given object. Thus, a compromised archive does not provide an adversary with enough shards

to rebuild user data. Additionally, it does not provide an adversary with enough information

to launch a targeted attack at the other archives. Absent such precautions, the archive model

would likely weaken the strong security properties provided by the other system components.

Since POTSHARDS is designed for long-term storage, it is inevitable that disasters

will occur, and archive membership will change over time. Todeal with the threat of data

loss from these events, POTSHARDS utilizes distributed RAID techniques. The space at each

archive is divided into fixed-sized blocks, each holds either shards or redundancy data. Archives

then agree on distributed, RAID-based methods over these blocks.

As in other distributed RAID systems [29, 160], fault-tolerant, distributed storage is

achieved by computing parity across unrelated data in wide area redundancy groups. Given an

(n,k) erasure code, a redundancy group is an ordered set ofk data blocks andn−k parity blocks

where each block resides on one ofn distinct archives. The redundancy group can survive the

loss of up ton−k archives with no data loss. The current implementation of POTSHARDS has

the ability to use Reed-Solomon codes or single parity to provide flexible and space-efficient

redundancy across the archives.

When shards arrive at an archive for storage, ingestion occurs in three steps. First, a

random block is chosen as the storage location of the shard. Second, the shard is placed in the

last available slot in that block. Third, the correspondingparity updates are sent to the proper

archives. The failure of any parity update will result in a roll-back of the parity updates, and

re-placement of the shard into another block.
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An integral part of preserving data, POTSHARDS actively verifies the integrity of

data using two different forms of checking. First, each archive actively monitors the integrity

of its own contents using stored hashes. Second, inter-archive integrity checking is performed

using algebraic signatures [148] across the redundancy groups. Algebraic signatures have the

property that the signatures of the parity equals the parityof the signatures. This property is

used to verify that the archives in a given redundancy group are properly storing data and are

performing the required internal checks.

Secure, inter-archive integrity checking is achieved through algebraic signature re-

quests over a specific interval of data. A check begins when anarchive asks the members of a

redundancy group for an algebraic signature over a specifiedinterval of data. The algebraic sig-

nature forms a codeword in the erasure code used by the redundancy group, and integrity over

the interval of data is checked by comparing the parity of thedata signatures to the signature of

the parity. If the comparison check fails, then the archive(s) in violation may be found as long

as the number of incorrect signatures is within the error-correction capability of the code. This

approach is efficient and secure as signatures are typicallyonly a few bytes, and only leakb

bytes for signatures of lengthb.

4.2.3.1 Secure Archive Reconstruction

Reconstruction of data can pose a significant security risk because it involves many

archives and considerable amounts of data passing between them. POTSHARDS mitigates this

risk through a secure protocol that allows each archive to assist in the reconstruction of failed

data, without revealing any information about its data. Further, the reconstruction procedure is

performed in multiple rounds in order to prevent collusion between archives.

The recovery protocol begins with the confirmation of a partial or whole archive fail-

ure and, since each archive is a member of one or more redundancy groups, proceeds one re-

dundancy group at a time. If a failure is confirmed, the archives in the system must agree on the

destination of recovered data. This fail-over archive is chosen based on two criteria. First, the

fail-over archive must not be a member of the redundancy group being recovered. Second, the

fail-over archive must have the capacity to store the recovered data. Due to these constraints,

multiple fail-over archives may be needed to perform reconstruction and redistribution. Fu-

ture work will include ensuring that the choice of fail-overarchives prevents any archive from
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Figure 4.7: A single round of archive recovery in a RAID 5 redundancy group. Each round
consists of multiple steps. ArchiveN contains datan and generates random blocksrn.

acquiring enough shards to reconstruct user data.

Once the fail-over archive is selected, recovery occurs in multiple rounds. A single

round of the secure recovery protocol is illustrated in Figure 4.7. In this example, the available

members of a redundancy group collaborate to reconstruct the data from a failed archive onto

a chosen archive,X. An archive, which cannot be the fail-over, is appointed to manage each

round (in Figure 4.7, archiveA has been selected). The managing archives determines the

ordering for the round and generates a request containing anordered list of archives, the id of

the block to regenerate, and a data buffer. Each archives in the list then proceeds as follows:

1. Requestα involving local blockn arrives at archiveN.

2. The archive creates a random blockrn and computesn⊕ rn = n′.

3. The archive computesβ = α ⊕n′ and removes its entry from the request

4. The archive sendsrn directly to archiveX.

5. β is sent to the next archive in the list.

This continues at each archive until the chain ends at archive X and the block is

reconstructed. The commutativity the rebuild process allows decreases the likelihood of data

exposure by permuting the order of the chain in each round. This procedure is easily parallelized

and continues until all of the failed blocks for the redundancy group are reconstructed. This
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Figure 4.8: User index stored in POTSHARDS as multiple pages. The initial page was created
at timet0, subsequent pages at timest1 andt2 respectively. By knowing just the shards to the
newest page, the user can extract the entire index.

approach can be generalized to any linear erasure code; as long as the generator matrix for the

code is known, the protocol remains unchanged.

4.2.4 User Indexes

While approximate pointers join the shards within the systems, theexactnames are

returned to the user during ingestion, along with the archive placement locations. Typically,

a user maintains this information and the relationship between shards, fragments, objects, and

files in an index to allow for fast retrieval. In the general case, the user consults her index and re-

quests specific shards from the system. This index can, in turn, be stored within POTSHARDS,

resulting in an index that can be rebuilt from a user’s shardswith no outside information.

It is important to note that, while the index does contain theinformation describing

which shards correspond to fragments and objects, it does not provide the information needed

to obtain those shards. An attacker with a user’s index will still need the information needed

to authenticate to the archives containing the user’s shards. Of course, as with any security

scheme, an adversary with enough information — in the case ofPOTSHARDS, the user’s index

and enough authentication information to sufficiently poseas the user — is assumed to have

acquired full access to the user’s data.

The index for each user can be stored in POTSHARDS as a linked list of index pages,

with new pages inserted at the head of the list, as shown in Figure 4.8. Since the index pages are

designed to be stored within POTSHARDS, each page is immutable. When a user submits a file

to the system, a list of mappings from the file to its shards is returned. This data is recorded in a

new index page, along with a list of shards corresponding to the previous head of the index list.

This new page is then submitted to the system and the shard list returned is maintained as the
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new head of the index list. These index root-shards can be maintained by the client application

or even on a physical token, such as a flash drive or smart card.

The approach of private, per user indices has a number of advantages compared to a

single, centralized index. First, since each user maintains his own index, the compromise of a

user index does not affect the security of other users’ data.Second, the index for one user can be

recovered with no effect on other users. Third, the system does not know about the relationship

between a user’s shards and their data.

While the index over a user’s shard contains the informationneeded to rebuild a user’s

data, it differs from an encryption key in two important ways. First, unlike an encryption key, the

user’s index is not a single point of failure. If the index is lost or damaged, it can be recovered

from the data without any input from the owner of the index. Second, full archive collusion can

rebuild the index. If a user can prove a legal right to data, such as by a court subpoena, than

the archives can provide all of the user’s shards and allow the reconstitution of the data. If the

data was encrypted, the files without the encryption key might not be accessible in a reasonable

period of time.

4.2.5 Recovery with Approximate Pointers

Recovery through the use of approximate pointers is based upon the graph structure

that approximate pointers impose over a set of shards. Each shard is a named vertex in the

graph, with an edge between it and every other vertex within the region defined by the shard’s

approximate pointer. The relationships described by this graph are used to recover data through

the use of two recovery algorithms: thenäıve approach, and the more efficientring heuristic.

Both approaches are based on knowing the spitting parameters,mof n, that produced the shards.

With both reconstruction strategies, the process starts the same way. Once a user

determines that she must recover her data, perhaps due to a lost index, she begins by collecting

her shards. As subsection 4.2.1 described, the user’s shards can be identified by the initial, user

id portion of the shard name. The operation to collect all of the shards could differ for each

archive. Additionally, releasing all of a user’s shards is apotentially dangerous; a lot of data

could be compromised. Therefore, this operation should require a higher level of authorization

and clearance.

In the first recovery strategy, the naı̈ve approach, the solution-space is reduced by
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Figure 4.9: Recovery example where each approximate pointer indicates a region of four shard
names. If shards are produced using a 2 of 4 split, the ring heuristic reveals one recovery
candidate based on its circular linked list structure ofexactly n, four, shards (shaded shards and
dotted approximate pointers). In contrast, the naı̈ve approach of testing paths of lengthm, 2,
would result in many more potential recovery candidates.

limiting reconstruction attempts to paths of lengthm. This approach can be useful when less

than the full set of shards are available; with less than a full set of shards, the user may not

have alln shards that reconstruct a fragment. Unfortunately, a number of factors conspire to

make this approach less than ideal. First, as Figure 4.9 illustrates, while still better than a

purely brute force based approach, there are still a fair number of paths of lengthm, and there-

fore many possible candidates for reconstruction. Second,a side effect of the randomization

discussed in Subsection 4.2.1, is that reconstruction withless than a complete tuple of shards

is time consuming; secret splitting is expensive, and a userwith less thann shards does not

have a total ordering, and must attempt recovery on multiplepermutations. For example, sup-

pose that a user posses a chain of three of the five shards,Sa,Sb,Sc, resulting from a 3 of 5

threshold split. If the inter-shards links were not formed using the randomization method, but

rather were simply formed using the name order, reconstruction would potentially involve test-

ing three shard tuples:〈Sa,Sb,Sc, /0, /0〉, 〈 /0,Sa,Sb,Sc, /0〉 and 〈 /0, /0,Sa,Sb,Sc〉. However, if the

shards were connected using the randomized method, reconstruction attempts would need to

include combinations with interspersed empty shards, suchas〈 /0, /0,Sa,Sb,Sc〉, 〈 /0,Sa, /0,Sb,Sc〉,

〈 /0,Sa,Sb, /0,Sc〉, . . .

The second strategy, the ring heuristic, utilizes the circular structure of the shard
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tuples, depicted in Figure 4.9. This approach only attemptsto reconstruct cycles of lengthn,

and provides two important advantages. First, it efficiently reduces the potential solution space

to a manageable number of recovery candidates. Second, because the ring heuristic identifies

all n members of a shard tuple, the shard names impose a full ordering. One disadvantage of

this approach is that it requires a lot of shards. However, given an incomplete set of shards, the

ring heuristic can be used as a first pass algorithm to quicklyrecover the full shard tuples and

reduce the solution space for the remaining, unrecovered secrets. These can then be recovered

using the naı̈ve approach.

In addition to approximate pointers, there are other hints in the structure of the data

entities, illustrated in Figure 4.6, that are useful with both the naı̈ve approach and the ring

heuristic. First, a hash of the fragment is used to confirm a successful reconstruction. Second,

each reconstructed fragment includes a list of the secret shards that it produces. Using this list,

reconstruction of a secret from less thann shards will reveal the IDs of then−m shards that

were not used. In a recovery scenario, the shards that correspond to these IDs can be removed

from the set of unused shards, thereby reducing the remaining solution space. It is important

to note these hints are primarily usefulafter a block has been reconstructed; less thanm of n

shards containno information, and the hints themselves are only present in the reconstructed

block.

4.3 Experimentation and Discussion

My experiments with POTSHARDS were designed to explore boththe system, and

the novel security model that I have developed. First, I wanted to evaluate the performance

of the system in order to establish its effectiveness, and toidentify any potential bottlenecks.

Second, I wanted to demonstrate the ability of POTSHARDS to recover from a lost archive.

Third, I wanted to demonstrate the effectiveness of approximate pointers, and understand their

behavior. Finally, I wanted to explore the unique security model of POTSHARDS.

The current version of POTSHARDS consists of roughly 1,400 lines of Python ver-

sion 2.5 code. For improved buffer management, versus standard Python lists, SciPy ver-

sion 1.1.0 arrays were utilized extensively. Further, while most of the current version is im-

plemented in native Python with SciPy code, an exception wasthe threshold secret splitting

scheme. For this, I utilized an optimized C library, developed by Kevin M. Greenan, that in-
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Splitting Parameters

first split, second split Ingestion (MB/s) Extraction (MB/s)

(1, 1, null), (1, 1, null) 46.00 16.70

(1, 1, null), (3, 3, XOR) 26.18 16.26

(1, 1, null), (2, 3, Shamir) 8.09 9.25

(1, 1, null), (3, 4, Shamir) 5.05 8.05

(2, 2, XOR), (2, 3, Shamir) 4.17 6.12

Table 4.1: Ingestion and extraction performance for a variety of configurations. The splitting
parameters are expressed in tuples of the form(m,n,algorithm where the first tuple corre-
sponds to the first split, and the second tuple to the second split. For testing, a pass-through
algorithm named ”null” was created which appends metadata but does no secret splitting.

cludes aGF(28) arithmetic based implementation of Shamir’s linear interpolation algorithm [67].

All of my experiments were performed on identical hardware,and were the only

processes running aside from basic system processes. Each host was equipped with four dual-

core AMD OpteronTM 2212 processors with 8 GB of RAM and ran Linux 2.6.18-92.el5.

During these experiments, the data transformation component utilized object sizes

of 750 KB. Since POTSHARDS is designed for archival storage,block sizes are expected to

be relatively large, on the order of a few hundred kilobytes to a megabyte, and possibly larger.

Additionally, the default approximate pointer width,R, was 30. Unless otherwise noted, the first

layer of secret splitting used an XOR based algorithm and produced two fragments per object,

and the second layer utilized a 2 of 3 Shamir threshold scheme. The workloads consisted of

randomly generated files, all larger than 1MB in size. While these files are representative of the

files that a long-term archive might contain, it is importantto note that POTSHARDS sees all

objects as the same, regardless of the object’s origin or content.

4.3.1 Read and Write Performance

My first set of experiments evaluated the ingestion and extraction performance of

the POTSHARDS client. Table 4.1 presents the throughput of asingle POTSHARDS client

at various parameters. A workload of randomly selected academic literature totaling 25 MB

was selected as it provided stable throughput numbers, and reflects the type of data likely to be

encountered by an archival system.
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In order to establish a performance upper-bound for the client operations, I created a

pass-through algorithm that did no secret splitting but left all other client operations — such as

metadata processing and index generation — intact. The results with this “null” splitter, seen

in the first line of Table 4.1, show that extraction lags considerably behind ingestion. This is

largely a factor of system write caching.

With an upper bound established, my goal was to measure the performance of the

secret splitting operations. As Table 4.1 shows, simple XORsplitting is considerably faster

than the compute intensive Shamir algorithm. For reference, in isolated tests, my optimized

Shamir implementation achieved secret splitting throughput of 7.6 MB/s, and a secret combin-

ing throughput of 19.3 MB/s with a 3 of 5 split. Extraction times withm of n secret splitting

algorithms are often faster than ingestion times for two reasons. First, ingestion involves the

overhead of generating random data for the secret splittingalgorithms. Second, secret regen-

eration in the extraction process begins as soon as sufficient shares have been obtained; recon-

struction does not need to wait for alln shares.

Finally, Table 4.1 shows the client throughput with a first level XOR split and a second

level Shamir split, the “default” POTSHARDS configuration.This arrangement demonstrated

the slowest throughput rates, although this is to be expected for a number of reasons. First, with

two levels of secret splitting, there are two levels incurring a random data generation penalty.

Second, and more importantly, with an initial(2,2,xor) split, followed by a(2,3,Shamir) split,

the second level splitter is splitting over twice as much data as the user had submitted. Further

in my experiments, system throughput is measured from the user’s perspective; demands inside

the system are six times those seen by the client.

4.3.2 Archive Reconstruction

The archive recovery mechanisms were run on the local systemusing eight 1.5 GB

archives. Each redundancy group in the experiment contained eight archives encoded using

RAID 5. A 25 MB client workload was ingested into the system using 2 of 2 XOR splitting and

2 of 3 Shamir splitting, resulting in 150 MB of client shards,excluding the appropriate parity.

After the workload was ingested, an archive was failed. I then used a static recovery man-

ager that sent reconstruction requests to all of the available archives and waited for successful

responses from a fail-over archive. Once the procedure completed, the contents of the failed
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Secrets 10 20 50

(2,3) 37.08 94.28 698.89

(2,4) 68.01 202.42 1523.41

(3,4) 1872.14 10305.86 180080.86

Table 4.2: Recovery time, in seconds, for a variety of secretsplitting parameters using the
brute-force approach in which approximate pointers are notused.

archive and the reconstructed archive were compared. This procedure was run three times, re-

covering at 14.5 MB/s, with the verification proving successful on each trial. The procedure

was also run with faults injected into the recovery process to ensure that the verification process

was correct.

4.3.3 User Data Recovery

In the absence of approximate pointers, reconstructing data from a set of shards is a

difficult combinatorics problem. Lacking any outside information, each shard must be matched

with every other shard and a reconstruction attempt must be made on every chain of length

m. Approximate pointers enable the reconstruction of user data in a reasonable time. The

experiments of this section were designed to explore the difference between the various recovery

heuristics, and to understand how different naming and splitting parameters affect recovery.

4.3.3.1 Recovery Heuristics

In other to establish a recovery baseline, a pure combinatorics approach of attempt-

ing reconstruction on every combination ofm shard was attempted. This strategy, while still

time consuming, takes advantage of two aids. First, the shard names provide at least a partial

ordering. Second, the appended hash can confirm a successfulreconstruction. As expected, the

results of Table 4.2 shows that this approach does not scale beyond a handful of shards, and

serves only as a baseline or last resort recovery strategy.

With a baseline established, I evaluated usefulness of approximate pointers with both

the naı̈ve and the ring heuristic described in Section 4.2.5. While user indices provide for effi-

cient read and write performance under most access scenarios, Figure 4.10 shows that approxi-
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Figure 4.10: Recovery time, in seconds, for various values of m and n with both the naı̈ve
approach and the ring heuristic. Reconstruction plots thatuse the ring heuristic are shown using
a dashed line.

mate pointers can provide adequate recovery performance when an index is unavailable. As the

number of shards increases, the ring heuristic provides dramatically faster recovery times when

compared to the naı̈ve approach, and both are orders of magnitude faster than the approach that

does not use approximate pointers, as shown in Table 4.2. This is quite apparent when com-

paring the recovery times for data resulting from a 3 of 4 split. The ring heuristic was able to

recover 2,600 secrets in 1,251 seconds; in contrast, the na¨ıve approach took 17,712 seconds.

Even this, however, is an improvement compared to the brute-force approach which required

over 180,000 seconds to recover just fifty secrets.

Recovery times are largely computationally limited becausemof n threshold schemes

often rely upon expensive operations. Thus, in addition to recovery times, I can also measure

the efficiency of the strategies based on how often they select false shard tuples. By this defi-

nition, perfect efficiency would be achieved if every shard tuple selected reconstructed a valid

secret. Figure 4.11(a) shows the comparison of three different secret splitting settings and their

recovery efficiency. From my experiments, two things are evident. First, the ring heuristic is

very efficient at selecting valid shard tuples with all threeof the secret splitting settings. Second,

larger values ofm adversely affect the efficiency of the naı̈ve approach. Thisis due to the fact

that asm increases, the number of paths of lengthm increases greatly. Given a shard with an

approximate pointer that points toR candidate shards, and a namespace density ofD = (0,1],
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(a) Share Tuple Selection Efficiency
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(b) Shamir Call Efficiency

Figure 4.11: Efficiency of different recovery strategies asthe total number of shards increases.
Efficiency of shard tuple selection is the percentage of tuples selected by the recovery heuristic
that reconstruct a valid secret. Efficiency of the Shamir call is the percentage of reconstruction
attempts that reconstruct a valid secret. The ring heuristic was used with all three secret splitting
parameter settings and each gave similar results. Thus, allof the results obtained using the ring
heuristic were averaged and shown as one plot in order to improve clarity.
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there are(RD)m−1 possible paths. Thus, on average,1
2(RD)m−1 paths must be tested by the

naı̈ve approach.

The difference between the ring heuristic and the naı̈ve approach is even more pro-

nounced when the efficiency of the secret splitting operation is measured. Figure 4.11(b) clearly

illustrates two important points. First, the ring heuristic benefits from a full shard tuple and thus

a total ordering over the secret shares. Therefore, each potential shard tuple selected by the

ring heuristic only needs to be tested by the Shamir reconstruction operation once. Figure 4.11

shows the result; the efficiency of the ring heuristic is the same at the shard tuple selection

level as it is at the secret splitting operation level. In contrast, with onlym of the totaln se-

cret shares, the shard names only provide a partial ordering. Thus, a shard tuple selected by

the naı̈ve scheme must be tested by the secret splitting reconstruction operation up to n!
m!(n−m)!

times before it can be confirmed as invalid.

It might be tempting to believe the ring heuristic provides an additional layer of data

secrecy because a user with only a partial set of shards is unable to utilize the ring heuristic to its

full potential. However, it is important to bear in mind thatonce an intruder has enough shards

to reconstruct data, security is only computationally bound; subsequently, it must be assumed

that it is only a matter of time until data is revealed. Thus, the system’s goal is to survive long

enough and make attacks noticeable enough to prevent an adversary from acquiring sufficient

shards to computationally recover plaintext blocks.

4.3.3.2 Population

The populationof an approximate pointer can be described as the number of valid

shards indicated by each approximate pointer and is closelytied to the width of the approximate

pointer. For example, a well-formed traditional pointer would have a population of one shard

per pointer and a null pointer has (rather appropriately) a population of zero shards. Further,

suppose an approximate pointerp indicates a region[p− 2, p+ 2]. If there are three shards

in this range,p−2, p+1, p+2, the density ofp is 0.6. Managing population is important

because, if it is too high, it will be more difficult to detect intruders and will negatively affects

recovery times. On the other end of the spectrum, if the number of shares per approximate

pointer is too low, an unacceptable portion of the namespaceis being wasted.

The density of a region, as calculated by dividing the population, P, of a region by its
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Figure 4.12: The effect of the approximate pointers’ populations on the time to recover 2,600 se-
crets using the ring heuristic. In these tests, population,P, was modified by adjusting the size
of the region,R, indicated by the approximate pointer; density was kept constant.

size,R, affects the ease with which malicious data accesses can be detected. Suppose a fictional

adversary has obtained a shard and is requesting additionalshards based on the approximate

pointer. Assuming the attacker is restricted to making one request at a time, there are a number

of possible outcomes of a shard request. First, there is a chance, approximately 1−P/R, that the

attacker will make aninvalid guessby requesting a shard that does not exist (name assignment

within a region is random, and hence the number of valid shards in a region may not be precisely

P). This property is integral to the use of approximate pointers with a sparse namespace because

this outcome is very noticeable by an archive, which can log the invalid access. Second, there

is the chance that a malicious attacker will successfully make acorrect guess. In this scenario,

correctness is defined as successfully requesting the shardthat actually belongs to the same

shard tuple as their current shard. Third, there is a chance that the attacker can make avalid

guess. If a guess is valid, then there is an actual shard at the requested address, but it does

not belong to the same shard tuple as the attacker’s shard. Thus, all correct guesses are valid

guesses, but the reverse is not true. Both correct and valid guesses are difficult to use in detecting

attackers because normal users as well as attackers make them. However, invalid guesses are

much more often unique to attackers because normal users will typically know exactly which

shards they need and not request nonexistent shards.

The population of an approximate pointer also has an effect on data recovery times.

Even with the ring heuristic, recovering objects from shards, when faced with no other outside
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information, amounts to controlling a combinatorics problem of exponential growth. This is

evident in Figure 4.12 which shows the recovery time for 2,600 secrets at various population

levels per pointer. Population was increased by modifying the width,R, of the approximate

pointers; the shard density was constant. The tests were runutilizing the ring heuristic and, as

would be expected, the tests that required cycles of length four to be tested grew at a faster rate

than those that only had to test cycles of length three.

4.3.4 Security Model

4.3.4.1 Secret Splitting Parameters

The secret splitting parameters used greatly affect many aspects of the system’s secu-

rity including data leakage, recovery times and efficiency.The three aspects of secret splitting

parameter selection include the values ofm, n and the difference between the two,n−m.

Higher values ofm provide a higher level of data protection, but can also lead to

higher recovery times. As Figure 4.13 and Figure 4.14 illustrate, less data was leaked when

larger values ofm were used. However, there is the risk that recovery times will be higher

if less than the full shard tuple can be acquired. While approximate pointers and the naı̈ve

approach are still useful, Figure 4.10 and Figure 4.11 demonstrate that higher values ofm incur

a penalty for recoveries with less than a full set ofn shards. This scenario can, however, be

mitigated in two ways. First, a hybrid solution can be utilized in which as many secrets as

possible are recovered using the ring heuristic. Then, the remaining shards can be recovered

using the naı̈ve approach. Second, as Figure 4.6 illustrates, the list of shard identifiers that

a fragment generates is appended to the fragment. Thus, uponsuccessful reconstruction of a

fragment from onlym shards, the remaining shards can be identified and removed from the list

of unused shards. This reduces the solution space for the subsequent secret recoveries. The

results of my experiments suggest that larger values ofm should be chosen when secrecy is a

priority over potential recovery times.

In anm of n threshold scheme, the value ofn directly impacts the storage overhead

and in turn the namespace density. One technique for managing the namespace relies on careful

name allocation. Entities that draw security directly fromtheir position in the namespace, such

as shards that rely on noticeable attacks, should be placed sparsely. In contrast, entities that do

not draw their security from their position in a namespace can be densely packed. For example,
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when performing a two-layer split, the identifiers for the original data and the identifiers for

the results of the first split can all be drawn from a small, densely packed portion of the total

namespace. The majority of the namespace, however, can be sparsely populated and devoted to

shard names.

Despite their increased namespace overhead, higher valuesof n do provide security

benefits. As Figure 4.13 shows, higher values ofn can be useful for limiting the amount of

information leaked, albeit mostly as a result of allowing higher values ofm. To this end, the

experimentation suggests that a higher value ofn, along with a correspondingly higher value of

m, provides the most protection against lost data.

4.3.4.2 Risk of Data Compromise

While secret splitting and approximate pointers are designed to make attempts to steal

specific shards easy to detect and survive, there is also the possibility that a large scale com-

promise could occur. This could occur in a scenario in which shards are stored in a distributed

manner across several data stores. If some of those archivesare either compromised or collude

to reconstruct data, there is the possibility of data being revealed.

To determine the amount of data that can be revealed from a large scale compromise,

and to better understand how to limit it, I measured the data that could be regenerated from

a random subset of secret shares. In my experiment, 2,600 secrets were split using Shamir’s

linear interpolation scheme. From the resulting set of secret shares, an increasing percentage

was randomly selected and as much data as possible was recovered. The results, shown in

Figure 4.13, indicate two things. First, less data is released when bothm andn increase and

n−m is held constant. In my experiment, using a 3 of 4 split revealed the least amount of

information. Second, for a fixedm, increasingn reveals an increasing amount of information.

This is not unexpected as the odds of randomly selecting a secret share from a given tuple

increase as the size of the tuple increases. In fact, threshold schemes are often used because of

the availability that can be achieved by increasing the value of n.

One approach to minimizing data loss from large scale compromises is the two-level

secret splitting technique used by POTSHARDS. To test the benefits of this strategy, I utilized

an initialn of n XOR based split. Each of the resulting shares is then split using Shamir’smof n

threshold scheme. The results, for two different values ofn at the XOR split, are shown in
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Figure 4.13: Percentage of 2,600 total blocks (secrets) that could be recovered by an adversary
in a large-scale compromise. Tests were performed over randomly selected, partial sets of secret
shares.

Figure 4.14 and indicate that the additional level of secretsplitting is effective at lowering the

amount of information released. Also, as in the single split, larger values ofn−mat the second

layer of secret splitting still resulted in higher amounts of information loss.

Our experiments also indicate that a larger split at the firstlevel of splitting further

limited the amount of information loss. This is evident in Figure 4.14(b), which shows that

revealing 20% of the total number of secret shares under a first level 3 of 3 split revealed no

data, regardless of the second-level split. The same 20% compromise with a first level split of

two and second level 2 of 3 or 2 of 4 split resulted in 0.42% and 0.50% of the total number of

secrets being revealed, respectively. Even with 60% of the total number of secret shares and a

3 of 4 Shamir split, a first level split of three only revealed an average of 0.68% of the secrets.

In contrast, with 60% of the secret shares, a first level splitof two revealed 5.46% and the single

layer of splitting alone revealed 24.69%. Of course, 60% of the total number of secret shares

represents a very large scale compromise—over half of the shares stored for the user have been

acquired; I expect that compromises are more likely to result in 10% or fewer shares being

acquired, given the intrusion detection approaches made possible by sparse namespaces.

Of course, while my results do show that multiple layers of secret splitting enhance

security, they do incur a storage penalty. As Figure 4.6 shows, there is already a constant amount

of storage overhead in the form of hashes and identifiers. These costs are, however, dominated

by the storage blowup intrinsic to secret splitting. This situation is exacerbated by multiple
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(a) Top Level XOR Split of Two
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(b) Top Level XOR Split of Three

Figure 4.14: Percentage of 1,300 total blocks (secrets) that could be recovered by an adversary
in a large-scale compromise. Tests were performed over randomly selected, partial sets of secret
shares in which secrets were guarded through two levels of secret splitting: a top level XOR
split and a lower level threshold split.
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levels of splitting. For example, a first level split of threealong, with a second 3 of 4 split incurs

a storage blowup of twelve.

A system that distributes secret shares to multiple archives can further limit data loss

through careful share distribution. In my experiments, allsecret shares were pooled and recon-

struction was attempted on a random subset of those shares. In a storage model where shares

are distributed to independent archives, a more likely scenario of large scale compromise is for

an adversary to acquire all of the shares on a single archive.In this situation, rather than com-

promising a random subset of shares, the compromise would bea specific subset: shares that

reside on the compromised archives. To this end, careful distribution of shares to archives could

further limit data loss.

4.3.4.3 Chaff Shards

When a shard that does not exist is requested, either mistakenly or due to a ma-

licious user, there are two possible responses: an error message or a chaff shard. The use of

chaff [21, 140] (fake packets) has been suggested as an approach to providing data secrecy with-

out encryption. A key difference, however, is that the “chaffing and winnowing” strategy uses

chaff as its primary secrecy mechanism. In the model that I aminvestigating, secrecy comes

primarily from secret splitting. Thus, in my model, when a request is made for a shard that does

not exist, a seemingly valid chaff shard is generated and returned to the user.

The primary security advantage of chaff is that the attackeris not alerted that the

request for a false shard has been detected. This is not unlike a silent alarm that alerts authorities

without raising the suspicion of the intruder. Thus, the role of chaff is not to slow down recovery

time. In a scenario where a malicious user has obtained sufficient shards, it is only a matter of

time before the data is revealed regardless of the existenceof chaff. Data secrecy, whether from

encryption or secret sharing, is reducible to a computationally-bound problem once an intruder

has acquired enough ciphertext. Thus, the existence of chaff shards is similar to an increased

key size in that it makes the problem more difficult but it doesnot fundamentally change the

potential for data exposure.

There are two possible strategies for dealing with a user that requests a shard multiple

times in order to test its validity; if a shard is requested twice, but the returned result is different

each time, it is clear to the user (or attacker) that the shardis simply chaff. First, chaff can
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Figure 4.15: The effect of chaff on the time to recovery 1000 secrets. Recovery attempts that
utilized the ring heuristic are shown using a dashed line.

be generated using a deterministic process. Alternatively, the chaff can be generated randomly

and then stored. One issue with the second strategy is that a user could attempt to intentionally

request false shards in order to pollute a user’s set of shards. The aim of such an attack might be

to use the increased recovery time as a type of denial of service attack. In fact, as Figure 4.15

demonstrates, chaff does not dramatically increase the recovery time, especially if the user is

able to utilize the ring heuristic.

4.4 Publication History and Status

The publication history of POTSHARDS covers a wide gamut. Early on in the project,

two papers were published that document the system’s development. The earliest published

work for the project appeared in 2005, at the Security in Storage Workshop (SISW) [163]. This

paper represents early design ideas, and has been largely supplanted by subsequent publications.

Second, in 2006, a short workshop paper was presented at the Storage Security and Survivabil-

ity (StorageSS) workshop that outlined many of the securitythreats that POTSHARDS was

designed to guard against [162].

The primary POTSHARDS paper appeared in 2007, at the USENIX Annual Technical

Conference [165]. The results reported in this paper were based on a Java based implementation

that suffered from poor performance, but still demonstrated the design’s feasibility and merit.
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In an effort to realize better performance, the entire system was rewritten using Python

and C for computation intensive operations. In addition to producing better performance num-

bers, this system was also used to perform an in depth evaluation of the system’s security.

Results gathered from this implementation, along with the latest design ideas have been doc-

umented, and submitted to the ACM’s Transactions on Storage(TOS) journal. Pending minor

revision, it is due to be published in early 2009.

Long-term security remains a relatively new area, and the design of POTSHARDS

includes a number of areas that would benefit from further study. Currently, POTSHARDS

depends on strong authentication and intrusion detection to keep data safe, but it is not clear

how to defend against intrusions that may occur over many years, even if such attacks are

detected. One potential approach would be to refactor data so that partial progress in an intrusion

can be erased by making new shards “incompatible” with old shards [196]. Unlike the failure

of an encryption algorithm, which would necessitate wholesale re-encryption, refactoring for

security could be done over time to limit the window over which a slow attack could succeed.

Refactoring could also be applicable to secure migration ofdata to new storage devices.

Another area of improvement that would increase the feasibility of POTSHARDS

would be a reduction in storage overhead. Some information dispersal algorithms may have

lower overheads than Shamir secret splitting. Assuming that the system’s information-theoretic

security properties can be maintained, these algorithms may prove useful.

4.5 Conclusion

This chapter discussed POTSHARDS, a system designed to provide secure long-term

archival storage to address the new challenges and new security threats posed by archives that

must securely preserve data for decades or longer. The goal is to create a security model that

relies not on a large key-space, but on surviving attacks andmaking attacks easy to detect and

respond to.

Experiences with an early implementation show that users can store data at over

4 MB/s and retrieve user data over 6 MB/s. Since POTSHARDS is an archival storage sys-

tem, throughput is more of a concern than latency, even theseunoptimized throughputs exceed

typical long-term data creation rates for most environments.

Experiments also show that the ring heuristic is effective at recovering data from
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even a large set of secret shares. From an efficiency standpoint, the total ordering that the ring

heuristic imposes over a potential shard tuple provides a dramatic improvement compared to the

naı̈ve approach of testing only paths of lengthm. Additionally, I demonstrate that increasing

m and utilizing multiple levels of secret splitting can minimize the amount of data revealed in

the event of a large scale data compromise. My experiments also show that chaff shares do not

dramatically increase recovery times. Thus, their benefit is primarily to act as a silent alarm,

which does not alert an adversary that they have been detected.

By addressing the long-term threats to archival data while providing reasonable per-

formance, POTSHARDS provides reliable data protection specifically designed for the unique

challenges of secure archival storage; the use of secret splitting, a sparse namespace and ap-

proximate pointers are well suited to the unique secrecy andrecovery demands of archival data

with a potentially indefinite lifetime. Storing data in POTSHARDS ensures not only that it will

remain available for decades to come, but also that it will remain secure and can be recovered

by authorized users even if all indexing is lost.
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Chapter 5

Energy-Efficient, Archival Storage

Yet it is in our idleness, in our dreams, that the submerged

truth sometimes comes to the top

Virginia Woolf

An area of scalability largely overlooked by traditional system is the ability to scale

over time [18, 19]. With Pergamum, I demonstrate my thesis statement — archival storage is a

first class storage category that requires solutions tailored for long-lived data — by describing

a system designed specifically for efficient, long-term datastorage. Unlike traditional systems,

Pergamum favors evolvability and cost efficiency over absolute performance, a design choice

that is valid for archival data.

Pergamum introduces several new techniques to disk-based archival storage. First,

my system distributes control to the individual devices, rather than centralizing it, by including

a low-power CPU and network interface on each disk; this approach reduces power consump-

tion by eliminating the need for power-hungry servers and RAID controllers. Systems such as

TickerTAIP [26] used distributed control in a RAID, but did not include reliability checking and

power management. Second, Pergamum aggressively ensures data reliability using two forms

of redundancy: intra-disk and inter-disk. In the former, each disk stores a small number of

redundancy blocks with each set of data blocks, providing a self-sufficient way of recovering

from latent sector errors [16, 17]. In the latter, Pergamum computes redundancy information

across multiple disks to guard against whole disk failure. However, unlike existing RAID sys-

tems, Pergamum can stagger inter-disk activity during datarecovery, minimizing peak energy
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consumption during rebuilding. Third, energy-efficient decentralized integrity verification is en-

abled by storing data signatures for disk contents in NVRAM.Thus, using just the signatures,

Pergamum tomes can verify the integrity of their local contents and, by exchanging signatures

with other Pergamum tomes, verify the integrity of distributed data without incurring any spin

up costs. Finally, the Pergamum architecture allows disk-based archives to look like tape: an

individual Pergamum tome may be pulled out of the system and read independently; the remain-

ing Pergamum tomes will eventually treat this event like a disk failure and rebuild the “missing”

data in a new location.

The goal of Pergamum, is to realize significant cost savings by keeping the vast ma-

jority, as many as 95%, of the disks spun down while still providing reasonable performance and

excellent reliability. My techniques allow Pergamum to greatly reduce energy usage, as com-

pared to traditional hard drive based systems, making it suitable for archival storage. The use

of signatures to verify data reduces the need to power disks on, as does the reduced scrubbing

frequency made possible by the extra safety provided by intra-disk parity. Similarly, stagger-

ing disk rebuilds reduces peak power load, again allowing Pergamum to reduce the maximum

number of disks that must be active at the same time. While I believe these techniques are best

realized in a distributed system such as Pergamum—the use ofmany low-power CPUs is more

efficient than a few high-power servers—they are also suitable for use in more conventional

MAID architectures, and could be used to reduce power consumption in them as well.

5.1 System Components

The design of Pergamum was driven by a workload that exhibitsread, write and delete

behavior that differs from typical disk-based workloads, providing both challenges and oppor-

tunities. The workload is write-heavy, motivated by regulatory compliance and the desire to

save any data thatmightbe valuable at a later date. Reads, while relatively infrequent, are often

part of a query or audit and thus are likely to be temporally related. Deletes are also likely

to exhibit a temporal relationship as retention policies often specify a maximum data lifetime.

This workload resembles traditional archival storage workloads [127, 202], adding deletion for

regulatory compliance.

The Pergamum system is structured as a distributed network of independent storage

appliances, as shown in Figure 5.1. Alone, each Pergamum tome acts as an intelligent storage

84



NVRAM

Hard

Drive

CPU

Figure 5.1: High-level system design of Pergamum. Individual Pergamum tomes, described in
Section 5.1.1 are connected by a commodity network built from off-the-shelf switches.

device, utilizing block-level erasure coding to survive media faults and algebraic signatures

to verify block integrity. Collectively, the storage appliances provide data reliability through

distributed RAID techniques that allow the system to recover from the loss of a device, and

inter-disk data integrity by efficiently exchanging hash trees of algebraic signatures. As I will

show, this approach is so reliable that disk scrubbing [149]need not be done more frequently

than annually. In addition, lost data can be rebuilt with lower peak energy consumption by

staggering disk activity; this approach is slower, but reduces peak power consumption.

The next two sections discuss the design and implementationof Pergamum and im-

plementation of these techniques. This section describes an individual Pergamum appliance,

or tome, including its components, intra-appliance redundancy strategy, interconnection net-

work, and interface. Section 5.2 then describes how multiple storage appliances work together

to provide reliable, distributed, archival storage, including a description of the system’s inter-

appliance redundancy and consistency checking strategy.

5.1.1 Pergamum Tomes

A Pergamum tome is a storage appliance made up of four main components: a low-

power processor, a commodity hard drive, non-volatile flashmemory and an Ethernet controller.

To protect against media errors, erasure coding techniquesare used on both the hard drive and
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Component Power

SATA Hard Drive [191] 7.5 W

ARM-based board (w/ NIC) [15] 3.5 W

NVRAM < 0.6 W

Table 5.1: Active power consumption (in watts) of the four primary components that make up a
Pergamum tome.

flash memory.

Each Pergamum tome is managed by an on-board, low-power CPU;a modern ARM-

based single board computer consumes 2–3 W when active (using a 400 MHz CPU) and less

than 300 mW when inactive [15]. The processor handles the usual roles required of a network-

attached storage device [60, 61] such as network communications, request handling, metadata

management, and caching. In addition, each Pergamum tome’sCPU manages consistency

checking and parity operations for the local drive, responds to search requests, and initiates

communications with other disks to provide inter-disk reliability. The processor can also be

used to handle other operations at the device level, such as virus checking and compression.

Persistent storage is provided through the unit’s SATA-class hard drive. The use of

commodity hardware offers cost savings over more costly SCSI and FC drives while providing

acceptable performance for archival workloads. By using both intra-disk redundancy and dis-

tributed redundancy groups, commodity SATA-class drives can provide excellent reliability for

long-term archival storage [147].

While a single processor could manage multiple hard drives,Pergamum pairs each

processor with a single hard drive. This is done for performance matching, power savings, and

ease of maintenance. As Section 5.3 details, low-power processors are not fast enough to run

even a single disk at full speed, so there is little incentiveto control multiple disks with a single

CPU. Power savings is another issue: a faster CPU and multi-disk controller would consume

more power than multiple individual low-power CPUs (cutting processor voltage in half results

in half the clock speed but one fourth the power consumption). Finally, the pairing of a CPU

with a single disk and network connection makes it simpler toreplace a failed Pergamum tome.

If any part of the Pergamum tome fails, the entire Pergamum tome is discarded and replaced,

rather than trying to diagnose which part of the Pergamum tome failed to “save” working hard
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drives. The system then heals itself by rebuilding the data from the failed device elsewhere in

the system. By reducing the complexity of routine maintenance, Pergamum reduces ongoing

costs.

In addition to a hard drive, each Pergamum tome includes a pool of on-board NVRAM

for storing metadata such as the device’s index, data signatures and information about pending

writes. The purpose of the NVRAM is to provide low-power, persistent storage; operations

such as metadata searches and signature requests do not require the unit’s drive to be spun up.

While the use of flash-type NVRAM provides better persistency and energy-efficiency com-

pared to DRAM, it does raise two issues: reliability and durability. Pergamum tome protects

the flash memory from erroneous writes and media errors through the use of page-level protec-

tion and consistency checking [66], ensuring memory reliability. Flash memory is also limited

in that the memory must be written in blocks, and each block may only be rewritten a finite

number of times, typically 104–105 times. However, since the NVRAM primarily holds meta-

data such as algebraic signatures and index information, flash writes are relatively rare; flash

writes coincide with disk writes. Because this typically occurs fewer than 1000 times per year,

or 8000 times during the lifetime of a disk, even if the flash memory is totally overwritten each

time, such activity will still be below the 10,000 write cycles that flash memory can support.

Additionally, while the current implementation uses NAND flash memory, other technologies

such as MRAM [173] and phase change RAM [30] could be used as they become available and

price-competitive, further reducing or eliminating the rewrite issue.

Finally, each Pergamum tome includes an Ethernet controller and network port, pro-

viding a number of important advantages. First, a network connection is a standardized interface

that changes very slowly—modern Ethernet-based systems can interoperate with systems that

are more than fifteen years old. In contrast, tape-based systems require a unique head unit for

each tape format, and each of those devices may require a different interface; supporting legacy

tapes could require the preservation of lengthy hardware chains. The use of a network also elim-

inates the need for robotics hardware (or humans) to load andunload media; such robots might

need to be modified for different generations of tape media and must be maintained. Instead,

the system can use commodity network interconnects, leaving all media permanently connected

and always available for messaging.

87



5.1.2 Interconnection Network

Since Pergamum must contain thousands of disks to contain the petabytes of data that

long-term archives must hold, its network must scale to suchsizes. However, throughput is not

a major issue for such a network—a modern tape silo with 6,000tapes typically has fewer than

one hundred tape drives, each of which can read or write at about 50 MB/s, for an aggregate

throughput of 5 GB/s. Scaling a gigabit Ethernet network to support comparable bandwidth can

be done using a star-type network with commodity switches atthe “leaves” of the network and,

potentially, higher-performance switches in the core. Forexample, a system built from 48-port

gigabit Ethernet switches could use two switches as hubs for48 switches, each of which sup-

ports 46 disks, with the remaining two connections going to each of the two hubs. This approach

would support over 2200 disks at minimal cost; if the centralhubs each had a few 10 Gb/s up-

links, a single client could easily achieve bandwidth above5 GB/s. This structure could then

be replicated and interconnected using a more expensive 10 Gb/s switch, allowing reasonable-

speed access to any one of tens of thousands of drives, with the vast majority remaining asleep

to conserve power.

The interconnection network must allow any disk to connect with any network-connected

client. By using a standard Ethernet-based network runningIP, Pergamum ensures thatanydisk

can communicate with any other disk, allowing the system to both detect newly-connected disks

and allowing them to communicate with existing disks to “back up” their own data.

The approach described above is highly scalable, with minimal “startup cost” and

low incremental cost for adding additional disks. Further efficiencies could be achieved by

pairing the Ethernet cable with a higher-gauge wire capableof distributing the 14–18 W that

a spun-up disk and processor combination requires. Alternatively, the system could use disks

that can spin at variable speeds as low as 5400 RPM [191], reducing disk power requirements

to 7.5 W and overall system power needs to below 11 W, sufficiently low to use standard power-

over-Ethernet. Central distribution of power has several advantages, including lower hardware

cost and lower cabling cost. Additionally, distributing power via Ethernet greatly simplifies

maintenance—adding a new drive simply requires plugging itinto an Ethernet cable. While the

disks in the system will work to keep average power load below5% utilization, a central power

distribution system will allow the network switches themselves to guarantee that a particular

power load will never be exceeded by restricting power distributed by the switch.
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5.1.3 Pergamum Tome Interface

There are two distinct data views in Pergamum: a file-centricview and a block-centric

view. Clients utilize the file-centric view, submitting requests to a Pergamum tome through

traditional read and write operations. In contrast, requests from one Pergamum tome to another

utilize the block-centric view of data based on redundancy group identifiers and offsets.

Clients access data on a Pergamum tome using a set of simple commands and a

connection-oriented request and response protocol. Currently, clients address their commands

to a specific device, although future versions of Pergamum will include a self-routing communi-

cations mechanism. Internally, files are named by a file identifier that is unique within the scope

of a single Pergamum tome. Thenew command allocates an unused file identifier and maps it

to a filename supplied by the user. This mapping is used by theopen command to provide the

file’s unique identifier to a client. This file id, the device’sread andwrite commands, and a

byte offset are then used by the client to access their data.

Requests between Pergamum tomes primarily utilize a data view based on segment

identifiers and block offsets, as opposed to files. There are four main operations that take

place between Pergamum tomes. First, external parity update requests provide the Pergamum

tome storing parity with the delta and metadata needed to update its external redundancy data.

Second, signature requests are used to confirm data integrity. Third, token passing operations

assist in determining which devices to spin up. Finally, there are commands for the deferred

(foster) write operations discussed in Section 5.2.3.1.

Management of Pergamum tomes can be done either with a centralized “console”

to which each Pergamum tome reports its status, or in a distributed fashion where individual

Pergamum tomes report their health via LED. For example, each Pergamum tome could have a

small green LED that is on when the appliance is working correctly, and off when it is not. An

operator would then replace Pergamum tomes whose light is off; this approach is simple and

requires little operator skill. Alternatively, a central console could report “Pergamum tome 53

has failed,” triggering a human to replace the failed unit. The Pergamum design permits both

approaches.
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Figure 5.2: Layout of data on a single Pergamum tome. Data on the disk is divided into blocks
and grouped into segments and regions. Data validity is maintained using signatures, and parity
blocks are available to rebuild lost or corrupted data.

5.2 Pergamum Algorithms and Operation

A Pergamum system, deployed as described in Section 5.1 is highly decentralized,

relying upon individual disks to each manage their own behavior and their own data. Each

disk is responsible for ensuring the reliability of the datait stores, using both local redundancy

information and storage on other nodes.

5.2.1 Intra-Disk Storage and Redundancy

The basic unit of storage in a Pergamum tome are fixed-size blocks grouped into

fixed-sizesegments, as shown in Figure 5.2. Together, blocks and segments form the basic units

of the system’s two levels of redundancy encoding: intra-disk and inter-disk. Since the system

is designed for archival storage, blocks are relatively large—128 KB–1 MB or larger—reducing

the metadata overhead necessary to store and index them. This approach mirrors that of tape-

based systems, which typically require data to be stored in large blocks to ensure high efficiency

and reasonable performance.
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The validity of individual blocks is checked using hashes; if a block’s content does

not match its hash, it can be identified as incorrect; this approach has been used in other file

systems [94, 170]. Disks themselves maintain error-correcting codes, but such codes are in-

sufficiently accurate for long-term archival storage because they have a silent failure rate of

about 10−14, a rate sufficiently high to cause data corruption in large-scale long-term storage.

To avoid this problem, each disk appliance stores both a hashvalue and a timestamp for each

block on disk. Assuming a 64-bit hash value and a 32-bit timestamp, a 1 TB disk will require

96 MB of flash memory to maintain this data for 128 KB blocks. Keeping this information in

flash memory has several advantages. First, it ensures that block validity information has a

different failure mode from the data itself, reducing the likelihood that both data and signature

will be corrupted. More importantly, however, it allows thePergamum tome to access the sig-

natures and timestamps without powering on the disk, enabling Pergamum to conduct inter-disk

consistency checks without powering on individual disks.

The hash values used in Pergamum arealgebraic signatures—hash values that are

highly sensitive to small changes in data, but, unlike SHA-1and RIPEMD, are not crypto-

graphically secure. Algebraic signatures are ideally suited to use in Pergamum because, for

many redundancy codes, they exhibit the same relationshipsthat the underlying data does. For

example, for simple parity:

d0⊕d1 · · ·⊕dn−1 = p =⇒ sig(d0)⊕sig(d1) · · ·⊕sig(dn−1) = sig(p)

While 64-bit algebraic signatures are sufficiently long to reduce the likelihood of

“silent” errors to zero; they are ineffective against malicious intruders, though there are ap-

proaches to verifying erasure-coded data using signaturesor fingerprints that can be used to

defeat such attacks [73, 148].

As Figure 5.2 illustrates, each segment is protected by one or more parity blocks,

providing two important protections to improve data survivability. First, the extra parity data

provides protection against latent sector errors [16, 17].If periodic scrubbing reveals unreadable

blocks within a segment, the unreadable data can be rebuilt and written to a new block using

only the parity on the local disk. Second, while simple scrubbing merely determines whether

the block is readable, the use of algebraic signatures and parity blocks allows a disk to determine

whether a particular block has been read back properly, catching errors that the disk drive itself

cannot [73, 148] and correcting the error without the need tospin up additional disks.
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Figure 5.3: Two levels of redundancy in Pergamum. Individual segments are protected with
redundant blocks on the same disk (P). Redundancy groups are protected by a redundancy
group parity region (R), which contain erasure correcting codes for the other segments in the
redundancy group. Note that segments used for redundancy still contain intra-disk redundant
blocks to protect them from latent sector errors.

5.2.2 Inter-Disk Redundancy

While intra-disk parity guards against latent sector errors, Pergamum can survive the

loss of an entire Pergamum tome through the use of inter-tomeredundancy encoding. Segments

on a single disk are grouped intoregions, and aredundancy groupis built from regions of

identical sizes on multiple disks. To ensure data survival,each redundancy group also includes

extra regions on additional disks that contain erasure correction information to allow data to be

rebuilt if any disks fail. Theseredundancy regionsare stored in the same way as data regions:

they have parity blocks to guard against individual block failure and the disk appliances that

host them store their algebraic signatures in NVRAM.

The naı̈ve approach to verifying the consistency of a redundancy group would require

spinning up all the disks in the group, either simultaneously or in sequence, and verifying that

the data in the segments that make up the regions in the group is consistent. Pergamum dramat-

ically reduces this overhead in two ways. First, the algebraic signatures stored in NVRAM can

be exchanged between disks in a redundancy group and verifiedfor consistency as described in

Section 5.2.1. Since the signatures are retrieved from NVRAM, the disk need not be spun up

during this process as long as changes to on-disk data are reflected in NVRAM. If inconsisten-

cies are found, the timestamps may be used to decide on the appropriate fix. For example, if a
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Figure 5.4: Trees of algebraic signatures. Tomes in a redundancy group exchange the roots
of their trees to verify consistency; in this diagram, the signatures marked with a skull are
inconsistent. The roots (L0) are exchanged; since they do not match, the nodes recurse down
the tree to L1 and then L2 to find the source of the inconsistency. “Children” of consistent
signatures (signatures outline with a dotted line at L2) arenot fetched, saving transmission and
processing time. The inconsistent block on tome 1 is found bychecking the intra-segment
signatures on each block; only those on tome 1 were inconsistent. Note that only tome 1’s disk
need be spun up to identify and correct the error if it is localized.

set of segments is inconsistent and a data segment is “newer”than the newest parity segment,

the problem is likely that the write was not applied properly; depending on how writes have

been applied and whether the “old” data is available, the parity may be fixed without powering

up the whole set of segments.

While this approach only requires that signatures, rather than data, be transmitted, it is

still very inefficient, requiring the transmission of nearly 100 MB of signatures for each disk to

verify a redundancy group’s consistency. To further reducethe amount of data and computation

that must be done, Pergamum uses hash trees [111] built from algebraic signatures, as shown

in Figure 5.4. Using signatures of blocks asdi in Equation 5.2.1 shows that signatures of sets

of signatures follow the same relationships as the underlying data; this property is maintained

all the way up to the root of the tree. Thus, the signatures at the roots of each disk’s hash tree

for the region should yield a valid erasure code word when combined together. If they do not,

some block in the redundancy group is invalid, and the disks recurse down the hash tree to find

the bad block, exchanging the contents at each level to narrow the location of the “bad” block.

This approach requiresO(k) computation and communication when the group is correct—the

normal case—andO(k logn) computation and communication to find an error in a redundancy

group with a total ofn blocks acrossk disks. Since redundancy groups are not large (k ≤ 50,
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typically), high-level redundancy group verifications canbe done quickly and efficiently.

5.2.3 Disk Power Management

Reducing power consumption is a key goal of Pergamum; since spinning disks are

by far the largest consumer of power in a disk appliance, keeping the disk powered off (“spun

down”) dramatically reduces power consumption. In contrast to earlier systems that aim to

keep 75% of the disks inactive [68], Pergamum tries to keep 95% or more of the disks inactive

all of the time, reducing disk power consumption by a factor of five or more over existing

MAID approaches. This goal is achieved with several strategies: sequentially activating disks to

update redundancy information on writes, low-frequency scrubbing, and sequentially rebuilding

regions on failed disks.

To guard against too many disks being spun up at once, Pergamum usesspin-up to-

kens, which are passed from one node to another to allow spin-up. If multiple nodes require a

token simultaneously, the node currently holding the token(which may or may not be spun up

at the time) calculates need based on factors such as a unit’soldest pending request, the types

of requests it has pending, the number of pending requests and the last time the disk was spun

up.

5.2.3.1 Reading and Writing Data

When a client requests a data read, the device from which datais to be read is spun

up. This process takes a few seconds, after which data can be read at full speed. While a

Pergamum tome is somewhat slower than a high-power network-attached disk, its performance,

discussed in Section 5.3, is sufficient for archival storageretrieval. Moreover, since the data is

stored on a disk rather than a tape, random access performance is significantly better than that

of a tape-based system.

As with reads, archive writes require a spun-up disk. Pergamum clients choose the

disks to which they write data; Pergamum does not impose a choice on users. This is done be-

cause some clients may want to group particular data on specific disks: for example, a company

might choose to archive email for an individual user on one drive. On the other hand, a storage

client may query Pergamum nodes to identify spun-up nodes, allowing it to select a disk that is

already spun up.

94



Since writes require the eventual update of distributed data, they are more involved

than reads. First, the target disk is spun up if it is not already active. Next, data is written to

blocks on the local disk. However, existing data blocks are not overwritten in place; instead,

data is written to a new data block, allowing the Pergamum tome to calculate “deltas” based on

the old and new block. These deltas are then sent to the Pergamum tomes storing the redundancy

regions for the old block’s segment. On the local device, thesegment mapping is updated to

replace the old block with the new block. It is important to note, however, that the old block is

retained until it has been confirmed that all external parityhas been updated.

On the Pergamum tomes storing the redundancy information, the deltas arrive as a

parity update request. Since the redundancy update destination knows how the erasure correct-

ing code is calculated, it can use the delta from the data target disk to update its own redundancy

information; it does not need both the old and new data block,only the delta. Because the delta

may be different for different parity disks, however, the Pergamum tome that received the orig-

inal write request must keep both old and new data until all ofthe parity segments have been

updated. However, doing updates this way ensures that a write requires no more than two disks

to be active at any time; while the total energy to write the data is unchanged—a write to an

(m,n) redundancy group must still updaten−m+ 1 disks—the peak energy is dramatically

reduced fromn−m+1 disks active to 2 disks active, resulting in an improvementfor any code

that can correct more than one erasure.

One problem with allowing writes directed to a specific Pergamum tome is that the

disk may not be spun up when the write is issued. While the destination disk may be activated,

an alternate approach is to write the data toanycurrently active disk and later copy the data to

the “correct” destination [114, 115]. This approach is called surrogate writing, and is used in

Pergamum to avoid spinning disks up too frequently. Instead, writes are directed to an already-

active disk, and the Pergamum tome to which data will eventually be sent is also notified. The

data can then be transferred to the correct destination lazily.

5.2.3.2 Scrubbing and Recovering Data

To ensure reliability, disks in Pergamum are occasionally scrubbed: every block on

the disk is read and checked for agreement with the signaturestored in NVRAM. This procedure

is relatively time-consuming; even at 10 MB/s, a 1 TB disk requires more than a day to check.
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However, Pergamum tome’s use of on-disk redundancy to guardthe data in a segment, described

in Section 5.2.1, greatly reduces the danger of data loss from latent sector errors, so the system

can reduce the frequency with which it performs full-disk scrubs. Instead, a Pergamum tome

performs a “limited scrub” each time it is spun up, either during idle periods or immediately be-

fore the disk is spun down. This limited scrub checks a few hundred randomly-chosen locations

on the disk for correctness and examines the drive’s SMART status [155], ensuring that the disk

is basically operating correctly. If the drive passes this check, the major concern is total drive

failure, either during operation or during spin-up, as Section 5.3.2 describes.

Complete drive failures are handled by rebuilding the data on the lost drive in a new

location. However, since fewer than 5% of the disks in Pergamum may be on at any given time

and redundancy groups that may contain data and parity on 15–40 disks for maximal storage

efficiency, it is impractical to spin up all of the disks in a redundancy group to rebuild it. Instead,

Pergamum uses techniques similar to those used in writing data to recover data lost when a disk

fails. The rebuilding algorithm begins by choosing a new location for the data that has been

lost; this may be on an existing disk (as long as it is not already part of the redundancy region),

or it may be on a newly-added disk. Pergamum then spins up the disks in the redundancy region

one by one, with each disk sending its data to the node on whichdata is being rebuilt. The node

doing the rebuilding folds the incoming data into the data already written using the redundancy

algorithm; thus, it must write each location in the regionm times and read itm−1 times (the

first “read” would result in all zeros, and is skipped).

5.3 Experimental Evaluation

My experiments with the current implementation of Pergamumwere designed to mea-

sure several things. First, I wanted to evaluate the system costs in order to ensure that my so-

lution was economically feasible. Second, with the assistance of Kevin Greenan, I wanted to

confirm that Pergamum can provide long-term reliability through a strategy of multiple levels

of parity and consistency checking using algebraic signatures. Finally, I wanted to measure the

performance of the implementation to show that Pergamum is suitable for archival workloads

and to identify potential bottlenecks.

The remainder of this section proceeds as follows. First, I present an analytical eval-

uation of the system’s cost. Then, I recap the results of Kevin Greenan’s long-term reliability
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simulations. Finally, I present the results of my performance tests with the current implementa-

tion of Pergamum.

5.3.1 Cost

Cost in an evolvable, long-lived system can be difficult to calculate. The advantages

that a heterogeneous structure can provide by allowing a system to adapt over time, also conspire

against a simple cost model of capital expenditures and operating expenditures amortized over a

set accounting period. As devices are constantly arriving and leaving the systems — due to scale

out, failures and evolution — all costs are on-going costs. Thus, the ideal way to measure cost

would capture the utility the system provides (capacity), aunit of time, and a value (dollars).

In the absences of such detailed cost models, the traditional approach uses a straight-

forward strategy to calculating system cost by identifyingstatic costs (capital expenditures),

and operational costs. The first figure describes the cost to acquire the system, and the second

figure quantifies the cost to run the system. Examining both costs together is important because

low static costs can be overshadowed by the total cost of operating and maintaining a system

over its lifetime.

I do not consider personnel costs in any of the systems I describe; I assume that all

of the systems are sufficiently well automated that human maintenance costs are relatively low.

However, this assumption is somewhat optimistic, especially for large tape-based systems that

use complex hardware that may require repair. In contrast, Pergamum is built from simple,

disposable components—a failed Pergamum tome or network switch may simply be thrown out

rather than repaired, reducing the time and personnel effort required to maintain the system.

Static costs reflect the expenses associated with acquiringan archival storage solution,

and can be calculated by totaling a number of individual costs. One is the system expense,

which totals the base hardware and software costs of a storage system with a given capacity

for storage media. This cost is paid at least once per storagesystem, regardless of how much

storage is actually required. Media cost, in dollars per terabyte, is a second expense. Large

archival storage systems may require several “base” systems; for example, an archival system

that uses tape silos and robots might require one silo per 6,000 tape cartridges, even if the silo

will not be filled initially.

Operational costs reflect those costs incurred by day to day operation of an archival
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System Media Static cost Oper. cost Redundancy

Sun StorageTek SL8500 T10000 tape $4,250 $60 None

EMC Centera SATA HD $6,600 $1,800 parity

PARAID SCSI HD $37,800 $1,200 RAID

Copan Revolution SATA HD $19,000 $250 RAID-5

RAIL UDO2 $57,000 $225 RAID-4 (5+1)

Pergamum SATA HD $4,700 $50 2-level

Table 5.2: Comparison of system and operational costs for 10PB of storage. All costs are
in thousands of dollars and reflect common configurations. Operational costs were calculated
assuming energy costs of $0.20/kWh (including cooling costs).

storage system. This cost can be measured using a dollars peroperational period figure, normal-

ized to the amount of storage being managed. Some of the primary contributors to a system’s

total operational expenses include power, cooling, floor space and management. Many of these

are incurred by not only the storage system itself, but by infrastructure such as network and

monitoring devices. As described above, I omit management cost, both because I assume it will

be similar for different storage technologies, and becauseit is extremely difficult to quantify.

I also omit the cost of floor space since it is highly variable depending on the location of the

data center. However, an important, but often omitted, aspect of operational costs includes the

expenses related to reliability: expected replacement costs for failed media and the operational

cost associated with parity operations. This cost, along with power and cooling, forms the basis

of the comparison of operational costs.

The static and operational costs must include the cost for any redundant hardware or

storage. However, since existing solutions vary in their reliability, even within a particular

technology, I have not attempted to quantify the interplay between capacity and reliability.

Instead, I assume that a system that requires mirroring simply costs twice as much to purchase

and run per byte as a non-redundant system. In this respect, Pergamum is very low cost: the

storage overhead for a system with segments using 62 data and2 parity blocks and redundancy

groups with 13 data disks and 3 parity disks is64
62×

16
13−1= 0.27 times usable data capacity. In

such a system, 1 TB of raw storage can hold 787 GB of user data.

All of these factors—static cost, operational cost, and redundancy overhead—are

summarized in Table 5.2. Static costs are approximations based on publicly available hard-
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ware prices. For operational costs, I have used a constant rate of $0.20/kWh for electricity to

cover both the direct cost of power and the cost of cooling. Table 5.2 shows the costs for a 10 PB

archive for each technology, including sufficient base systems to reach this capacity. While the

costs reflected in the table are approximate, they are usefulfor comparative purposes. Also, I

note that some systems have ranges for redundancy overhead because they can be configured

in several ways to ensure sufficient reliability; I chose theleast expensive reliability option for

each technology. For example, the EMC Centera [69] can be used with mirroring; doing so

might increase reliability, but will certainly increase total cost.

The results summarized in Table 5.2 illustrate a number of cost-related archival stor-

age issues. First, as shown by PARAID, even energy-efficient, non-archival systems are too

expensive for archival scenarios. Second, media with low storage densities can become expen-

sive very quickly because they require a large amount of hardware to manage the high numbers

of media. For example, RAIL uses UDO2 optical media that onlyoffers 60 GB per disk and thus

the system requires numerous cabinets and drives to handle the volume of media. Using off-

the-shelf dual-layer DVDs, with capacity under 10 GB per disk, would reduce the media cost,

but would increase the hardware cost by a factor of six because of the added media; such an

approach would require 100 DVDs per terabyte, making the cost prohibitive. Third, the Copan

and Centera demonstrate two different strategies for cost effective storage: lower initial costs

versus lower runtime costs. Finally, it is clear that Pergamum is competitive in cost to Sun’s

StorageTek SL8500 system while providing functionality, such as inter-archive redundancy, that

tape-based systems are unable to provide.

An understanding of the costs associated with reliability is important because it assists

in matching the data to be protected with an economically efficient reliability strategy. Unfor-

tunately, because it is largely dependent on the data itself, the economic impact of lost data is

difficult to calculate. Moreover, many of the costs resulting from data loss are, at best, difficult

to quantify. For example, the cost to replace data can vary from zero (don’t replace it) to nearly

priceless (how much is bank account data worth?). Another factor, opportunity costs, expresses

the cost of lost time; every hour spent dealing with data lossis an hour that is not spent doing

something else. In a professional setting, data loss may also involve mandatory disclosures that

could introduce costs associated with bad publicity and fines. While I do not quantify these

costs, I note that long-term archive reliability is a serious issue [19].
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Figure 5.5: Mean time to data loss in hours for a single 16 diskgroup. 61+3 intra-disk parity is
nearly equivalent to the “ideal” system, in which latent sectors never occur. Note that MTTDL
of 1010 hours for 16 disks corresponds to a 1000 year MTTDL for a 10 PB Pergamum system.

5.3.2 Reliability

As in all storage, reliability is an important part of archival storage. For long-term

storage, legacy systems, evolving software and migrating knowledge workers are only some

of the factors that make replacing lost data difficult. In itscurrent design, Pergamum provides

two levels of reliability: intra-device and inter-device.Of course, there are many tradeoffs that

influence the reliability of an archival storage system. Factors such as stripe size, both on an

individual disk and between disks, disk failure rate, disk rebuild time and the expected rate of

latent sector errors must be considered when building a long-term archival system.

A full exploration of the factors affecting the reliabilityof archival storage is beyond

the scope of this work. However, the current and ongoing research of Kevin M. Greenan,

shows that Pergamum is capable of providing a high degree of reliability. Summarized here

(and shown in Figure 5.5), his simulation and modeling show that a configuration of 3 inter-

disk parity segments per 16 disk reliability group and 3 intra-disk parity blocks per 64 block

segment results in an MTTDL of approximately 1010 hours.
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5.3.3 Performance

The current Pergamum prototype system consists of approximately 1,400 lines of

Python 2.5 code, with an additional 300 lines of C code that were used to implement performance-

sensitive operations such as data encoding and low-level disk operations. The implementation

includes the core system functionality, including internal redundancy, external redundancy, and

a client interface that allows for basic I/O interactions. In its current state however, the imple-

mentation relies upon statically assigned redundancy groups and it does not include scrubbing

or consistency checking.

For testing, all systems were located on the same gigabit Ethernet switch with little

outside contention for computing or network resources. Communication between the Perga-

mum tome and the client used standard TCP/IP sockets in Python. For maximum compatibility,

I utilized an MTU size of 1500 B.

Each Pergamum tome was equipped with an ARM 9 CPU running at 400 MHz,

128 MB of DDR2 SDRAM and Linux version 2.6.12.6. The client was equipped with an Intel

Core Duo processor running at 2 GHz, 2 GB of DDR2 SDRAM and OS X version 10.4.10. The

primary storage on each Pergamum tome was provided by a 7200 RPM SATA drive format-

ted with XFS. For read and write performance experiments, I utilized block sizes of 1 MB and

64 blocks per segment. Persistent metadata storage utilized a 1 GB USB flash drive and Berke-

ley DB version 4.4. The workload consisted of randomly generated files, all several megabytes

in size.

5.3.3.1 Read and Write Throughput

My first experiment with the Pergamum implementation was an evaluation of the

device’s raw data transfer performance. As Table 5.3 shows,the maximum throughput of a

single TCP/IP stream to a Pergamum tome is 20 MB/s at the device. Further tests showed that,

the device could copy data from a network buffer to an on-diskfile at about 10 MB/s. Together,

these values serve as an upper limit for the write performance that could be expected from a

single client connection over TCP/IP.

Write throughput using the Pergamum software layer was tested at varying levels of

write safety. The first write test was conducted with no internal or external parity updates. As

shown in Table 5.3, writes without data protection ran at 4.74 MB/s. While no redundancy

101



Test Client Server

Raw Data Transfer 20.02 20.96

Raw Data Write 9.33 9.98

Unsafe Pergamum Write 4.74 4.74

XOR Parity Pergamum Write 4.72 3.25

Reed Solomon Pergamum Write 4.25 1.67

Fully Protected Pergamum Write 3.66 0.75

Pergamum Read 5.77 5.78

Table 5.3: Read and write performance for a single Pergamum tome to client connection.
XOR parity writes used 63 data blocks to one parity block segments. Reed Solomon writes
used 62 data blocks to two parity block segments. Fully protected writes utilize two level of
Reed Solomon encoding and the server throughput reflects time to fully encode and commit
internal and external parity updates.

encoding was performed in the unsafe write, the system did incur the overhead of updating

segment metadata and dividing the incoming data into fixed-size blocks.

Testing with internal parity updates enabled was performedusing both simple XOR-

based parity and more advanced Reed Solomon encoding. In these tests, the client-side and

server-side throughput differ, as Pergamum utilizes parity logging during writes. Thus, while

the client views throughput as the time taken to simply ingest the data, the Pergamum tome’s

throughput includes the time to ingest the data and update the redundancy information. The first

test utilized simple XOR-based parity in a 63+1 (63 data blocks and 1 parity block) configura-

tion. This arrangement achieved a client-side write throughput of 4.72 MB/s and a Pergamum

tome-side throughput of 3.25 MB/s. As Table 5.3 shows, usingReed Solomon in a 62+2 con-

figuration results in similar client side throughput, 4.25 MB/s. However, the extra processing

and parity block updates results in a server throughput of 1.67 MB/s.

The final write test, fully protected Pergamum tome writes, utilizes both inter- and

intra-disk redundancy. Internal parity utilized Reed Solomon encoding in a 62+2 configuration.

External redundancy utilized Reed Solomon with 3 data regions to 2 parity regions. In this

configuration, client throughput is reduced to 3.66 MB/s as the CPU is taxed with both internal

and external parity calculations. This is evident in the server throughput, which is reduced to
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0.75 MB/s. However, this does reflect the time required to update both internal and external

parity and thus reflects the rate at which a single Pergamum tome can protect data with full

internal and external parity.

Profile data obtained from the test runs indicates the systemis CPU-bound. The per-

formance penalty for the Pergamum tome writes appears to be based largely on two factors.

First, as shown in the difference between a raw write and an unsafe Pergamum tome write in

Table 5.3, Python’s buffer management imposes a performance penalty, an issue that could be

remedied with an optimized, native implementation. Second, as seen in the difference between

the XOR Pergamum tome write and the Reed Solomon write, data encoding imposes a sig-

nificant penalty for lower power processors. This is furtherevident by the results of my read

throughput tests. Since a read operation to the Pergamum tome involves less buffer management

and parity operations, throughput is correspondingly faster. I was able to achieve sustained read

rates of 5.78 MB/s.

While the performance numbers in Table 5.3 would be inadequate for most high-

performance workloads, even the current, prototype implementation of Pergamum is capable of

supporting archival workloads. For example, 1000 Pergamumtomes and a spin-up rate of only

5% can provide a system-level ingestion throughput in excess of 175 MB/s, ingesting a terabyte

in 90 minutes and fully protecting it in 8 hours. At this rate such an archive built from 1 TB

disks could be filled in a year.

5.3.3.2 Data Encoding

One of the primary functions of each Pergamum tome’s processor is data encoding

for redundancy and signature generation. Thus, I wanted to confirm that the low-power CPUs

used by Pergamum to save energy are actually capable of meeting the encoding demands of

archival workloads.

In my first data encoding test, I measured the throughput of the XOR operation by

updating parity for 50 MB of data. I was able to achieve an average encoding rate of 20.79 MB/s

on the tome’s CPU. For reference, a desktop class processor using the same library was able to

encode data at 201.41 MB/s. However, this performance increase comes at the cost of power

consumption; the Intel Core Duo processor consumes 31 W compared to the tome’s ARM-based

processor which consumes roughly 2.5 W for the entire board.
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Encode Operations ARM9 Core Duo

XOR parity 20.02 201.41

Reed Solomon; 5 data, 2 parity 3.13 33.68

Data signature (64-bit) 57.44 533.33

Table 5.4: Throughput, in MB/sec, to encode 50 MB of data using the Pergamum tome’s
400 MHz ARM9 board drawing 2-3 W and a desktop class 2 GHz IntelCore Duo drawing 31 W.

A similar result was achieved when updating parity for 50 MB of data protected by a

5+2 Reed Solomon configuration. As Table 5.4 summarizes, theprocessor on the Pergamum

tome was able to encode the new parity blocks at a rate of 3.13 MB/s. For reference, the desktop

processor could encode at average rate of 33.68 MB/s. Again,I notice an order of magnitude

throughput increase at the cost of over an order of magnitudepower consumption increase.

My final encoding experiment involved the generation of datasignatures. The cur-

rent implementation of Pergamum generates data signaturesusing GF(232) arithmetic in an

optimized C-based library. Generating 64 bit signatures over 32 bit symbols, I achieved an

average signature generation throughput of 57.44 MB/s. Forreference, the same library on the

desktop-class client achieved a rate of 533.33 MB/s.

My results indicate that the low-power processor on the Pergamum tome is capable

of encoding data at a rate comparable to its power consumption. Additionally, I believe that it

is capable of adequately encoding data for an archival system’s write-once, read maybe usage

model. While the current performance numbers are reasonable, my experience in designing

and implementing the Pergamum prototype has shown that low-power processors greatly ben-

efit from carefully optimized code. The early implementations provided more than adequate

performance on a desktop class computer but were somewhat slow on the Pergamum tome’s

low-power CPU.

5.4 Publication History and Status

The publication history of Pergamum is relatively brief. Unlike POTSHARDS, which

had a number of preliminary publications, the first literature on Pergamum was presented at the

2008 USENIX File and Storage Technologies (FAST) conference[168]. This was accompanied
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by a solicited article in the USENIX magazine,login, covering the same material [167].

While the published literature on Pergamum demonstrates some of the features needed

in an archival storage system, work remains to turn it into a fully effective, evolving, long-term

storage system. In addition to the engineering tasks associated with optimizing the Pergamum

implementation for low-power CPUs, there are a number of important research areas to exam-

ine.

The optimality of the choice of one CPU and network connection per disk is also

an open question; the choice is based on both quantitative and qualitative factors, but other

arrangements are certainly possible. Additionally, it hasalways been assumed that client ma-

chines would include modern desktop level CPUs that could beleveraged for pre-processing.

Similarly, determining the best network to use to connect thousands of (mostly idle) devices is

an interesting problem to consider.

Large scale, correlated failure will be inevitable with a system that numbers in the

hundreds of thousands of nodes. This is largely due to the fact that interconnect failures make

up a sizeable fraction of storage system unavailability [80]. Many of these, such as a failed

switch causing network segmentation, are benign in the sense that data may still be safe, it

is simply unreachable. However, the system’s reaction in such a scenario could inadvertently

cause more harm than good; the system may try and immediatelyrebuild all data that it could

not contact. Thus, the system must be able to contend with large scale failure, especially if it

results in network segmentation.

While the current design includes two levels of redundancy,intra-device and across

devices, a geographic level of encoding could be very beneficial. A cross-site redundancy level

could utilize distributed RAID techniques across geographically diverse installations in order to

protect data from natural disasters or other “act of god” failures.

While mentioned briefly, full evaluation of an evolvable storage model requires new

cost models that encompass more than simply capital and operational expenditures. Evolvable

systems represent a shift away from the traditional, monolithic model of storage systems, and

their costs are poorly represented by such a simple cost model. For true cradle to grave costs, the

cost model should paint a complete picture of lifespans of the storage appliances in a distributed

architecture. The result would be a cost model that capturesthe cost to produce, purchase,

administer, operate, decommission, and dispose of the device.
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5.5 Conclusion

This chapter discussed Pergamum, a system designed to provide reliable, cost-effective

archival storage using low-power, network-attached disk appliances. Experience with an early

prototype showed that Pergamum’s performance is acceptable for archival storage: the use of

many low-power CPUs instead of a few server-class CPUs results in disks that can transfer data

at 3–5 MB/s, with faster performance possible through the use of optimized code.

More importantly, at 2–3 W/TB, Pergamum is far cheaper and more reliable than

existing MAID systems, though the techniques described here may be applied to more conven-

tional MAID designs as well. Moreover, a Pergamum system is comparable in cost and energy

consumption to a large-scale tape archive, while providingmuch higher reliability, faster ran-

dom access performance and better manageability. The combination of low power usage, low

hardware cost, very high reliability, simpler management,and excellent long-term upgradeabil-

ity make Pergamum a strong choice for storage in long-term data archives.
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Chapter 6

Management in Evolvable Archival Systems

Evolution is not a force but a process; not a cause but a law.

John Morley

As archival storage is still a relatively unexplored area, it stands to reason there is

still considerable research to be done. This chapter presents my current ideas in the area of

archival storage management. It demonstrates my thesis statements — archival storage is a first

class storage category that requires solutions tailored for long-lived data — by identifying the

management needs specific to archival storage. In a young area of research, it is perhaps just as

important to demonstrate the direction that an area of exploration is headed, as it is to document

what it has already achieved.

Much of archival storage management is directed at the goal of increasing efficiency,

in order to lower costs. Central to this tenet, management approaches designed for long-lived

data must take into account opportunity costs in an effort tomaximize efficiency, Thus hardware

must be managed through its entire lifespan; a long-term management approach must facilitate

nodes joining the system, manage placement of data and redundancy information, handle node

failure, and gracefully phase out nodes as they age.

To this end, I have started work on Logan, a management layer that runs atop a dis-

tributed network of independent storage appliances [168].In order to avoid any single point

of failure, while each node is capable of assuming a number ofadministrative roles, none are

required to be specialized for that role. Each device is identified by a globally unique id, and

maintains a list of named attributes that describe it. Usingthis id and attribute name, Logan
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Figure 6.1: Overview of Logan running a distributed networkof Pergamum tome devices [168].
One device (4) is pending inclusion in the group, while the others (0-3) are contributing to
redundancy groups. Data blocks (white) are protected with internal parity (P) and external
parity (R).

can query and update the node’s attributes using a simple putand get interface. By updating

device attributes, Logan can capture usage effects such as the accelerated wear caused by drive

spin-ups, or the effects of batch correlated failures.

This decentralized, federated architecture offers a number of advantages for long-

term, archival data. First, the software component of each device can act as an abstraction layer

to the underlying media, enabling a heterogenous mix of technologies. Second, using multiple,

low powered processors yields energy savings versus a few high powered processors (cutting

processor voltage in half results in half the clock speed butone fourth the power consumption).

Third, an inexpensive node can be treated as an indivisible field replaceable unit; if any part

of the node fails, the entire node is discarded and replaced.This reduces the management

overheard associated with locating and replacing individual components.

While each device is independent and actively ensures the longevity of its own data,

nodes can cooperate inredundancy groupsto provide system wide data reliability. Data in each

device is divided into fixed sizedblocks, and blocks are grouped into fixed sizedsegments. Dis-

tributed RAID techniques are used over groups of segments tosurvive the loss of a device [160].

Since heterogeneity is inevitable in an evolvable system, device capacity will vary between ap-

pliances. Thus, unlike a simple RAID system where all drivesare the same size, a device can
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contribute segments to more than one redundancy group in order to utilize all of its local stor-

age capacity. Reliability can be further improved with the addition of intra-block reliability for

recovering from media faults [16, 17, 43, 168].

As the global knowledge required to manage hundreds of thousands of nodes as one

group would overwhelm any single data aggregation point, Logan divides devices intoman-

agement groups. These management groups are tasked with a number of administrative duties.

The first of these,scale out, deals with expanding the capacity of the system. It involves the

creation of redundancy groups, and the assignment of segments to those groups. The second

area,recovery, determines where data will be recovered to when a node is lost. The final area,

maintenance, monitors the health of the system and actively identifies nodes that are ready to

be decommissioned.

6.1 Design Details

The following subsection details the current design of Logan. First, I detail the hi-

erarchical structure of the logical network. This includesa discussion of leadership election

in a hierarchical network. Second, I describe how Logan manages devices from their initial

installation, through their operating life.

6.1.1 Logical Structure

While modern network infrastructures allow for fully connected communication, Lo-

gan arranges the system into a logical hypercube of management groups. This topology offers

a number of benefits. First, it offers efficient communications routing between management

groups[177]. As Figure 6.2 shows, messages are routed inO(lg n) time by moving one address

bit closer to its destination with each hop. In Logan, message routing occurs in a hierarchical

fashion, with messages first routed between groups, and finally routed within the destination

group. Second, hypercubes are well suited to the manner in which management groups grow

and split; the exponential fan-out of hypercubes allows thesystem to grow to a large number of

management groups, while limiting the number of edges that any single group must maintain

with its neighbors.

While the inter-management group structure is that of a hypercube, the nodes within
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Figure 6.2: Eight management groups arranged in a hypercubeof dimension 3. Nodes involved
in routing from group 2 to 5 shown in white. Routing is done inO(lg n) time, since each hop
brings the message one bit closer to its destination.

the management group are arranged in a logical tree. Within this tree, nodes assume one of

three group roles: leader, subordinate or member. As Figure6.3 illustrates, at the root of the

tree is aleader that facilities operations that require a central coordinator. One degree away

from the leader are one or moresubordinatenodes. The leader and subordinates are fully

connected; a bidirectional, logical edge connects the leader to each subordinate, and every

pair of subordinates. Note, however, that not all nodes one degree away from the leader are

necessarily subordinates. Finally, below the leader and subordinates are the remaining group

members.

The intra-group structure is designed to limit the amount oflogical network restruc-

turing that occurs between elections. In the normal case, when the leader’s term expires, the

new leader is chosen from the subordinates, leaving the majority of the spanning tree intact, and

causing little disturbance to the central clique of the leader and its subordinates. Further, as the

subordinate nodes monitor the health of both each other and the leader, in the event of a leader

failure, a new leader is chosen from the subordinates. In both cases, a relatively consistent group

structure simplifies the management of inter-group connections.
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with the leader. These are joined with the leadership cliques of other groups in the overall
hierarchy. The remainingmembersof the group are arranged in acyclic, spanning trees.

6.1.1.1 System Growth

The system begins with a single management group. Nodes entering the system are

added to this group until it reaches a predetermined saturation point, at which point it splits into

two groups with, on average, half the membership each. Membership and splitting is based on

the LH* family of distributed data structures [96–100]. Similar to a traditional hash table, LH*

maps keys to buckets. However, unlike traditional hash tables which rely on a static number

of buckets, LH* starts with a single bucket. As the bucket fills to capacity, it splits into two

buckets. The algorithm gracefully expands from a single bucket, to an effectively unlimited

number of buckets.

LH* offers a number of advantages. First, LH* does not require globally consistent

data in order to function properly. This property is especially important because, in a large scale

system, tight consistency expectations are unrealistic. Second, LH* is self-correcting. In the

event that a client maps a key to a bucket using outdated parameters, the selected bucket will

route the message to the correct bucket, as well as update theclient with current parameters.

Third, LH* is a light-weight protocol that does not involve computationally expensive opera-

tions, but allows the system to gracefully scale from a smallsystem of just a single management

group to a large system with thousands. Fourth, since group membership is calculated instead
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Figure 6.4: When parentP (node 2), produces a childC (node 6), it provides the child with a
list of its grandparentsG1 andG2 (nodes 0 and 3). The child then calculates which, if any of
its bitwise neighbors it needs an introduction to from its grandparent.

of statically assigned, a node can be located from its name alone.

LH* utilizes two variables,n and i, to coordinate all of operations. For routing,n

andi are parameters to the hashing function. Together with the key to map, they dictate which

bucket the key maps to in the algorithm’s current state. Second, n acts a token that facilitates

distributed splitting; when bucketn splits, it passes the token to bucketn+1 mod 2i . By limiting

bucket splitting to the current token holder, management issimplified.

When a group splits, it must establish connections with its bitwise neighbors,N, in

order to preserve the logical hypercube. As Figure 6.4 illustrates, one such connection is from

the child,C, to its parent,P. This connection is easy to make. Additionally, it must establish

a connection with each existing group whose name is exactly one bit different than its own

name. To perform this, the parent supplies the child with a list of its grandparents,G. For

each grandparent, the child calculatesC⊕P∨G = N. If N < C, thenC asksG to make an

introduction. IfN ≥C, then that bitwise neighbor has not yet been formed and no further action

is required.
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6.1.1.2 Management Group Leadership

The group’s current leader forms the root of the logical treeand serves three primary

purposes. First, as the leader is known to each member node inthe group, and the leaders

of adjacent groups know each other, the leader is responsible for routing messages between

groups. Second, the leader is responsible for collecting information from member nodes, and

using those collected statistics to determine group optimizations [102, 125, 199, 200]. Third, the

leader manages redundancy group tasks such as failure recovery, maintenance, and integration

of new devices.

Directly beneath the leader in the logical tree is a group of subordinate nodes. The

data from the leader is replicated to the subordinates, which use the data for three primary tasks.

First, in order to reduce the load the current leader, subordinates are also able to route messages

between management groups. Second, as they monitor the status of the leader, they can hold

an election amongst the subordinates in the event that the leader has failed. Third, when the

leader’s term is over, an election amongst the subordinatesis held to determine the new leader.

Under most operating conditions, elections are restrictedto nodes within the subor-

dinate list. This limited election occurs in scenarios suchas the end of a leader’s term, or the

failure of the current leader. This is done for a number of reasons. First, the subordinates

already hold a replica of the leader’s information. Second,by choosing a leader from the subor-

dinate list, each election results in less overall change tothe logical tree, simplifying inter-group

connections. Third, as member nodes already form a spanningtree rooted at one of the cen-

tral nodes, a limited election is much more efficient than a full election; after a small election

restricted to the subordinates, the results can be communicated across the existing spanning

trees.

As Figure 6.5 illustrates, in a limited election, three primary changes occur. First, a

subordinate node,i, is promoted to the role of leader. Second, one of the member nodes rooted

at i is promoted to the subordinate position. Third, the former leader becomes a member node

rooted at one of the current subordinates. Once the changes have agreed upon [88], the results

can be communicated to the member nodes.

In a limited election occurring at the end of a leader’s term,the current leader can

consult the data it has collected about its current subordinates in order decide how best to re-

structure the leadership clique. For example, in order to balance the spanning tree, when the
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Figure 6.5: A limited election where the original leader,A, cedes control to a former subordi-
nate,B. A former member node,D, is chosen byB to become a new subordinate, andA joins
the tree rooted atC to help balance the number of nodes below each subordinate.

outgoing leader chooses a subordinate to become its parent,it can choose a node with a low

number of children. For example, in Figure 6.5, nodeB was selected to become the new leader,

but the outgoing leader choose to become a member rooted under nodeC.

While elections are normally restricted to the nodes withinthe current subordinate

group, a number of scenarios may require an election over allof a group’s member nodes.

For example, an existing management group may split [98], and the existing leader and all

of its subordinates may wind up in the same group. Other possible scenarios include boot-

strapping a new network of multiple nodes, or a network segmentation that includes no leader

or subordinate.

Full leadership election is a three phase process based on the construction of a span-

ning tree covering the nodes of the group [54, 58]. The first phase is theelection itself, and

involves a candidate node announcing their intention to become leader. The second phase is the

acknowledgement, and it involves messages traveling back up the tree to new leader. The third

and final phase isannouncement, in which the new leader chooses its subordinate nodes, and a

message with the new leader’s identify travels down the newly constructed spanning tree.

Phase 1: Election Phase When a node,L, begins an election, it declares its intention to

become the new leader by creating an election message identified by the id of theL. The node
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L sends this message to its neighbors, and then waits for an acknowledgement from each of the

nodes it has sent the message.

When a node receive an election message from nodei, it takes one of two actions.

First, if it recognizes that it has already received a message for this election based on the id of

L, it immediately sends an acknowledgement toi. If the node has not yet participated in this

election, it setsi as its parent in the spanning tree, and forwards the electionmessage to each of

its neighbors. The node then waits for an acknowledgement from node it has sent the election

message.

Phase 2: Acknowledgment The acknowledgment message has two important pieces of in-

formation. First, it includes the id ofL so that the acknowledgement can be associated with the

correct election. Second, it includes the id of the sender’sparent in the spanning tree. If the re-

ceiver is the parent indicated in the message, it adds the sending node to its list of children nodes,

and removes the sender from the list of nodes from which it is awaiting an acknowledgment.

If the receiver is not the parent, then it simply removes the sender from the acknowledgment

waiting list. When the receiver has heard from all the nodes it has sent an election message, it

then sends an acknowledgment message to its parent.

Optionally, the acknowledgement phase can also be used to collect data about the

network. In this strategy, an acknowledgment message to thenode’s parent includes a list

aggregating information for the current node, and that current node’s children. In order to

reduce the amount of information on the wire, acknowledgement message to non-parent nodes

should not include the list of aggregated data.

Phase 3: Announcement In the final phase of the election algorithm, an announcementmes-

sage travels down the newly formed spanning tree. It is in this phase that the new leader,L,

names it subordinates,S0, . . . ,Sn. To each of the subordinates,Si , the announcement includes

two components: the identity of the leaderL, and the full list of subordinates. The first portion

is used to confirm the identity of the group’s leader. The second portion is used to ensure that

the subordinates and leader form a clique. With this logicalstructure in place, the leader can

proceed to replicate pertinent group data to its subordinates, and a leadership announcement can

be sent along the newly constructed spanning tree.
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6.1.2 Device Management

Since a system designed for long-lived data is expected to live longer than any given

node, Logan enables evolution by proactively guiding each node through its entire lifespan.

Figure 6.6 illustrates each device’s lifecycle, starting with installation, and ending with the

eventual decommissioning and removal of the device.

When a node enters first enters the system, it places itself intheNEW state, obtains an

IP address and announces its presence to the system. This announcement can be done through

a combination of broadcast communication, and directed communication to a distinguished

node identified by an automatic configuration service such asDHCP. After it has made its

announcement, as Figure 6.6 illustrates, the node enters theLONE state, and waits for a response.

In most scenarios, a node in theLONE state receives a response from an existing node,

and places itself in theFLOATING state, signifying that it has made contact with system, but has

yet to be integrated into its management group. The responseto the new node’s announcement

supplies the information needed to calculate its place in the hierarchy of groups [98]. After

that node has determined which group it belongs to, it asks for further assistance in routing an

introduction to that group’s leader. The response from the group leader will inform the node

whether it is a subordinate node, or simply a member. If no response to its introduction arrives,

the new node may have entered a network in the midst of a segmentation, in which case it begins

a leadership election.

In a brand new system, a node in theLONE state may not receive a response because it

is the first node. In this scenario, it will wait in theLONE state until is receives an announcement

from the next node to join the system. In this scenario, the node initializes itself to the default

values for a new installation [98], makes itself a member of the newly created management

group, responds to the new node with an acknowledgement, andbegins a leadership election.

Once a node has joined a management group, it is not immediately integrated into

redundancy groups, but rather is placed into thePENDING state. This design provides a number

of benefits. First, this allows the node to undergo a self-check and burn-in period in order to

reduce the impact of infant mortality and batch correlated failures. Second, when it is time to

expand the available storage in the system, Logan is able to make smarter management decisions

by utilizing the devices in thePENDING pool, as compared to an approach that immediately

integrates every node as soon as it arrives.
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Figure 6.6: Nodes in Logan are managed through their entire lifespan, from their installation to
their eventual decommissioning. Under most conditions, nodes will spend the majority of the
life in the CONTRIBUTING state. In this state, the node has been integrated into one ormore
redundancy groups, and is actively providing resources to the system.
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Once a device has entered itsPENDING state, the management group leader can query

the device, and update the statistics is keeps about the group’s devices. This information is

used during the administrative functions to identify expensive devices, in terms of utility versus

resources consumed, without requiring administrator input. For example, this approach can

identify a group’s most power-hungry device. Further, thisapproach can determine how power-

hungry that device is in comparison to the average of the group’s devices.

In order to make good management decisions, I am exploring the use of heuristic

algorithms such as simulated annealing [84]. These algorithms attempt to solve an optimization

problem by utilizing heuristics to repeatedly perform minor modifications to a partial solution.

To this end, these algorithms utilize three main components. First, the solution space,X is the

space of all possible solutions from which the answer will bedrawn. Second, the neighbor

function, N, heuristically chooses a new solution that is “close” to thecurrent solution in the

solution space. Finally, an objective function,P, measures the “goodness” of a solution, and is

the value that the heuristic algorithm attempts to minimizeor maximize.

6.1.2.1 Scale Out

Logan monitors the system, and performs a scale out operation when it detects that

available free space in a management group has dropped belowa predetermined low water

mark. When this occurs, the management group leader uses theinformation it has collected

about the nodes in its group, and the existing redundancy group to decide how best to increase

the amount of available storage.

For scale-out operations, each management group maintainsa list of its redundancy

groups and the devices assigned to those groups. This list isconsulted and updated based on two

redundancy group operations. First, Logan can form a new redundancy group. Second, Logan

can expand an existing redundancy group. The latter strategy is possible because redundancy

groups have a population range. Logan does not always fully populate new redundancy groups.

Rather, it creates partially populated groups that still meet the system’s reliability criteria, thus

allowing the system to expand capacity, even when there are insufficient devices to create an

entirely new redundancy group. For example, the system might require parity groups to be of

the formn+3 disks, where 6≤ n≤ 13. This would mean that a redundancy group would have

a minimum of 9 disks and a maximum of 16 disks, and be able to grow from 9 to 16 gradually
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over time if needed.

At the device level, each management group maintains a list of its devices and their

unassigned, or free, segments. From this pool, Logan can assign device segments to redundancy

groups from two primary sources. First, Logan can utilize previously unassigned segments from

a device in theCONTRIBUTING state. Second, it can utilize segments from aPENDING device.

Naturally, this would cause the device to transition to theCONTRIBUTING state.

6.1.2.2 Recovery

As with any storage system, and especially a long-term archival system, failure is in-

evitable. Additionally, since the system must be cost efficient, it is not enough to simply recover

data to the first available free space. To address this problem, Logan uses similar heuristic search

techniques to determine where data should be recovered to inthe event of a device failure.

For algorithms such as simulated annealing, an instance of the recovery problem so-

lution space is a mapping of segments to redundancy groups. At each iteration of the algorithm,

some subset of free segments are mapped to the segments of thefailed device. The primary

constraint to enforce during recovery is that each member ofa redundancy group is a different

device.

6.1.2.3 Maintenance

The goal of maintenance is to determine if there is a management group configuration

that can offer better service for the same or lower resource consumption. For example, the

amount of power required per active hard drive spindle decreases much slower than the capacity

of hard drives is growing. Thus, there is an opportunity costissue with keeping a hard drive

based device in a system indefinitely. The challenge is to identify when the migration and

disposal costs warrant the replacement of older devices in the pursuit of a net efficiency increase.

As in previous management group operations, the state of thesystem consists of a

mapping of device free segments to redundancy groups. However, in the case of maintenance,

the redundancy group list consists of all the existing redundancy groups. At each iteration,

devices that are likely to be decommissioned based on their expected lifetime or high energy

costs per segment are randomly swapped with available segments. For this operation, a valid

solution enforces two constraints. First, that a device canonly be decommissioned if all of its
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Figure 6.7: During maintenance, the current leader (L) can use the statistics it has gathered to
see that one node (grey), is using a lot of power relative to the storage it offers. It can be replaced
with the pending node, resulting in more available storage space, and less power consumption.

committed segments have a replacement, and that those replacements conform to the standard

redundancy group constraints. Second, the total free spaceavailable after a node has been

decommissioned and its segments replaced, is at least as much free space as before the device

has been decommissioned.

Unlike recovery and scale-out, which are performed as soon as the heuristic com-

pletes, maintenance chores can be handled opportunistically. A device that has been identified

for decommissioning can wait until a scrubbing event or recovery event occurs in order to defray

the power costs associated with a wholesale migration of a nodes complete contents. An impor-

tant factor that enables this opportunistic approach is that the optimizations that maintenance

seeks to achieve are not critical to data safety. When the unit being decommissioned activates,

it can check to see if the units slated to takes its place in redundancy groups are still available.

If they are not, the decommissioning can be cancelled, or newreplacements can be chosen.

6.2 Publication History and Status

Logan is, admittedly, in its formative stages, but preliminary work has been published

at the 2008 Petascale Data Storage Workshop (PDSW) [164]. The literature presented indicated

the direction that the management layer is taking. As the project is still relatively young, there

are a number of areas to validate and explore.

Current effort on Logan is focused on refining the skeleton, described in the previous
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section. Much of this work is directed towards exploring theuse of heuristic algorithms in mak-

ing sound management decisions. Additionally, the behavior of the system is being explored to

help determine the correct size of management groups; too large and the group leaders are over-

whelmed, too small and the resulting splitting results in unnecessary management overhead.

Finally, I am examining the boot-strapping problem; while the system is designed to scale up to

hundreds of thousands of nodes, it must inevitably start with one.

Further along in the research plans, the best way to deal withlarge-scale disasters and

network partitions will be explored. In a long-term storagesystem, these sorts of events are in-

evitable, and must be survived gracefully, and with a minimum of needless energy expenditures.

Many such events, such as a failed switch causing a network partition, are benign in the sense

that data may still be safe, it is simply unreachable. However, the system’s reaction in such a

scenario could inadvertently cause more harm than good; thesystem may try and immediately

rebuild all data that it could not contact.

As previously discussed, large archival systems are well suited to recovery procedures

that allow the response to be scaled to the size of the problem. Currently, Pergamum utilizes a

two level scheme of intra-device and inter-device reliability. A third level, across geographically

diverse sites, would be useful in order to protect data from natural disasters or other “act of god”

failures.

The dependency list of a given device describes the nodes that contribute to the reli-

ability of a given node’s data. Put another way, if a device fails, all of the devices in the failed

device’s adjacency list will need to contribute data duringthe recovery process. Thus, the size

of the dependency list could have considerable impact on data reliability, and during recovery,

energy consumption. A large redundancy group allows greater parallelization during recovery,

and implies greater diversity in the redundancy group’s devices. In contrast a smaller adjacency

list requires less devices to spin up during recovery. Considering these and other potential trade-

offs, an understanding of how adjacency affects reliability and power consumption could allow

us to tailor optimization methods to their ideal size.

Another intersection of reliability and power can be seen ina failed devices recovery

schedule. That is, the amount and ordering of parallelization that occurs during rebuild. With a

fuller understanding of power use during rebuild Logan could determine not only the placement

of recovered data, but also the order that recovery should proceed. This area is complicated by
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the affect of very transient system states. For example, device population changes much slower

than the list of currently spun up devices.

Currently, the election algorithm relies on each node acting correctly and altruisti-

cally. In a real system, it may be useful for the algorithm to be resistant to malicious collusion.

Taken a step further, the election algorithm could be extended to be Byzantine fault tolerant in

the face of nodes that behave incorrectly [27].

Another deficiency of this election strategy is rooted in themostly random nature of

the current algorithm; the node that begins the election is essentially nominating itself. Further,

the subordinates are automatically assigned; the subordinate nodes themselves have no control

over whether they are selected or not. In an effort to better accommodate a gradually evolving

system, the algorithm could be extended to take node characteristics into account for both nom-

inations, and subordinate selection [178]. Ideally, the system would choose the most capable

and healthiest nodes to burden with extra responsibility.

6.3 Conclusion

This chapter presented my current work in the area of archival management. While

long-lived systems are well served by a distributed architecture, such a design introduces the

management challenges of heterogeneity in an evolving and aging system. Further, as part of

a comprehensive cost strategy, such a system should continuously seek ways to maximize the

utility it offers for the resources it is consuming. This requires a system that can manage a node

through its entire lifespan; unlike a traditional system, archival management must be able to

integrate new devices with minimal administrator input, and device removal cannot hinge on

failure or wholesale system removal.

122



Chapter 7

Conclusion

Now this is not the end. It is not even the beginning of the

end. But it is, perhaps, the end of the beginning.

Winston Churchill

My thesis demonstrated measurable progress in the area of long-term archival re-

search, and indicates where the current research is headed.Specifically, my work focused on

the security, cost-efficiency and management of evolvable archival storage. Of course, as the

area is still rather young, there is considerable work stillto accomplish. To that end, this chapter

proceeds as follows. First, I present some new directions for future archival storage research

(specific work is discussed in the relevant chapter). Finally, I recap the contributions made by

the three systems I developed: POTSHARDS for long-term security and recoverability, Perga-

mum for cost-efficiency and reliability, and Logan for management and evolvability.

7.1 Future Work

While my research has been concerned primarily with preserving the bits that make

up files; understanding the bits is an orthogonal problem that must also be solved. Others have

begun to address this problem [63], but maintaining the semantic meanings of bits over decades-

long periods may prove to be an even more difficult problem than securely maintaining the bits

themselves.

While POTSHARDS presents several approaches to long-term data secrecy and re-

coverability, there are many more security properties thatrely on strategies ill-suited for long-
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term assurance. While some work has been done on providing improving integrity and account-

ability in archival systems, long-term security is still a relatively young area [176].

Quite often, laboratory-based projects in storage research are testbeds for exploring

a very focused problem. For example, POTSHARDS was developed to explore data secrecy

and recoverability in long-term scenarios. Of course, customers tend to want multiple features,

and many common storage techniques are incompatible when combined in an ad hoc manner.

To that end, exploring the interactions between mechanismscould be a fruitful area of research.

For example, while some progress has been made in exploring deduplication and security [161],

there is considerable work to be done. Similarly, as with security mechanisms, deduplication

may be at loggerheads with a number of energy conservation techniques; if data chunks are

spread across multiple, idle disks, a data read may involve spinning up a number of devices.

One of the most valuable resources for long-term storage would be experience with

a large, long-term storage system in a real-world archivingscenario. This would provide two

important bodies of research information. First, filesystem traces would provide useful work-

load specifics that could help guide low-level design details. Second, at a higher level, user

and administrator input could help validate the assumptions made about how archival storage is

used; disruptive technology is often utilized in scenariosdistinct from its intended application.

In this respect, archival storage still feels like a young topic. In contrast to other areas of storage

research, long-term storage is still largely guided by conjecture and assumptions.

7.2 Conclusion

Businesses and consumers are becoming increasingly conscious of the value of archival

data. In the business arena, data preservation is often mandated by law [2, 3], and data mining

has proven to be a boon in shaping business strategy. For individuals, a shift has occurred in

how cultural histories are recorded. The artifacts of our personal narratives – photos, videos,

correspondences, legal and medical records – are all being created and stored as digital informa-

tion. Unfortunately, traditional storage systems are not designed to meet the needs of long-term,

archival data [18, 19].

I have shown in my thesis that archival storage is a first-class storage category that re-

quires solutions specifically tailored for data with an indefinite lifespan. POTSHARDS demon-

strated that many common assumptions, such as the effectiveness of cryptography, are invalid
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in long-term scenarios. Pergamum demonstrated that considerable energy efficiency can be

achieved by exploiting the different access patterns of data, and metadata, while still providing

very high levels of reliability. Finally, Logan established the need for aggressive system max-

imization, and the need for administration that can automatically manage a device through its

entire lifespan; the great paradox with archival storage lies in the inverse relation between the

value of archival data and need to aggressively pursue cost efficiency.

In developing POTSHARDS, I made several key contributions to secure long-term

data archival. First, the use of multiple layers of secret splitting, approximate pointers, and

archives located in independent authorization domains to ensure secrecy, shifts security of long-

lived data away from a reliance on encryption. The combination of secret splitting and approxi-

mate pointers forces an attacker to steal an exponential number of shares in order to reconstitute

a single fragment of user data; because he does not know whichparticular shares are needed,

he must obtainall of the possibly-required shares. Second, I demonstrated that a user’s data

can be rebuilt in a relatively short time from the stored sharesonly if sufficiently many pieces

can be acquired. Even a sizable (but incomplete) fraction ofthe stored pieces from a subset

of the archives will not leak information, ensuring that data stored in POTSHARDS will re-

main secret. Third, with approximate pointers and a sparse namespace, intrusion detection is

made easier by dramatically increasing the amount of information that an attacker would have

to steal, and requiring a relatively unusual access patternto mount the attack. Fourth, long-term

data integrity is ensured through the use of RAID algorithmsacross multiple archives, allowing

POTSHARDS to utilize heterogeneous storage systems with the ability to recover from failed

or defunct archives and a facility to migrate data to newer storage devices.

The novel architecture of Pergamum featured several advancements and demonstrated

the feasibility of a distributed design consisting of low-power, intelligent storage appliances.

The two-level reliability model of Pergamum allows the response to the scaled to the size of

the problem: intra-disk redundancy allows an individual device to automatically rebuild data in

the event of small-scale data corruption, while inter-diskredundancy provides protection from

the loss of an entire device. Fixed costs are kept low throughthe use of a standardized network

interface, and commodity hardware such as SATA drives; since each Pergamum tome is essen-

tially “disposable”, a system operator can simply throw away faulty nodes. Operational costs

are controlled by utilizing ultra-low-power CPUs, power-managed disks and new techniques
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such as local NVRAM for caching metadata and redundancy information to avoid disk spin-

ups, intra-disk redundancy, staggered data rebuilding, and hash trees of algebraic signatures for

distributed consistency checking.

Logan, while still in a relatively formative stage, lays thegroundwork for a manage-

ment layer that runs atop, a distributed network of energy-efficient, intelligent storage appli-

ances [168]. Nodes are arranged in redundancy groups, whichallows data to be recovered from

a lost node. To manage redundancy groups, and to facilitate system-wide communication, Lo-

gan arranges devices into management groups. Further, Logan collects information about the

nodes in each management group and uses this data to make intelligent management decisions.

Logan helps control archival storage costs by automating a number of common administrative

tasks, and opportunistically decommissioning old hardware.
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