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Scalable computing systems for future smart cities

1 | INTRODUCTION

As I see it, there are three primary computing systems re-
quirements for scalable cities:

� Ease of use.
� Economical and scalable computing infrastructure, including

the ability to scale a computing system up or down, as needed,
preferably dynamically and automatically.

� High reliability.

I will discuss each in turn, but first, a bias. Scalable cities are
first and foremost about people, not about computers or
computing. Of course, these days, computing infrastructure is
important, but we should never lose sight of the prime
directive. The more time and effort we spend on computing
infrastructure, the less we can spend on enriching people's
lives.

2 | EASE OF USE

With that out of the way, let me address the issues raised
above. First, in terms of ease of use, we could mean the ease
with which clients interact with the computer system. That is
not what I am referring to. Rather, I am referring to the fact
that the scalable city is an enterprise, and like all enterprises,
it is most likely running standard third party software pack-
ages, and has been doing so for a long time. There is a lot of
software inertia present in this model. The last thing I would
encourage is to require a lot of software modifications to
existing software particularly on a fixed inflexible schedule.
Of course, as technologies and new ideas emerge, it is
important to be able to integrate these with an existing
computing base, but large‐scale rewriting of existing software
must not be mandated or encouraged. New aspects of the
smart cities' technology base must be introduced gradually
with a clear cost/benefit analysis. The computer systems
chosen to run the smart cities must be capable of running
both old and new software without modification. It is also
important that the infrastructure used in implementing a
smart city not be locked into a single vendor. Using standard
servers, standard networks, and standard software is, again,
highly desirable.

3 | SCALABILITY

Second, let me address the need for scalable computing. Needs
change as smart cities evolve. It would be very desirable to pre-
serve investments in computing infrastructure by allowing that
infrastructure to support more computing over time without
having to invest in the latest shiny new hardware offering.
Further, investments that allow an existing hardware technology
base to grow and evolve, without having to rewrite software are
highly desirable. It would be even better if the system itself can
automatically expand and contract due to the demand placed on
it, month to month, week to week, day to day, or even at finer
levels of granularity. This is well within the state of the art.

You might think I am talking about ‘the cloud’. While I do
not rule it out, using the cloud has a high potential for locking
in customers, as discussed earlier. This is not only true for the
hardware that is used, but also the reliance on a set of software
packages that only run in single branded cloud vendor's
environment can be disadvantageous, since ultimately, the cost
of switching away from one vendor to another can be very
high or even practically impossible. The marginal costs of using
a single cloud vendor can be very high over time due to the
vendor's increasing infrastructure costs that often are directly
passed along to satisfy shareholder expectations.

4 | RELIABILITY

The third point I wanted to make has to do with reliability. If the
smart city is going to rely on its smart city infrastructure, it must
behighly reliable andhighly available.Youmight think this comes
for free. After all, aren’t servers getting more and more reliable?
In short, it is becoming increasingly apparent that the answer to
this is ‘no’. In fact, it is the opposite. As we include more memory
in these servers, and increase the density of semiconductors,
reliability is decreasing. Part of this has to do with process ge-
ometries, part of this has to dowith higher utilisation, and part of
it has to do with the ability of semiconductors to monitor their
own behaviour but not take corrective action when disruptive
events are anticipated.Whenheavily loadedhardware servers fail,
the ‘blast radius’ can become very problematic. Restarting a
server canbe very expensive in termsofdowntime, particularly as
the amount of memory in a server increases. Further, it may also
take time to get the performance of the server back to an
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acceptable level (e.g., re‐warming caches). The ability to
dynamically scale also has an impact on reliability and security.

From a security standpoint, we know that it is important to
apply security upgrades on a regular basis, but if it means
taking down multiple running systems to upgrade components,
this will often not happen according to the desirable fixed
schedule. Fortunately, there are solutions to this problem as
well. We now can detect a very high percentage of anticipated
potential hardware errors, like correctable error correcting
codes (ECC) errors predicting non‐correctable ECC errors,
increasing error rates in network interface cards (NICs), rising
temperatures indicating fan failures, and deal with them
without having to take mission‐critical systems offline.

The dynamic scaling ability allows us to not only take a
hardware system offline for repair, but also allows us to add
additional capacity when a system becomes overloaded (and
then revert when it becomes underloaded). These abilities are
all possible and desirable. Further, from an economic stand-
point to preserve the investment in computing infrastructure it
is very advantageous to not require that a system be over-
provisioned just to meet some hypothetical peak demand. It is
very advantageous to only use as much computing infra-
structure as needed, and only when needed. This is not only
true for hardware and energy investments, but also for in-
vestments in software licences, which are often correlated with
hardware capabilities.

5 | HOW DO WE GET THERE?

I personally believe that distributed virtual machines offer the
potential to satisfy all the needs I have mentioned. What is a
distributed virtual machine? It is a virtual machine that runs on
a dedicated cluster of cooperating physical servers inter-
connected by a standard network, like Ethernet.

To an operating system, it looks exactly like a single physical
server, but it is not. Each physical server runs a piece of software
called a hyperkernel. When powering up, each hyperkernel
instance takes an inventory of all the processors, all the memory,
all the networks, and all the storage on each physical server.
Then, the hyperkernel instances exchange this inventory infor-
mation, and use it to create a single virtual machine. One pro-
cessor boots a standard operating system, which sees all the
combined resources of all the physical servers. The operating
system does not even know it is running on a cluster. (It is like a
dream: how do you know whether you are dreaming or not?) No
modifications to the operating system need to be made, and no
modifications to any applications need to be made. Further, the
virtual resources like guest virtual processors and guest virtual
memory can migrate under automatic control by machine
learning algorithms and system performance introspection. So,
the first goal of simplicity can thus be achieved.

Scalability is achieved by the cooperating hyperkernels
implementing the ability to add and subtract physical servers
dynamically as needed. This can be explicit, under operator
control, or under programmatic control by some oversight
software that tracks performance usage information. Thus, the
second goal is achieved.

Reliability is achieved in a very innovative way. The various
hyperkernels monitor things like dynamic random access
memory error rates, temperature fluctuations, NIC error rates
and the like. When an impending problem is detected, there is
sufficient time to take corrective action. For example, when a
problem is detected on physical server n, the hyperkernels on
all the other physical servers are told not to send any active
guest physical pages or guest processors to n. An additional
physical server may be added to the cluster to maintain pre-
vious performance levels. In other words, n is quarantined.
Physical server n is directed to evict all active guest physical
pages and guest virtual processors to other physical servers.
When this is complete, physical server n can be removed for
repair. A similar process can be used for upgrades of hardware
or firmware. All this is done without having to modify or
restart the operating system, which is unaware that any of this
is taking place. Thus, the third goal, reliability, is achieved.

All this can be achieved with competitive performance
using technology available today.
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