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Abstract

File prefetching based on previous file access patterns
has been shown to be an effective means of reducing
file system latency by implicitly loading caches with files
that are likely to be needed in the near future. Mistaken
prefetching requests can be very costly in terms of added
performance overheads including increased latency and
bandwidth consumption. Such costs of mispredictions are
easily overlooked when considering access prediction al-
gorithms only in terms of their accuracy, but we describe a
novel algorithm that uses machine learning to not only im-
prove overall prediction accuracy, but as a means to avoid
these costly mispredictions. Our algorithm is fully adap-
tive to changing workloads, and is fully automated in its
ability to refrain from offering predictions when they are
likely to be mistaken. Our trace-based simulations show
that our algorithm produces prediction accuracies of up to
98%. While this appears to be at the expense of a very
slight reduction in cache hit ratios, application of this al-
gorithm actually results in substantial reductions in unnec-
essary (and costly) I/O operations.

1. Introduction

While both processor and storage hardware have been
improving in performance, there has been a growing per-
formance gap, with I/O often being the bottleneck and sys-
tems generally having a difficult time keeping up with im-
provements in their underlying hardware [18, 25]. This
has meant that methods to address the I/O performance
gap have grown increasingly critical [8]. Traditionally, the
basic approach to improving data access performance has
been caching in one form or another, and more recently
there have been numerous proposals for prefetching algo-
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rithms that attempt to improve upon basic caching through
the prediction of future data access requests.

The ideal traditional caching scheme would take the
form of Belady’s MIN algorithm [5], focusing on the de-
cision of what item to remove from the cache. The MIN
cache replacement policy simply removed the item that
would be needed furthest in the future. Obviously this re-
quires perfect prescience, but does offer a replacement pol-
icy that is impossible to improve upon. Even so, improve-
ments are possible if we do not limit ourselves to the ques-
tion of which object to replace, and broaden our scope to
consider what items we can fetchbefore an explicit request
is actually made. This has been found to be feasible for
I/O access patterns through the observation of past behav-
ior [11]. If successful predictions are made in time, it is
possible for the request to find the data already available in
the cache. This would effectively eliminate the access time
for the storage system, making the data available at main
memory speeds.

While there have been numerous studies of data access
prediction, one of the few implementation studies found
that inaccurate predictions could lead to degradation of sys-
tem performance in spite of making many accurate predic-
tions [12]. Inaccurate prefetching of objects that will notbe
used results in the tying up of I/O channels and the waste
of valuable cache space. In the absence of I/O preemp-
tion, incorrect prefetches will further increase the average
latency experienced by cache misses [7]. Consequently, file
prefetching algorithms need to be as accurate as possible,
providing many accurate predictions, but also minimizing
the number of incorrect predictions [3].

The main contribution of this work is to present an ef-
fective file and data prefetching algorithm that is both ac-
curate, adaptive, and which automatically learns to avoid
making predictions that are unlikely to be correct. Our al-
gorithm uses the machine learning technique of multiple
experts and we introduce the idea of anull prediction ex-
pert to suppress prefetching in instances where the likeli-
hood of an accurate prefetch is low. When looking at cache
replacement algorithms, Ariet al. [4] found that systems
went through periods where different choices of replace-



ment algorithms were best suited to maximizing cache hit
ratio. To predict file access patterns we would therefore
need algorithms that can adapt to changes in the workloads.
Our approach provides an access prediction algorithm that
not only adapts to the workload, but learns to avoid mak-
ing predictions for specific files or data that are unlikely to
yield a successful successor prediction.

2. Prediction with Multiple Experts

Multiple experts is a class of machine learning algo-
rithms in which an on-line learner is faced with a series
of trials. On each of these trials the learner makes a pre-
diction as to the trial’s outcome. Shortly afterward, the true
outcome of the trial is revealed in some way. The goal of
the learner is to minimize the number of mistakes over all
the trials.

The canonical example for multiple expert algorithms
is for weather prediction. A pool of meteorologists (ex-
perts) are asked to predict tomorrow’s weather. The man-
ager (master algorithm) then makes a prediction based on
some combination of the set of individual predictions. The
following day, the accuracy, or inaccuracy, of the individ-
ual meteorologists are judged. After each day (trial), the
confidence in the meteorologists is adjusted. The master
algorithm can then combine new predictions based on the
confidence ratings of the meteorologists. After enough tri-
als, the master algorithm begins to listen mostly to the me-
teorologists who have predicted well, and largely ignores
the experts who have not. Eventually, the master algorithm
should be able to predict the weather at least as well as the
best meteorologist and possibly better if it can aggregate
the predictions of several good meteorologists.

2.1. Weighted Majority Learning

The class ofWeighted Majorityalgorithms use the pre-
dictions of a number of experts that can be simple static
predictions, heuristics, or possibly other machine learning
algorithms [16, 23]. Most commonly, the experts are low
cost algorithms for making predictions. The master algo-
rithm has noa priori knowledge about which experts will
perform well over a series of trials.

Each expert is assigned a weight that represents the mas-
ter algorithm’s confidence in that expert’s predictions. The
master algorithm then uses these weights, in combination
with the individual expert’s predictions, to determine its
own prediction. The simplest combination option is to
have the master algorithm predict the same as the expert
in which it has the most confidence. This is a simple matter
of picking the expert with the current largest weight. An-
other option is to aggregate the predictions in some way.
For example, when attempting to predict a binary value,

the master algorithm can sum the product of expert predic-
tions and their weights:∑N

i=1 ωi ŷi whereωi is the weight
assigned to experti, ŷi is the outcome predicted by experti,
and N is the number of experts. Sums above some thresh-
old result in a master prediction of 1, and sums below the
threshold result in 0. This is where the name Weighted Ma-
jority comes from. The experts vote on the prediction with
the number of votes allocated to each expert based on its
weight.

At the end of each trial (e.g. after each prediction), the
weights of the experts are adjusted based on their perfor-
mance.Lossof experti on trial t, as shown in Equation 1,
is the means of quantifying the difference between the pre-
dicted outcome ˆyi, t and the actual outcomeyt .

L(i, t) = |ŷi, t −yt | (1)

The individual expert weights are updated according
to Equation 2. Experts that predict correctly, and conse-
quently have no loss, have their weights unchanged ex-
cept for a normalization factor. Experts that incur loss,
have their weights decreased by some parameterβ < 1.0
raised to the power of the loss function. The normaliza-
tion is not strictly necessary for the algorithm to work prop-
erly. In practice, it is done to avoid arithmetic underflows
that would eventually happen from repeatedly decreasing
weights.

ωm
t+1,i =

ωi, tβL(i, t)

normalization factor
, whereβ ∈ [0,1] (2)

Cesa-Bianchiet al. showed tighter mistake bounds by
settingβ = e−η, whereη is a tuning parameter to adjust the
rate that weights are updated [6]. Littlestone and Warmuth
prove a mistake bound ofO(M log|N|) whereM is the num-
ber of mistakes made by the best performing expert andN
is the number of experts [16].

2.2. File Prediction with Multiple Experts

Our multiple expert implementation aims to predict the
immediate successor to each file accessed. Each file has a
set of experts associated with it. Thesefile expertsconsist
of previously observed successors to the file in question.
Each of these file experts advocates that one of the previous
successor files is likely to be the next successor. Addition-
ally, there is anull expertthat advocates the best course of
action is to make no prediction. Each expert is assigned a
weight with the sum of the weights normalized to 1. When
a file is accessed, the successor prediction is made based on
the expert with the greatest weight. If thenull expert has
the greatest weight, no prediction is issued.



2.2.1. Loss Functions for File Successor Predictions
Each file access is a trial of the current file’s set of experts.
The actual successor reveals the performance of each ex-
pert. Experts that predict incorrectly incur loss as a result
of their mistakes. The loss function forfile experts is shown
in Equation 3.

L(ŷi, t ,yt) =

{

0 ŷi, t = yt

1 ŷi, t 6= yt
(3)

Thenull expert is only correct when none of the file ex-
perts predicted correctly. This requires that the actual suc-
cessor fail to match any of the file experts. In these cases,
the best course of action would have been not to prefetch
any file. The lossρ (where 0≤ ρ ≤ 1) of not making any
prediction when one was possible is some fraction of the
cost of an incorrect prediction. A correctnull prediction
still has some loss associated with it when compared with a
correct file prediction. Where a misprediction incurs costs,
a non-prediction loses the benefit of prefetching. This is not
as bad as predicting the wrong file but it still is not as good
as having correctly predicted the successor. Consequently,
the null expert has a modified loss function as shown in
Equation 4. We have found that the algorithm was rela-
tively immune to changes inρ. For our experiments we
usedρ = 0.5.

L(ŷnull,yt) =

{

0 if ∀i : ŷi 6= yt

ρ otherwise
(4)

2.2.2. Determining Predictor Success There is a
slight mismatch between how the algorithm determines a
trial’s outcome and the intuitive system behavior. It is pos-
sible for a prefetched object to not match the successor re-
quest and yet still be useful. If the prefetched object is used
prior to being evicted from the cache, it was beneficial by
eliminating a cache miss. Our loss functions could unfairly
judge some experts as wrong when in fact they produce a
benefit to the system. We chose to accept this more con-
servative interpretation of success in order to simplify the
process of evaluating experts’ performance. Otherwise, the
outcome of a trial would not be revealed until a prefetched
object was evicted from the cache, greatly slowing adaptiv-
ity and rendering the evaluation sensitive to specific cache
size.

In order to limit the amount of metadata needed by each
file, we capped the number of file experts at five. In our
experiments, the choice of how many files to track had in-
significant effects on our results. This is consistent with
prior work that demonstrated how most files have only a
few unique successors when observed over periods of sev-
eral days [3].

3. Experiments and Results

In order to compare our multiple experts algorithm
against both traditional passive caching and other prefetch-
ing methods, we simulated caches of varying sizes and used
prerecorded workload traces. We chose the basic LRU and
LFU algorithms, as well as the recent ARC cache replace-
ment algorithm. We also compared against three competi-
tive predictive prefetching schemes applied to an underly-
ing LRU scheme.

3.1. Simulation Methodology

Our primary purpose was to compare the effectiveness
of our more conservative multiple experts algorithm against
more aggressive prefetching schemes. For this purpose we
compared against three previously proposed successor pre-
dictors: Last Successor (LS), Stable-Successor (Noah) [3],
and group-based prefetching [2]. We measured the perfor-
mance of the cache replacement policies and compare them
to the performance of the predictors employed as cache
prefetching algorithms. Unless otherwise stated, all pre-
dictors were applied as an enhancement to an underlying
LRU cache.

We developed a discrete event simulator that took fil-
tered traces as input and tracked the cache hit ratios and
predictive accuracy. While cache hit ratios give an indica-
tion of the reduction in I/O latencies they neglect poten-
tial costs of prefetching. Incorrect prefetches can cause
disk queuing delays that are not reflected in hit ratios.
Prefetching accuracy, the number of correct prefetches out
of the total number of prefetches, is one way of evaluating
prefetching performance. The relative importance of cache
hit ratios to prefetching accuracy will naturally vary from
one system scenario to another, therefore we discuss both
metrics. All experiments used traces drawn from three dif-
ferent trace sets:

• Coda Traces These traces were collected with the
DFSTrace system [17] as part of the Coda project [21].
All system calls on 33 machines from February, 1991
until March of 1993 were recorded.Barber was the
server with the highest rate of system calls;Mozart
was a typical single-user workstation.

• SEER Traces The SEER [14] traces were system
calls taken from single-user work stations used by
members of their research group.Norgaywas traced
from September, 1996 to March, 1997.Erasmuswas
traced from September to February, 1997. These two
were chosen as typical traces out of the nine collected.

• HP Traces These are two traces fromcello, a
server, andhplajw, a workstation, collected in 1999



by Hewlett-Packard on systems running HP-UX.
Ruemmler and Wilkes [20] traced and analyzed these
same machines in 1992. Unlike our other traces,
these are block level traces taken at the storage de-
vice, though for consistency we refer to data items as
“files“ throughout this work.

The hplajw trace was from February 10, 1999 through
February 19, 1999 and contained 2.6 million “file” ac-
cesses. Unfortunately, our simulator had trouble running
long slices of thecello trace and limited us to roughly
80,000 “file” accesses.

3.2. Cache Hit Ratios

We first looked at cache hit ratios to give some idea of
the potential latency reductions of the various prefetching
methods. Then we looked at predictive accuracy to give an
indication of how much useful work was being done by the
prefetchers. In an effort to give a more complete picture of
prefetching performance, we looked at the loss incurred by
each prefetcher.

The primary purpose of any prefetching scheme is to
increase the cache hit ratios. It is worth distinguishing that
we are only interested in the hit ratios for demand fetches,
those that normally occur in the request stream. Implicit
fetches, that are initiated by prefetching, are unimportant
as far as cache hit ratios are concerned.

Figure 1 shows the hit ratios for both our three pas-
sive caching algorithms (LRU, LFU and ARC), and four
prefetching algorithms (Group-based, Stable Successor,
LS, and our proposed Multiple Experts) over a wide range
of cache sizes. Each of the prefetching algorithms use LRU
as their underlying replacement policy. For most of the
traces, the predictive algorithms all outperform the passive
caching algorithms.Barber(Figure 1(c)) is the one notice-
able exception where ARC achieves higher hit ratios for
larger cache sizes. Since the choice of replacement algo-
rithms is independent of the prediction algorithm, we reran
the simulations with ARC instead of LRU as the underly-
ing replacement algorithm. Figure 2 shows that indeed the
prefetching algorithms have higher hit ratios when com-
bined with ARC.

In general, algorithms that issue more prefetches per file
access will produce higher hit ratios as long as those pre-
dictions have greater likelihood of access than the objects
they replace. The results for all traces were similar to those
of Figure 1, and confirm that Group-Based prefetching con-
sistently generates higher hit ratios since it issues multiple
predictions per file access. Stable Successor (Noah) and
Last Successor (LS) achieve slightly lower hit rates since
they issue a single prediction per file access with Stable
Successor doing better simply because it predicts more ac-
curately than LS. The conservative nature of our proposed
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Figure 1. Hit Ratios, SEER and Coda Traces
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Multiple Experts algorithm lowers its cache hit ratios, as
it chooses not to issue predictions when the null expert
wins. Nonetheless, it should be noted that Multiple Ex-
perts consistently achieves cache hit ratios among those of
the highest-performing algorithms tested, even if it does not
exceed them.

3.3. Prefetch Accuracy

Prefetch accuracy is the number of useful prefetches
over the number of prefetches performed. Prefetches are
deemed useful if the objects that were prefetched are re-
quested by demand fetches before they are replaced. Even
though an algorithm may not accurately predict an im-
mediate successor, its prefetch can still benefit the sys-
tem as long as the prefetch reduces the demand fetches.
Prefetched objects that are never used, lower an algorithm’s
prefetch accuracy.

Figures 3 and 4 show that Multiple Experts is able to
achieve consistently higher prefetch accuracy than Group-
based, Stable Successor or LS prefetching. The null expert
is allowing Multiple Experts to refrain from issuing predic-
tions when it is uncertain of being correct. Multiple Experts
had a worst observed accuracy of 68% and frequently de-
livered as high as 98% (the higher values were also true for
the SEER traces which are not shown due to space limita-
tions).

3.4. I/O Performance

The primary goal of any caching scheme is to reduce
latency and improve the perceived performance of lower-
levels in the storage hierarchy. With our simulator we mea-
sured the the number I/O requests that are required by the
prefetching caches. This is an important measure as it is
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Figure 3. Prefetch Accuracy, Coda Traces

indicative of the time spent by the system waiting for I/O
operations to complete.

Figures 5 and 6 show the average number of I/O op-
erations needed per file request for theMozart, Barber,
hplajw, andCello traces. This is a ratio of the number of
items retrieved by the cache, compared to the number of
requests for items that the cache would have made if it was
only performing demand replacment. An cache effective at
reducing the I/O workload will have a low ratio. It can be
seen from

In all cases our Multiple Experts algorithm requires
fewer I/O operations than the Group-based, LS and Noah
schemes. This is also true for the SEER traces, which we do
not include for space limitations. While Multiple Experts
exhibited competitive performance in terms of cache hit
rates, it can be seen to dramatically excel in both prefetch
accuracy, and I/O reduction. The next scheme in terms
of I/O reduction is Noah, also known as Stable Succes-
sors [3], which allows for prudence in making predictions,



 0

 20

 40

 60

 80

 100

 50  100  150  200  250  300  350  400  450  500

P
re

fe
tc

h 
A

cc
ur

ac
y 

(p
er

ce
nt

)

Cache Size (files)

Prefetch Accuracy vs. Cache Size

MultExp
Noah

LS
Group-based

(a) hplajw (Workstation)

 0

 20

 40

 60

 80

 100

 50  100  150  200  250  300  350  400  450  500

P
re

fe
tc

h 
A

cc
ur

ac
y 

(p
er

ce
nt

)

Cache Size (files)

Prefetch Accuracy vs. Cache Size

MultExp
Noah

LS
Group-based

(b) cello (Server)

Figure 4. Prefetch Accuracy, HP Traces

thereby avoiding many unnecessary I/Os. But while Noah
uses a global parameter for determining whether or not a
prediction is safe, Multiple Experts requires no such pa-
rameterization, as it will automatically determine whether
the set of candidate successors is promising or not. Fur-
thermore, Multiple Experts performs this evaluation inde-
pendently for each file, with little more overhead than is
required to track the per-file predictive metadata, resulting
in the greater accuracy with fewer I/Os.

4. Related Work

Considerable research has gone into methods of
prefetching files. Pattersonet al. suggested modifying
compilers to allow programmers to provide the operating
system with hints about future file use [19]. These hints
would then be used to prefetch files as the operating system
saw fit. Obviously this would require the recompilation of
programs to be effective. Additionally, it requires that pro-
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grammers have accurate knowledge about what files a pro-
gram will be accessing. Trends in object oriented program-
ming toward more encapsulation and layers of abstraction
make this problem more difficult for the programmer.

Kuenninget al. built SEER, a prototype file hoarding
system for disconnected operation. They introduced the
notion ofsemantic distance, which is derived from the or-
der and overlap of file references [14]. A graph is built and
used to cluster files likely to be accessed in close proxim-
ity. The clustering algorithm was augmented by a series
of heuristics tuned to the peculiarities of Unix file access
patterns, and in later work discovered that the heuristics
were responsible for the improved hoard performance and
not the actual clustering methods [13]. The heuristics com-
bined with a simple LRU policy for hoard file replacement
were shown to outperform their more complicated cluster-
ing scheme.

Griffioen and Appleton proposed automatic file
prefetching based on the prior access stream and a rela-
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tionship graph [9]. They maintained a directed probability
graph for the successors to each file that were accessed
within a window, and a successor was prefetched if its
estimated probability was above some system threshold
value.

Lei and Duchamp maintain a database of access trees
for different program executions [15]. When a program is
run, the tree database is searched for patterns that match the
current accesses. If one is found to match close enough, the
remaining files in the tree are prefetched. Yehet al. corre-
lated successor predictions to both programs and specific
users [26], masking the more random effects of operating
system behavior like context switches.

Vitter and Krishnan [22] first proposed the use of data
compression techniques to file prediction, while Kroeger
and Long [10] produced the space-efficient and more
adaptivePartitioned Context Model(PCM). Kroeger and
Long went on to develop a Linux prototype implemen-
tation which demonstrated that simply making good pre-

dictions were not enough to achieve performance im-
provements, and their solution was to produce predic-
tions further ahead using theExtended Partitioned Context
Model(EPCM) [12].

Last Successor(LS) is a simple baseline predictor. It
predicts the successor to the current access of a file, to
be the same as the previous time the file was accessed.
This naive heuristic performs surprisingly well and serves
as a good starting point for comparing successor predic-
tors. Amer and Long proposedNoah [1], which is one
of several variations on LS. They later went on to propose
mechanisms for assembling groups of successors to a given
file. These are targeted toward client-server environments.
Servers can aggregate the knowledge gained by observing
multiple client file streams in order to predict likely groups
of immediate and transitive successors to files [2]. Later
work also used multiple heuristics to predict file succes-
sors [24]. These included the use of successor stability [3],
and more general per-file successor popularity schemes to
limit false predictions.

5. Conclusions and Future Work

Good cache management is critical in reducing I/O la-
tency, and access prediction has the potential to eliminate
I/O latency or to seriously harm system performance if pre-
dictions are mishandled. We have demonstrated an access
prediction algorithm that exhibits high prediction accuracy,
and improves cache hit rates, whilst simultaneously reduc-
ing the likelihood of unnecessary I/O requests and their as-
sociated costs. Our Multiple Experts scheme satisfies these
apparently mutually exclusive goals, while doing so in an
algorithm that automatically learns when not to attempt a
prediction, and does so successfully on a per-file basis with
no critical parameters that would require user setting or in-
tervention.
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