
QUASAR: Interaction with File Systems
Using a Query and Naming Language

Technical Report UCSC-SSRC-08-03
September 2008

Sasha Ames Carlos Maltzahn Ethan L. Miller
sasha@cs.ucsc.edu carlosm@cs.ucsc.edu elm@cs.ucsc.edu

Storage Systems Research Center
Baskin School of Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064

http://www.ssrc.ucsc.edu/

QUASAR: Interaction with File Systems Using a Query and Naming
Language

Sasha Ames Carlos Maltzahn
sasha,carlosm,elm@cs.ucsc.edu

Storage Systems Research Center
Computer Science Department

University of California, Santa Cruz

Ethan L. Miller

Abstract
As storage capacities increase, finding and organizing

data becomes increasingly challenging. Conventional
approaches to organization for file systems fail to effec-
tively provide for the needs of petascale storage, because
hierarchical namespaces do not scale and must rely on
ad hoc utilities. Previous solutions do not incorporate re-
lationships as search terms, nor were they designed for
today’s systems sizes. Moreover, adopting established
query languages as file system interfaces is not practi-
cal because such languages are too complex for the com-
mon task of specifying file names, and file systems users
would be forced to switch to a drastically different inter-
face.

To address this problem, we present a query language
(QUASAR) that combines a number of useful opera-
tions for search and view specification within file sys-
tems. QUASAR narrows down file system namespaces
to smaller subsets, through searches based on link dis-
tance, and provides more meaningful results through
searches based on inter-file relationships. Instead of be-
ing confronted with long lists of search results, users
may employ QUASAR to define views for their searches,
and then navigate views using the familiar abstraction
of hierarchy browsing. In contrast to an abrupt transi-
tion to a different language, QUASAR provides a syn-
tax that includes POSIX paths as well as added features
that are suitable for naming. We demonstrate such fea-
tures through a prototype file system that uses QUASAR
queries to manage its namespace. We further discuss our
thoughts on metadata typing.

1 Introduction

The growth in storage capacities has been accompanied
by an equal explosion in the quantities of data stored.
Such growth amounts to systems containing nearly one
trillion files in the near future: a proliferation of metadata

to manage. Quickly finding files in storage systems is al-
ways a critical need, and given their growth, this activity
becomes increasingly challenging. For instance, large or-
ganizations often have personnel working independently
on projects, and although the workers would benefit from
sharing knowledge, communications are difficult under
the current paradigm of file systems organization. Effec-
tive search techniques within common storage facilitate
sharing. Moreover, the intelligence gathering commu-
nity has enormous amounts of data (audio, video, photos
and text) which need to be stored and retrieved. Finding
the desired file quickly may be critical in a crisis. Rela-
tionships between such data items are valuable in aiding
retrieval when preserved in the storage system [1, 2, 5].

Because the POSIX interface lacks a direct search ca-
pability, developers have addressed the issue of finding
files through ad hoc search techniques or overlay ap-
plications. In this paper, we present an alternative ap-
proach, in which we place the interface for querying
and specifying views of files within the kernel. We ex-
plore this approach with our query and naming language,
”QUASAR”, which combines established techniques for
file system interaction with several new techniques as
well as syntax for specifying views. QUASAR assumes
a file system with rich metadata, including extended at-
tributes on files, and relational links between files (see
figure 1). Our previous work on the Linking File Sys-
tem [1, 2] explored this model further. Other prior work
presented methods by which inter-file relationships of
various categories might be extracted, including tempo-
ral locality [9], provenance [5] or causality [8].

2 Background

Users of the POSIX interface, which uses directory hi-
erarchies for file organization, must rely on finding files
by browsing. As hierarchical namespaces do not scale,
such activity becomes impeded by an excessive number
of traversals. While profiling a single laptop with 65GB

Intrafile

(attributes)

Interfile

(links)

Direct User

Assignment

Automatic

(System)

Creation

Source:
Metadata Type:

Tagging
Permissions

Containment

Temporal Locality
ProvenanceTime stamps

File sizes

ownership

embedded
tags, ex. ID3

Content derived hyperlinks
included files

Figure 1: QUASAR works with a rich variety of metadata. We
categorize metadata on two axes, and view the variation of user
vs. system involvement in its creation as a continuum.

of data stored, we encountered a little under one mil-
lion files, an average directory size of five entries, path
lengths on average of ten traversals, and 29 maximum
traversals. If we extrapolate five orders of magnitude
to nearly 100 billion files, and consider a file distribu-
tion consistent with our directory size, browsing for files
would require as many as sixteen traversals.

In response to the problem described above, semantic
file systems presented attribute-based naming schemes.
An early solution of this sort [3] allowed users to browse
virtual directories of files tagged with attributes, and
the logic file system [6] followed with logical opera-
tors within path expressions to produce virtual direc-
tories. Because such schemes use attributes associated
with files, common attributes match many files, and rarer
attributes only match a few files apiece. Performing
search via a query using common terms produces de-
sirable results only if the user specifies a good combi-
nation of terms, and guesswork is needed to compose a
”good” query. Alternately, the use of rare attributes is
worthwhile only if users can correctly remember these
particular attributes: a failure to recall necessitates fur-
ther browsing.

One way in which QUASAR approaches namespace
scaling is through combining keyword search with hi-
erarchical browsing. No other solution has successfully
combined the two: file search results usually appear in
a single virtual directory. In the solutions described
above, virtual directories cannot contain within them ad-
ditional virtual directories for the purpose of browsing.
In contrast, QUASAR’s views can contain hierarchies
that users may further browse.

Within the UNIX community, many shell-based utili-
ties have been developed for varying types of search, out-
side of the kernel. For instance, a variety of search paths
are utilized, yet their values are not easily ported between
environment variables. Moreover, different shells (bash,
csh, etc.) often use different syntax, such as separator
characters, for the same variable. In the case of La-
TeX and cvs, if users wish to share BibTeX files across

documents, they must repeatedly soft-link these files,
stored in a separate cvs directory from their documents’
workspaces. Another problem with shell-based solutions
is that they have been invented on small systems, and
thus are unable to scale to larger systems. For instance,
many scientific applications write numerous small files
to single directories. It is impractical to obtain listings
of such directories, and brute force search techniques
(find+grep) become prohibitively slow.

Most recently, we witnessed the proliferation of key-
word search applications, such as Spotlight, Google
Desktop and Beagle. These and the shell-based solu-
tions have a disadvantage that, not being in the kernel,
their performance may not be optimized within the file
system. The search applications maintain their own in-
dices and tie into the file system through coarse noti-
fication mechanisms or continuous crawling. However,
as the kernel provides the mechanism to set the current
working directory, hiding the complexity of long path-
names, QUASAR is able to provide (through the kernel)
the same functionality as the utilities do, yet in a con-
sistent fashion. We do so by changing the file system’s
naming interface. This approach guarantees a common
medium containing richer file names, analogous to the
VFS layer, which presently handles naming.

Another alternative for organizing file metadata is the
use of relational databases, which we see as problem-
atic. Their use ultimately requires adopting SQL as the
file system interface, whose syntax appears too verbose
to specify names for groups of files. Furthermore, if
we must adopt the relational model for file systems in
an extensible fashion, without a specific schema for all
attribute fields, we must use a general schema that re-
quires numerous joins to answer queries. In order to
support existing applications’ use of POSIX directories
and our link distance search, we have determined that we
would require extensive iterative querying, costly recur-
sive joins, or even SQL union operations. Additionally,
we have determined that other query languages, such as
XQuery/XPath [4] and SPARQL [7] are unsuitable for
adoption. XQuery is not appropriate, as it is solely for
XML transforms. XPath is a node selection language,
lacking view specifying operations that we require, and it
also lacks facility for non-hierarchical data. SPARQL is
a bad fit because, like SQL, it poorly handles traversals,
and its syntax produces queries that will be far too long
for naming, due to the nature of the RDF data model.

3 Flexible Naming and Virtual Hierarchies

We consider a number of classes of naming within file
systems. First, the file name is the ”listing name” that ap-
pears in directories. If a file is moved or copied to another
directory, the file retains this name in its new location,

unless there is already a file present with the same listing
name at that particular location. These names have a 1:N
ratio (names:files). The second type of file name is the
full path. A full path contains both the listing name and
the traversal of all encompassing directories, with each
step including a listing name for each corresponding di-
rectory. These names are N:1, where N is extremely
close to 1, reflecting the very small number of hard linked
files and directories. Finally, file systems internally keep
track of files via their inode numbers, guaranteeing a 1:1
ratio. QUASAR makes a number of changes to the first
and second described types of naming. For the first,
QUASAR presents listing names for files, within both
traditional and virtual subdirectories, comprised of one
or more arbitrary attribute values. For the second, N be-
comes large, since paths to files include attribute search
information in addition to traversals, and traversals may
occur over more than one naming attribute. Also, inode
numbers can be used programmatically within searches
and result listings.

Directory hierarchies, when not too extensive, are gen-
erally effective for users to browse for desired informa-
tion and applications for their own data storage needs. A
major drawback of conventional hierarchies is that they
remain static. We are forced to see the same view or-
ganization no matter what the circumstance. In contrast,
search engines return their results in lists with little to no
organization. This feature is a serious drawback to search
engine scalability, because users become inundated with
too many disorganized results. To address both these is-
sues, we propose the use of dynamic hierarchies. We dis-
cuss their use in the following domain-specific example,
illustrated in figure 2.

A number of audio file player and management appli-
cations have been developed to help users enjoy their dig-
ital music collections. Various formats, including .mp3
and .aac, embed song metadata within each file under
the de-facto ID3 standard, but the applications still main-
tain their own queriable databases with additional non-
standard metadata. These databases are problematic in
that they are not portable between applications, and each
application presents one or more interfaces for query-
ing or for viewing results, each with inconsistent capa-
bilities. For instance, iTunes has a main query and a
smart playlist interface, which, respectively, have lim-
ited searchable fields and non-browseable results. More-
over, the naming schemes and the locations within direc-
tories are not consistent across applications with respect
to usage of the underlying file system for storage, and
of course, have the limitation of static hierarchical place-
ment.

QUASAR overcomes issues with static hierarchy or-
ganization and limited view presentation by combining
the positive features of each. Depending on how the user

@filetype=mp3&artist&album&trackno;

title

In My

Life

Come

Together

Title:Artist:

Aerosmith Pixies Beatles

Artist:

Ike and

Tina

Aerosmith Beatles Sound-

garden

Abbey

Road

LiveGreatest

Hits
1967-

1970

Album:

Album:

& Title:

Doolittle

1;Debaser
7;Monkey

Gone To

Heaven

@filetype=mp3;composer=LennonMcCartney/

&title/&artist&album

Rubber

Soul(US)

10;In My Life

File found in

both views

Figure 2: Two parallel virtual directory hierarchies containing
a common file

specifies views, results may be returned either as tuples
or hierarchically. Tuples contain values from multiple
fields concatenated into a single entry. For example, song
file results are listed using the well known fields: ”Artist
Name”, ”Album Name”, ”Track Number” and ”Track Ti-
tle”, but with QUASAR, we may change the ordering
or presence of each value. This advantage provides for
flexible naming. Hierarchical results present values for
each field per subdirectory level. We place together re-
sults that share common values into virtual subdirecto-
ries. For example, as depicted on the right side of figure
2, we group query results of songs sharing a common ti-
tle in the first group of subdirectories. The organization
follows down the tree with results sharing artists, and fi-
nally, with the albums on which each song appears.

QUASAR’s generalized approach to querying over-
comes the rigid nature of applications’ search interfaces.
Suppose that a new category of attribute may become
desirable for music search. For example, a music critic
wants a collection of tracks produced or engineered by a
famous producer in a particular year, and tags music files
for that purpose. While GUI applications may need to be
updated to accommodate the new field, the underlying
search interface provided through QUASAR remains the
same, and better yet, advanced users who directly use the
query language can immediately take advantage of new
categories.

4 Use of QUASAR

Our file systems query language solution, QUASAR,
gives users the power to conjoin several different styles
of search and view definition within a single, compact
query. When confronted with the full breadth of fea-

- Initial Path to Lookup:
 /projects/viewfs/presentation
- Directory Listing:
 seminar_talk.ppt usenix_talk.ppt
- Full path to selected file:
/projects/viewfs/presentations/seminar_talk.ppt
- Virtual directory path:
 /projects/viewfs/presentations/seminar_talk.ppt/^linktype=include
- Virtual directory listing:
 fig1.eps chart1.ps

Figure 3: Steps to create a simple virtual directory using
relationship-based search.

tures, a user may consider QUASAR very complex. As
with any new technology, there will be a learning curve.
However, we do not expect a steep learning curve, rela-
tive to other similar languages. First of all, we have de-
signed the language such that the totality of its features
need not be used in order to achieve results. For example,
let us consider the baseline for QUASAR’s usage where
it appears like a POSIX file system. Here, path separa-
tors traverse over ”containment” relationships, utilizing
the ”name” field on links, while other search features are
inactive. Secondly, storing the current working directory
hides much of QUASAR’s complexity by allowing users
to avoid retyping long strings and to gradually build and
refine queries. Additionally, we support the use of util-
ities to provide aliases for common query fragments, so
that users may easily compose and expand their queries.

Figure 3 presents an example of a virtual directory, in-
troducing a simple use of a relationship-based search:
a new search technique we introduce through QUASAR.
The first couple of steps show paths that look like
POSIX, and in fact, these paths behave like standard di-
rectory traversals, as we described in the baseline. The
addition of our syntax, /ˆlinktype=includes, creates a
virtual directory of all files that are included by the pre-
ceding file, provided we set traversal to our default op-
eration. However, we are not limited to ”included” files,
as we may consider other relationships as well. Also,
more advanced relationship-based QUASAR query oper-
ations can perform refinements based on attributes found
on link target or source files.

To further demonstrate QUASAR’s backward compat-
ibility with existing search methods, we present how to
use the language as one would use a search engine. A
search for ”viewfs seminar presentation” would trans-
late into @viewfs;seminar;presentation. The @ char-
acter tells the system to search the entire file system for
matches, though the operation may be set as a default for
search, and the character omitted. For this example, we
have configured a default search field of ”keyword”, so
that the field name may be omitted from each term.

Once a user becomes familiar with the two query
styles presented above, she or he may combine them for
added results. Our example using three terms should
produce a list of results that match these terms. Se-

lecting search results in QUASAR is exactly like choos-
ing a directory entry in POSIX. We may append the
file name of our chosen result, in this case a Pow-
erPoint presentation file, to the query string, with the
POSIX separator character. Then, if we would like
to see any files included by the selected presentation,
we may append our previously mentioned relationship-
based search operation string. The final query appears
as: @viewfs;seminar;presentation/seminar talk.ppt/
ˆlinktype=include

Now, we would like to see what has been included by
all result files from a keyword search. The QUASAR
query to accomplish this task is similar to the one above:
@viewfs;seminar;presentation/ˆlinktype=include
In this case, QUASAR traverses all ”include” links as
a group, from each result that matches the query terms.
This method works much like XML node traversal using
XPath. The combining of multiple search techniques,
in addition to being backwards compatible with POSIX,
endows QUASAR with advantages over other proposed
semantic file systems. QUASAR additionally supports
search terms with field names, featured in some of the
semantic file systems, and available in Spotlight’s ”smart
folder” interface in a limited fashion. Here is the term
query from above with field names added:
@project=viewfs;filetype=presentation;topic=seminar∗

5 Location-Based Search

In answer to the problem of locating particular files out
of a large system, we present the strategy of searching by
location. Consider web-based keyword search, where we
often encounter an unmanageable numbers of results. If
we reduce the result set to contain only the results within
a particular subsection of the web, we can limit the num-
ber of results to a more manageable number. Within file
systems, one way to limit search to location is to search
within subtrees of a global directory hierarchy. However,
it is not realistic to confine oneself to a single subtree,
even when using symlinks to other subtrees (when nec-
essary). Over time, what was originally a manageable
subtree will grow to the unmanageable proportions we
initially wished to avoid. We do know that subtrees are
defined by links within the file system. Moreover, given
our metadata model, we find links for relationships other
than simply containment.

One such relationship is provenance: by using links
derived from provenance relationships, we may establish
locations within file systems, where files are co-located
when they are ”descended” from an earlier file. For in-
stance, an absent-minded oceanographer wishes to find

∗we assume we can tag all presentations under this field, as opposed
to using a more specific field for file format

his presentation slides on wave systems. Keyword search
produces a large number of results, but he is not sure
which file is correct, and wants to avoid opening each
one. However, he recalls that he has derived several im-
ages, included by the presentation files, from a script
used to model waves. So, if he locates the script via
browsing and keyword search, he may reduce the list of
presentations to the correct few. To make searches like
this simple, QUASAR features a single operation that de-
fines a search location based on link distance. When such
a query is stored as a current working directory, subse-
quent queries may naturally be confined to this prede-
fined space.

Unlike relying on term search alone, where result
sizes grow to be unmanageable with larger file systems,
location-based search has the advantage of being con-
sistently based within a well-defined set of files, no
matter how large the system. The link distance is an
easy-to-control search parameter that we have built into
QUASAR’s syntax, which can expand and contract result
set sizes. Moreover, the virtual root of these searches is
always flexible, as well.

6 Implementation

To experiment with the use of QUASAR, we have de-
veloped a prototype implementation that runs in user
space. Figure 4 shows the interaction of its components.
The FUSE framework allows us to mount the file sys-
tem within a system’s global namespace in order to con-
duct our experiments. Paths presented to the mountpoint
that contain QUASAR syntax are evaluated by a query
engine in the user file system. We derive our query lan-
guage parser from Flex and Bison. Our parser produces a
query-plan data structure that we process against our in-
dices. The user file system has its own custom metadata
store and indices. We keep these in system RAM, using
binary search trees that facilitate future range queries.

For our experimental metadata, we have imported an
iTunes library (citation). To experiment with links, we
have utilized playlists that reference other files. The fo-
cus of our experiments was to verify that each query op-
eration returned search results correctly, within a rea-
sonable response time. Under both a Powerbook G4
(MacOSX) and AMD 64 server (Linux 2.6.x) deploy-
ments, response times for queries were consistently un-
der 10 ms of system and user time. Our previous ex-
perience with FUSE indicated that there is considerable
overhead consisting of message passing from kernel to
user space. However, our experiments with the prototype
were geared toward usability and proof-of-concept as op-
posed to performance. We have successfully demon-
strated our query operations for keyword search, link
traversal, link distance searching, matching files based

FS

Interface Query
Plan

Query

Processor

Path

Parser

Metadata Stores / Indices

Lookup

stat /

x-attr

FS ops: open/readdir

Inodes x-attr link-attrlinks

Indices

link attrfile attr

Cient App

Kernel

VFS

FUSE

Interface

Stores

inode # + dirents

Figure 4: The prototype software architecture with custom
metadata storage.

on link target (child) attributes and matching based on
link source (parent) attributes. In one sample search, we
have determined which of the playlists link to songs of a
particular artist or genre. In another, we found songs that
are common to two playlists. Such a query combines: a
simple traversal to locate the first playlist; a second single
traversal to target song files; refinement to match particu-
lar attributes on the song files; and additional refinement
through matching songs with the second playlist as a par-
ent file. We successfully demonstrated a link distance
search: we identified a parent file that contains all the
playlists, set the search distance to two links, and refined
to match song files by particular artists.

Additionally, we successfully listed files by names that
were derived from an arbitrary selection of attributes, in
a shell environment, using the common ls command. We
have combined the use of ”current working directory”
with our QUASAR test environment to browse virtual
directory hierarchies, and also to refine queries. For the
latter, we performed two test cases. In the first, we set
a working directory context of particular ”Genre” and
”Artists”, and refined our results through listing partic-
ular albums. In the second, we set the context to only
contain our playlist files, and continued the search by
traversing links to a virtual collection of song files from
those playlists, and by matching specified criteria.

Existing POSIX symbolic linking gives us a pre-
existing framework for storing queries. Our prototype
can store a query as the symbolic link target, and opening
the link evaluates the query. Additionally, when using
our MacOSX test deployment, we placed some queries
in symbolic link targets elsewhere in the HFS. Opening
the links in Finder allowed us to browse the virtual hi-
erarchies exactly as one would browse regular directo-
ries. We have also tested the same functionality under
the Gnome file browser for LINUX.

7 Metadata Typing

”Date range” is a common query predicate that we ex-
pect a search system to answer. Moreover, there are
other quantities and values that should be available for
range queries. Range queries are interesting: their exe-
cution depends on the ordering of values, which requires
that metadata must be properly ”typed” so that it may
be ordered either numerically or lexicographically. Tra-
ditional FS metadata fields, such as dates and sizes, are
stored as integers, and thus should be treated as such for
indexing and ordering.

However, to our knowledge, file systems search tools
that utilize extended attributes for metadata cannot prop-
erly handle numeric ranges, because extended attributes
are treated as strings. For instance, Beagle uses Lucene
to index its extended attribute metadata. Dates and nu-
meric values must be converted to strings that mimic nu-
meric ordering by prepending 0’s, which is obviously
problematic. In contrast, Spotlight handles traditional
numeric file system metadata as well as some common
well-known attributes in a proper fashion. Unfortunately,
instead of a flexible, extensible approach, Apple supports
fields based only on its applications’ needs.

We have identified two alternatives that should han-
dle typing for extended attributes, and will present ram-
ifications for each. First is explicit typing, where we
may introduce a system call to register types for attribute
fields. The system must maintain a database of types.
One question that arises from this scheme is how to han-
dle conflicting type registrations: for instance, whether
the use of polymorphic fields should be considered. The
second alternative is to utilize the parser to determine
a value’s type at both indexing and query times. The
advantages are that first, applications can determine the
type with which to treat a field, and use that field in-
dependently of other applications; second, terms should
continue to match attributes, regardless of type. This ap-
proach could be problematic if an application requires a
field to be strictly alphanumeric, and mixed values do not
order properly.

8 Conlcusion and Future Work

We have presented a need for search capabilities within
file systems. To reconcile issues of inconsistent ap-
proaches outside of the file system, search capability
must be incorporated into the kernel interface. A query
language supports the combination of multiple search
techniques and view specification. Through QUASAR
and our prototype implementation, we can see that the
search techniques we have proposed are indeed feasible.

Future performance evaluation of a single-host sys-
tem running QUASAR shall be conducted through an

in-kernel prototype. Using this implementation, we may
focus on other related elements of the work, including:
implementing the semantics for addition and modifica-
tion of metadata; our proposed typing schemes; query
results caching; and an interface to a service that re-
ceives updated query results. To formally model the
query processing, we are developing a language calcu-
lus. Furthermore, we hope to integrate the interface with
a distributed indexing framework that will support search
over distributed storage clusters, so that we may experi-
ment with queries at a much larger scale.

Acknowledgments

This work was supported in part by the Depart-
ment of Energy under award DE-FC02-06ER25768, by
Lawrence Livermore National Laboratory, and by the in-
dustrial sponsors of the Storage Systems Research Cen-
ter at the University of California, Santa Cruz. We thank
the members of the SSRC for their feedback.

References
[1] AMES, A., BOBB, N., BRANDT, S. A., HIATT, A., MALTZAHN,

C., MILLER, E. L., NEEMAN, A., AND TUTEJA, D. Richer file
system metadata using links and attributes. In Proceedings of the
22nd IEEE / 13th NASA Goddard Conference on Mass Storage
Systems and Technologies (Monterey, CA, Apr. 2005).

[2] AMES, S., BOBB, N., GREENAN, K. M., HOFMANN, O. S.,
STORER, M. W., MALTZAHN, C., MILLER, E. L., AND
BRANDT, S. A. LiFS: An attribute-rich file system for storage
class memories. In Proceedings of the 23rd IEEE / 14th NASA
Goddard Conference on Mass Storage Systems and Technologies
(College Park, MD, May 2006), IEEE.

[3] GIFFORD, D. K., JOUVELOT, P., SHELDON, M. A., AND
O’TOOLE, JR., J. W. Semantic file systems. In Proceedings of
the 13th ACM Symposium on Operating Systems Principles (SOSP
’91) (Oct. 1991), ACM, pp. 16–25.

[4] MARCHIORI, M., AND QUIN, L. W3c xml query (xquery).
http://www.w3.org/XML/Query/, 2007.

[5] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U.,
AND SELTZER, M. I. Provenance-aware storage systems. In
USENIX Annual Technical Conference, General Track (2006),
pp. 43–56.

[6] PADIOLEAU, Y., AND RIDOUX, O. A logic file system. In Pro-
ceedings of the 2003 USENIX Annual Technical Conference (San
Antonio, TX, June 2003), pp. 99–112.

[7] PRUD’HOMMEAUX, E., AND SEABORNE, A. Sparql query lan-
guage for rdf. http://www.w3.org/TR/rdf-sparql-query/, 2007.

[8] SHAH, S., SOULES, C. A. N., GANGER, G. R., AND NOBLE,
B. D. Using provenance to aid in personal file search. In Pro-
ceedings of the 2007 USENIX Annual Technical Conference (June
2007), pp. 171–184.

[9] SOULES, C. A. N., AND GANGER, G. R. Connections: using
context to enhance file search. In SOSP ’05: Proceedings of the
twentieth ACM symposium on Operating systems principles (New
York, NY, USA, 2005), ACM Press, pp. 119–132.

