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Abstract

Emerging byte-addressable persistent memories
such as Intel’s 3D XPoint enable new opportuni-
ties and challenges for in-memory indexing struc-
tures. While prior work has covered various as-
pects of persistent indexing structures, it has also
been limited to performance studies using simulated
memories ignoring the intricate details of persistent
memory devices. Our work presents one of the first,
in-depth performance studies on the interplay of
real persistent memory hardware and indexing data
structures. We conduct comprehensive evaluations
of six variants of B+Trees leveraging diverse work-
loads and configurations. We obtain important find-
ings via thorough investigation of the experimental
results and detailed micro-architectural profiling.
Based on our findings, we propose two novel tech-
niques for improving the indexing data structure
performance on persistent memories. Group flush-
ing inserts timely flush operations improving the in-
sertion performance of conventional B+-Trees by up
to 24% while Persistency Optimized Log-structuring
revisits log-structuring for persistent memories im-
proving the performance of B+-Trees by up to 41%.

1 introduction

Persistent Memory (PM) devices combine mem-
ory and storage characteristics by increasing cost-
efficiency over DRAM, providing non-volatility and
byte addressability (via memory load/store instruc-
tions) as well as by supporting sub-us-scale laten-
cies. The eminent availability of PM opens up
new opportunities for many IO intensive applica-
tions. For instance, it improves the viability of in-
memory databases by providing higher storage ca-
pacity for the same cost while providing native dura-
bility without incurring the high write overhead of
flash SSDs. Due to the limited availability of PM,
prior work resorted to DRAM-based emulation [58]
or hardware simulation [39]. Our work is one of the
first utilizing real PM hardware evaluating the ac-
tual performance benefits and trade-offs of PM. In
contrast to existing studies of Intel’s Optane mem-
ory |21} [67] that only evaluate raw performance i.e.
latency and bandwidth, our work provides a thor-
ough analysis of the interplay of PM and the index-
ing data structures commonly used in databases.

While there exists a large body of work on in-
dexing structures as well as on PM, the interplay
between the two remains largely unexplored. For
instance, prior work on in-memory indexing has in-
vestigated scalability [5] [I8], 30, B2} [34] [35], cache ef-

ficiency [6] 9] [35] 4T}, [42] and CPU efficiency [25] [47],
however, only for conventional DRAM-based sys-
tems.

Prior research on PM has focused on topics in-
cluding consistency and the read-write asymme-
try of PM without focusing on the integration
of PM technology and indexing data structures.
For instance, there exists a large body of work
on providing consistency and durability via write-
ahead logging (WAL) [7, [13, 50] or native persis-
tence [T, 15} 20} 28] 29, B7, £8]. Prior work on
addressing the asymmetric read-write performance
of PM proposed different techniques for trading ad-
ditional reads for a reduction in writes [10] 60, [61],
for instance by maintaining the keys of an index
node in their insertion order [I0] to trade-off writes
for higher query overheads.

This paper looks at indexing structures from a
new PM-based perspective. By studying a sys-
tem with Intel Optane DC Persistent Memory Mod-
ule (DCPMM), the first commercially available 3D
XPoint-based PM product that offers desired char-
acteristics of high density, byte addressability and
low latency, we conduct a comprehensive evaluation
of in-PM indexes to answer the following questions:
(1) What are the implications of 3D XPoint mem-
ory [21], 67] on in-memory index performance? (2)
What is the real-world performance impact of vari-
ous PM indexing techniques? (3) Are there device
or platform-specific techniques that efficiently opti-
mize indexes in 3D XPoint memory? Our study tar-
gets sorted index structures instead of hash tables as
the support of efficient range queries is critical for
many cloud applications. Among sorted indexing
structures, we focus on the B+-tree and its vari-
ants, as they are widely used both as standalone
software components and as basic building blocks
of advanced indexing structures including Worm-
hole [54] and the MassTree [35]. In comparison,
as demonstrated in prior work [51], 53], index struc-
tures such as skip lists and tries provide inferior per-
formance in many scenarios and are often enhanced
by incorporating B-tree into their designs.

Our evaluation results demonstrate that the be-
havioral characteristics of PM are more intricate as
shown by prior work that leveraged only simula-
tion techniques. Despite sharing the same interface
with DRAM in load/store instructions, PM should
not be be treated as slow RAM. We first conduct a
comprehensive evaluation on the PM indexing tech-
niques with diverse workloads and configurations.
Several important findings are made and analyzed
with detailed profiling. Leveraging our findings we



have developed three optimizations to explore more
potential techniques to improve the index perfor-
mance for PM. The main findings and results of our
optimizations are summarized below.

Main Findings: 1) PM bandwidth represents a
greater performance challenge than PM latency for
indexing structures with write-intensive workloads,
increasing the performance gap between DRAM
and PM from 2.2x to 4.4x. PM manufacturers
should focus on improving bandwidth by increas-
ing intra-module parallelism to address the most
significant performance issue of PM. 2) The ben-
efits of write-optimized indexing structures are lim-
ited in real-world applications. Keeping data un-
sorted at tree leaves only improves random inser-
tion performance by 6% in a single threaded work-
load. 3) The granularity disparity between CPU
caches and DCPMM (64 vs 256 bytes) contributes
to sub-optimal bandwidth utilization in PMs. 4)
The overhead of providing durability and consis-
tency for PMs is small compared to the raw perfor-
mance degradation introduced by PM over DRAM.
5) The state of the art consistency mechanism for
B-Trees—FAST /FAIR—Dbenefits from continuously
flushing cache-lines to PM. With this optimiza-
tion, enforcing consistency only introduces a latency
penalty of 1.27x over conventional B-Trees with-
out consistency guarantees. 6) The idiosyncrasies
of DCPMM affect B-Tree parameter tuning such as
node size.

Optimizations: 1) Interleaving that leverages
software prefetching and fast context switching can
be used to hide the longer memory access latency
of PMs. We show that in-PM indexing structures
benefit more from such technique than in-DRAM
indexes. 2) We introduce Group flushing, a tech-
nique that prevents data reordering by flushing
modified data in groups. An unmodified B-tree
with software-directed group flushing achieves write
throughput comparable to its write-efficient coun-
terpart while having better search and range-query
performance. 3) Log-structuring translates random
writes to sequential writes at the cost of additional
reads and garbage collection, effectively addressing
the larger line size deployed by PM (265 Byte vs.
64 Byte). We show that the performance can be im-
proved by up to 41% via log structuring, compared
to the state-of-art PM-aware B+-Tree.

I
I
256-Byte request I
I

QO

c r — — — — — — — A

S CPU Cache

L

o
L N eberaust | _
| iMC |
I DDR-T Interface ‘ 1 64-Byte request I
| | ADr

Apache Pass Controller domain

| |
| = AIT

% WC Buffer
Il a
|
|

3D XPoint Storage Media b

Figure 1: The internal details of the Intel Optane
DC Persistent Memory Module

2 Background
2.1 3D XPoint Persistent Memory

While many PM technologies such as PCM (Phase
Change Memory) [43], ReRAM [46] and MRAM [4§]
have been under development for the last three
decades, Intel recently released 3D XPoint mem-
ory as one of the first commercially available PM
products.

Figure [I] outlines the architecture of Intel’s 3D
XPoint platform [2I]. DCPMM modules are con-
nected to the integrated memory controller (iMC)
on a recent Intel server CPU such as Cascade Lake
via DDR-T, a proprietary memory protocol. While
built on DDR4’s electrical and mechanical inter-
face, DDR-T provides an asynchronous command
and data interface to communicate with the host
iMC. It utilizes a request/grant scheme for initial-
izing requests by sending a command packet from
the host iMC to the DCPMM controller. Similar to
DDRA4, the iMC accesses DIMMS at the cache-line
(64-byte) granularity. The iMC and the DCPMM
modules connected to it form the Asynchronous
DRAM Refresh (ADR) domain. Every cache line
that reaches the ADR is guaranteed to be persisted,
even in the event of a power loss. Note that the CPU
caches as well as other buffers in the CPU are out-
side the ADR domain and hence suffer from data
loss in the case of a power failure.

For wear-leveling and bad-block management
DCPMM coordinates accesses to the underlying 3D
XPoint storage media via an indirection layer. The
Address Indirection Table (AIT) translates system
addresses to device-internal addresses. The access



Bandwidth (GB/s) Idle Latency (ns)
Seq. Rand. Seq. Rand. Seq. Rand. NT Store | clwb
Read Read Write Write Read Read
DRAM 105.9 70.4 52.3 52 81 101 86 57
DCPMM | 38.9 10.3 11.5 2.8 169 305 90 62

Table 1: The basic performance characteristics of DCPMM. Non-temporal stores (NT) and cache line write-
backs (clwb) are followed by a memory barrier to ensure that the store reaches the ADR domain.

granularity of the DCPMM media is 256 bytes [21],
requiring the controller to translate 64-byte requests
from the CPU into larger 256-byte requests. To
avoid a 4x write amplification on every write, write
combining buffers are employed to aggregate cache-
line-sized data into 256-byte chunks. The number
of write-combining buffers is limited and when all
buffers are exhausted a buffer that is hopefully full
is selected by the IO scheduling logic and flushed to
the 3D XPoint media. Similarly, 256-byte buffers
are allocated for incoming read requests.

DCPMM can operate in two different modes, the
Memory Mode and the App Direct Mode. The Mem-
ory Mode transparently uses available DRAM as a
cache and can only be used if durability is not a con-
cern. In this paper, we employ the App Direct Mode
as it provides the durability required by database
systems as well as direct control of the memory de-
vice. In App Direct Mode, the DCPMM is exposed
as a storage device hosting a DAX-capable filesys-
tem [I2] 50, 56] that can be mmap’ed and then ac-
cessed via load/store operations.

The basic performance characteristics exhibited
by DCPMM on an Intel Cascade Lake server are
summarized in Table A more comprehensive
study of the performance characteristics of the
DCPMM can be found in a prior report [2I]. Over-
all, DCPMM provides inferior performance com-
pared to DRAM. Furthermore, the read through-
put of DCPMM is about 4x higher than the write
throughput (read/write asymmetry) and generally
sequential workloads achieve 4x higher throughput
than random workloads. The read/write asymme-
try can be explained by the higher cost of writing
data to the 3D-XPoint media. The performance
gap between sequential and random workloads can
be explained by the 4x IO amplification induced by
the translation of 64-byte cache line accesses to 256-
byte DCPMM accesses. In addition, the unloaded
random read latency of DCPMM is about 3x higher
than that of DRAMs and the random read latency
is 2x higher than the sequential read latency. Fi-
nally, the unloaded latency of a non-temporal store

or cache line writeback (clwb) is almost identical
between DCPMM and DRAM.

2.2 Durability and Consistency in
PM

A reliable storage system must be able to tolerate
unexpected system failures by providing durability,
guaranteeing a consistent system state at all times.
As discussed in Section 2] CPU caches do not re-
side within the ADR domain and, therefore, cached
data is lost during a power cycle. A solution to
this problem is to explicitly flush modified data to
PM by software. The cache-line writeback clwb and
cache-line flush clflushopt instructions are sup-
ported by the X86 instruction set to force writeback
of modified cache-lines to PM.

Besides ensuring that modified data reaches the
persistence domain (durability), every write to PM
needs to leave the system in a consistent state
(atomicity). Modern architectures generally only
support 8/16-byte atomic stores. However, for an
update operation that modifies more than 16 bytes
atomically, a more sophisticated failure-atomicity
scheme needs to be utilized. Consider a simple ex-
ample of inserting a node in a singly linked list.
To insert a new node between the prev node and
the next node, we need to first update the “next”
pointer of the new node to next and second update
the “next” pointer of the prev node to the new node.
As these two updates (8-byte each) cannot be per-
formed atomically, they may be written back from
the CPU cache to the PM in any order. Consider a
case where the second update is persisted first and
then the system crashes before the first update has
completed. In this case, the list will be in an incon-
sistent state with disconnected nodes.

Atomic In-place Updates. Data consistency can
be guaranteed by enforcing the order of updates
reaching the PM device. For instance, in case of
the linked list example, ensuring that the first up-
date is persisted before the second ensures consis-
tency of the list under this failure scenario. To en-
force the order between the first and second up-
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Figure 2: Typical layouts of B+-Tree node.
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Figure 3: Challenges in maintaining consistency for
a sorted node: i) Element 3 is inserted into an array
of sorted elements; ii) System crashes after cache-
line @ is written back to the PM, resulting in an
inconsistent state, e.g. element 6 is lost

date, they need to be performed in the correct or-
der of the program, and then followed by a cache-
line flush and a memory fence instruction such as
mfence and sfence on X86. More complex data
structures [15] 20, 28], [29] require breaking update
operations into multiple atomic steps as both the
reader and writer must be enabled to cope with in-
consistent states.

Failure-Atomic Transactions. Native persis-
tence is error-prone if more complex operations are
involved. To remedy this, existing PM support li-
braries [7, [13} 50, [59] incorporate the failure-atomic
transaction abstraction, which can be implemented
with Write-Ahead Logging (WAL). For the singly
linked list example, the programmer only needs to
specify a failure-atomic transaction comprising the
two updates. The transactional support ensures
that either both updates are persisted or none of
them take effect. Compared to native persistence,
WAL entails the “double write” problem and in-
volves non-trivial software overhead in managing
the log space and performing the copying of the
data.

2.3 In-PM B+-Tree Variants

The B-Tree [] is a self-balancing multi-way tree
structure. In a B-tree, each internal (non-leaf) node
contains k — 1 keys as separation values to divide
its children into k subtrees, where k must be within
the range of [3] and b. When data is inserted or re-
moved from a node, internal nodes may be joined or

split to maintain the pre-defined number of children.
A B+-tree [14] is a modified B-tree that stores all
key-values in its leaves and maintains copies of keys
in internal nodes. The leaves of a B+-tree are of-
ten connected via sibling pointers for fast traversal.
While originally proposed to support efficient in-
dexing on block storage, the B+-Tree is also widely
used as an efficient in-memory index to alleviate the
performance gap between the CPU cache and the
main memory, with each node consisting of multiple
cache lines [I7]. Several studies investigated the de-
sign of in-DRAM B+-trees and its variants from dif-
ferent aspects such as cache consciousness [17], [42],
scalability [5, [34], [47], the capability of memory la-
tency hiding [9, 22, [40], and the opportunities of
architecture-specific optimizations [25, [47]. With
the advent of PM, while these techniques are still
applicable, the durability and consistency require-
ments as well as different device characteristics re-
quire new techniques in the design of B+-trees.

Optimizing for Writes. In a conventional B+-
Tree, each node maintains an array of items, i.e.
keys, values or pointers; these items are sorted
to reduce the search overhead. Upon an inser-
tion, on average, half of the items have to be
moved to maintain the key order, thus significantly
increasing memory writes. As discussed in Sec-
tion unlike DRAM, PM technologies usually
support lower write than read performance. Prior
work [10, 1T}, 37, 58] addresses the problem of high
write cost by leaving nodes unsorted. Figure 25|
shows a possible layout of an unsorted node in such
a B+-Tree. Different from the conventional design,
an extra validity bitmap is added in the node header
to encode the occupancy of the item slots. Each in-
sertion consists of 3 steps: i) identifying an empty
slot by consulting the validity bitmap, ii) putting the
item into the empty slot, and iii) setting the corre-
sponding validity bit. A search operation on a node
involves checking every valid slot. One can apply
the unsorted layout to selected write-heavy nodes
such as leaves, or the entire tree. Chen et al. [10]
show that the unsorted leaf scheme exhibits better
search/update performance compared to a B+-Tree
when all nodes are unsorted.

Ensuring Consistency. Ensuring consistency for
B+-Tree updates is challenging as an insertion (or
deletion) requires rewriting a large portion of a node
(e.g. sorted node) that spans multiple cache lines.
An example is shown in Figure [3] Inserting ele-
ment number 3 into an array of elements modi-
fies two cache lines. If the system crashes before
cache line @ is persisted, the sorted array in the



PM is turned into an inconsistent state where ele-
ment number 6 is lost. The most straightforward
solution is to rely on WAL to ensure the atomicity
of an update. However, WAL is often inefficient due
to transactional overheads. Two other approaches
have been proposed to maintain data consistency
for B+-trees. First, unsorted B-+-trees built on the
validity bitmap [11), B7, 58] maintains the atomic-
ity of node updates by ensuring the persistent order
between writes to the new slot and the update to
the wvalidity bitmap (atomic in-place updates). If
the system crashes before the update to the valid-
ity bit is persisted, the corresponding slot remains
invalid and the insertion (the items might only be
partially written) will be considered as failed. Sec-
ond, Hwang et al [20] proposes two mechanisms—
Failure-Atomic ShifT' (FAST) and Failure-Atomic
In-place Rebalance (FAIR)—which can be used to
augment durability semantics to an sorted B+-Tree.
The intuition is that if the modified cache-lines can
be written back to the PM in order, the potential in-
consistent states can be tolerated. Returning to the
example in Figure |3| where cache line @ is persisted
before the cache-line @. A failure might result in an
array with a redundant 6, however, this case can be
tolerated given the semantics of the B+-Tree.

Selective Persistence. The idea of selective per-
sistence is that the entire index can be reconstructed
from a fraction of the tree. Performance can be
improved by storing the recoverable part of the in-
dex in fast DRAM. Selective persistence can be ap-
plied to B+Tree [37], 58] as the leaf nodes of a B+-
Tree are already linked in the sorted order and thus
provides all the information to rebuild the internal
nodes. The tradeoff of this approach is between per-
formance and the failure-recovery time.

3 Experimental Setup

We now describe our methodology to evaluate the
performance characteristics of different B4-Tree im-
plementations on DCPMM.

3.1 Methodology

In this work, we compare five B4+-Tree solutions:
1) btree: A conventional in-memory B+-Tree with
sorted keys in each node; 2) unsorted leaf: A write-
optimized B+-Tree with unsorted leaf nodes and
sorted keys in internal nodes; 3) btree-WAL: A B+-
Tree utilizing WAL for consistency; 4) FAST/FAIR:
A B+-Tree with FAST /FAIR [20] for consistency; 5)
persistent unsorted: A B+-Tree with unsorted leafs
utilizing native atomic in-place updates to ensure

the consistency of leaf updates and WAL for sup-
porting the rare case of structural modifications; 6)
FAST/FAIR SP: A FAST/FAIR B+-Tree that em-
ploys selective persistence. All of these five solu-
tions employ the same fine-grained, optimistic con-
currency control mechanism [6] to enable multi-core
scalability. Note that we employ linear search for all
our implementations as prior work [20] has shown
that binary search performs worse when the node
size is smaller than 4 KB due to branch mispredic-
tions.

We profile the executions of the different B+-
Tree implementations using multiple hardware per-
formance counters, including the total number of in-
structions, instruction per cycles (IPC), cache miss
stalls and resource related stalls, to interpret the
results. The performance counters are obtained via
perf [I6]. The resource related stalls include stalls
caused by the limited size of hardware resources
such as the load/store queue as well as stalls in-
duced by the execution of memory fences. We also
collect the performance counters from the DCPMM,
including the amount data that is read and written
from and to the DCPMM controller as well as the
amount of data that is read and written from and
to the DCPMM storage media.

3.2 Experimental Environments

All of our experiments are conducted on a 2-
socket, 56-core machine with 32KB/1024KB/38MB
L1/L2/L3 Caches. The 12 memory channels (2
sockets X 6 channels/socket) are fully populated
using DRAM and DCPMM modules. In particular,
we deploy 96GB of DRAM (6 x 16 GB/DIMM) and
1.5TB of DCPMM (6 x 256 GB/DIMM). We use
the ext4-DAX file system on the Fedora distribution
(kernel 5.0.9). All our experiments are executed on
a single socket by pinning threads and restricting
memory allocation to the same NUMA node. Our
code is written in C/C++ and compiled with clang
8.0.0 with -O3 flag.

We design four micro-benchmarks for evaluation.
Unless otherwise stated, the system is warmed up by
loading a tree with 160 million entries and then one
of the four operations is performed: Fill Random
randomly inserts 80 million additional key/value
pairs; Read Random retrieves 320 million random
keys; Range Query performs range query requests
with a selection ratio of 0.001%; Read/Write simu-
lates a mixed read-write workload. Both keys and
values in these workloads are 16 bytes in size. We
perform an exhaustive search of the B4-Tree node
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size as one of the experiments. For all other experi-
ments we utilize a node size of 512 bytes which pro-
vides good performance in all configurations (Sec-

tion .
4 PM Indexing Techniques

In this section, we conduct experiments to mea-
sure the efficiency of PM techniques for addressing
the read-write asymmetry and for providing storage
consistency and durability. Furthermore, we ana-
lyze how B+-Trees can leverage a combination of
DRAM and PM devices to optimize performance.

4.1 Write-optimized Indexing Struc-
tures

In the first experiment we analyze the benefit of
write optimized data structures. As described in
Section [2:3] the unsorted leaf index reduces writes

while increasing computational complexity by main-
taining the bitmaps. We compare unsorted leaf
against a conventional btree baseline showing the
achieved throughput in Figure [d and latency in Fig-
ure 5] for three different workloads. We compare the
in-DRAM Performance (prefixed by DRAM) and
in-PM Performance (prefixed by PM).

Unsorted leaf reduces costly PM writes by avoid-
ing sorting the entries, and thus can improve the up-
date performance by up to 1.40x in the DCPMM
(Figure and Figure . In DRAM, reads and
writes have almost the same cost, so unsorted leaf
only improves the update performance by 1.06x.
The impact of searching values within unsorted
nodes requires that all valid slots must be checked.
In contrast, on average, only half of the entries need
to be checked in a sorted node for an existing key.
However, as unsorted leaf only suffers from addi-
tional overhead while accessing leaf nodes, the read
performance of unsorted leaf is comparable to that
of the btree (Figure daland Figure . As the un-
sorted leaf incurs significant instruction overhead
to sort the keys in a range query, it exhibits up to
3x performance degradation under the DRAM and
2x degradation under DCPMM (Figure[da]and Fig-
ure . Unsorted leaf suffers from a smaller perfor-
mance hit when performing a range query in PM as
the software overhead becomes less significant com-
pared to the cost of device accesses.
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The read performance of in-PM indexes is lower
than that of the in-DRAM indexes by a constant ra-
tio (Figure [da] and Figure [pa)). For write workloads,
the slowdown for btree ranges from 2.2x to 4.4x
whereas the slowdown for unsorted leaf only ranges
from 2.0x to 3.0x (Figureand Figure as the
number of threads increases from 1 to 48. This
observation is in line with 3D XPoint’s asymmet-
ric read/write performance. When the load of the
system is low (1 thread), the performance gap be-
tween PM and DRAM is between 2-3x as the node
traversal dominates the total runtime with memory
writes being mostly performed out of the critical
path. As the number of execution threads increases,
the DCPMM approaches its maximum I/O capac-
ity. The impact on performance is twofold. First,
increasing the PM operations creates back pres-
sure, eventually filling up the hardware resources
(reorder buffer, store queue) and stalling the pro-
cessor pipeline. Second, the amortized penalty of
L3 cache misses increases as it takes more time to
process the read requests in a fully loaded DCPMM.
Figure [6] shows the performance profile for btree on
both DRAM and PM. Compared to the in-DRAM
btree, the in-PM one experiences a drastic increase

in L3 miss stalls and, furthermore, resource related
stalls increase as the number of execution threads
scales beyond 16, indicating that the bandwidth of
PM is indeed becoming a bottleneck.

Finding 1: The gap between the insertion perfor-
mance of in-DRAM indexes and that of the in-PM
indexes widens as the number of execution threads
increases.

Implication: The PM bandwidth can be a limiting
factor for indexing structures to handle requests at
large scale. First, the indexing structures should be
designed to carefully avoid wasting PM bandwidth.
Second, more hardware resources should be added
to the system to mitigate the back pressure from
the PM.

Our evaluation shows that the actual improve-
ment of unsorted leaf on insertion performance is
relatively small (e.g. 6%) in a single-thread work-
load, which is significantly less than what prior
work [I0], utilizing a simulation based methodology,
suggested. Actual PM devices are better at hiding
high cost of writes than expected. In a real-world
system, PM writes can be queued at multiple layers
(store buffer, cache, iMC, DCPMM controller) and
slowly drained to PM. Finding 1 indicates that the
DCPMM becomes bandwidth-bound as the number
of execution threads increases beyond 16. As we can
see, the impact of write reduction in the unsorted
leaf on performance increases with 1/O pressure on
the DCPMM.

Finding 2: The real-world efficiency of write-
optimized indexing structures varies significantly
based on the intensity of the workloads.




Implication: To enable write-optimized indexing
structures B+-trees have to be restructured, in-
creasing the search overhead. As a result, for work-
loads with a low insertion rate conventional B+-
trees are preferable over write-optimized implemen-
tations in PMs.

Finding 3: The restricted I/O bandwidth of
DCPMM limits the insertion rate of the persistent
trees while due to random access patterns the PM
bandwidth cannot be not fully utilized.

4.2 Storage Consistency

Figure [7] compares the insertion performance
of persistent B-Trees with various consistency
mechanisms.  The persistent trees (btree-WAL,
FAST/FAIR and persistent unsorted) pay extra
costs to ensure storage consistency. To evaluate the
persistence overhead, we compare them with their
volatile counterparts (e.g. btree and unsorted).

Several general observations are made. First,
as expected, the consistency mechanisms introduce
runtime overheads, in particular, the insertion la-
tencies of btree-WAL and persistent unsorted are
up to 1.77x and 1.56x higher than the latency of
the volatile B+-Tree implementations (Figure .
The persistence overhead includes i) execution of
additional instructions to implement WAL and ii)
introduction of execution stalls caused by memory
barriers. Table [2| shows a detailed performance
profile. It confirms that btree-WAL, FAST/FAIR
and persistent unsorted indeed increase the num-
ber of instructions and experience more resource
related stalls. Second, btree-WAL and persistent
unsorted cannot achieve comparable throughput to
their volatile counterparts (e.g. btree and unsorted)
in the PM (Figure [7h]). This is because the persis-
tent unsorted and btree-WAL rely on write-ahead
logging and, therefore, incur extra PM write traf-
fic. In contrast, the WAL-free FAST/FAIR achieves
comparable throughput as btree. Third, btree- WAL
exhibits the lowest performance among the three
persistent trees as employing write-ahead logging
for the sorted node entails considerably higher over-
heads.

Compared to the latency in DRAM (Figure [7d),
the latency of the persistent trees in PM increases
drastically as the number of the execution threads
increases (Figure . In particular, the latency of
FAST/FAIR increases by 2.40x in PM but only
1.35x when residing in DRAM. As we can see in
Table 2] the DCPMM-level write-amplification in-
troduced by the persistent trees remains high, in-
dicating the full I/O capacity is still underutilized.
Note that the write-amplification of the btree- WAL
is relatively low. This is because it generates redun-
dant writes written to the in-PM log sequentially.

Implication: In conventional B+-Trees, ran-
dom updates are unavoidable increasing the write-
amplification for PMs. Given the constrained 1/0
capacity of PMs, the insertion performance can be
further improved by reshaping the I/O pattern of
the B+-Tree via log-structuring.

Despite the common belief that persistence intro-
duces performance overheads Figure [7d] shows an
interesting counterexample. For the Fill Random
workload, FAST/FAIR delivers 3% higher through-
put than the volatile btree on DCPMM, when the
number of execution threads is 48. This perfor-
mance increase is provided by the explicit cache-
line flushing mechanism required for ensuring con-
sistency which, as a side-effect, forces cache-lines to
be written back to the DCPMM controller sequen-
tially. In contrast, the timing of cache-lines being
written back in btree is implicitly controlled by the
CPU cache. This observation has inspired us to de-
velop a new optimization described in Section [6.2]

Finding 4: With conventional B-Trees, sequen-
tially modified cache lines are often written back
out of order by the cache controller, resulting in
sub-optimal bandwidth utilization in PM.

Implication: We can improve the performance of
the conventional indexes by preserving the spatial
locality of updates for the DCPMM controller.

Figure [8 breaks down the runtime overhead: For
each implementation, we list the execution time in-
duced by the btree implementation itself as well
as the time induced by WAL, memory fences and
cache-line flushes. We observe the CPU flushing
overhead of btree-WAL is actually low (Figure
and is close to that of persistent unsorted although it
requires 2x more cache-line flush instructions (Ta-
ble . This is because the frequency of memory
barriers is lower in WAL (1 memory barrier for ev-
ery 3 cache-line flushes) which allows multiple cache
flush operations to proceed in parallel. As a result,
the software overhead of WAL of 0.9 us almost out-
weighs the overhead for persisting data of 1.1 us
in btree-WAL. In contrast, the software overhead of
WAL in the case of persistent unsorted is minimal
(0.3 ps) as it is only required to implement rarely
occurring structural modifications of the tree.



CPU Memory
Instruction IPC Resource | Per. In- | Read Write RA WA
Stalls str.
btree 2107 0.22 7740 0/0 1626 400 1.6 3.2
unsorted 2381 0.26 6532 0/0 1651 236 1.5 3.5
btree- WAL 4620 0.26 11240 12/4 2001 937 1.6 1.8
FAST/FAIR 2548 0.19 9982 6/10 2119 474 1.5 2.2
persistent un- | 3137 0.22 9244 5/5 1973 411 1.4 2.6
sorted
Table 2: Profiling of the evaluated designs under the FillRandom workload (PM, 1 thread). It shows

Instructions Per Cycles (IPC), the number of instructions, resource related stalls and persistence instructions
(clwb/sfence), read traffic to PM (bytes), write traffic to PM (bytes), Read Amplification and Write

Amplification per operation

—~= FAST/FAIR
—— FAST/FAIR SP

—=<— FAST/FAIR
&  —— FAST/FAIR SP

Q. =1

O 30 =T T
B e
<20

£10

0

-<- FAST/FARR
—— FAST/FAIR SP

—~= FAST/FAIR
& —— FAST/FAIR SP

PR ——

Latency (us)

0 10 20 30 10 50 0 10 20 30 10
# of Threads # of Threads

(a) Read Random (Thpt.) (b) Read Random (Lat.)

Throughput (M

0 10 20 30 10 50 0 10 20 30 10
# of Threads # of Threads

(¢) Fill Random (Thpt.) (d) Fill Random (Lat.)

Figure 9: The efficiency of selective persistence

Finding 5: WAL provides a straightforward ap-
proach to ensure the consistency for complicated op-
erations, however, incurs significant software over-

head.

As shown in Table FAST/FAIR requires
more flush operations than the persistent unsorted
B+-Tree. Intuitively, FAST/FAIR incurs more
CPU flushing overheads and exhibits higher la-
tency than the persistent unsorted implementation
in the latency-bound workloads when the number
of the execution threads is small. Figure [§ how-
ever, shows the opposite trend: The CPU flushing
overhead of FAST/FAIR is 1.7x lower than that
of the persistent unsorted tree. In contrast, the
latency of FAST/FAIR and that of persistent un-
sorted is comparable when placed in DRAM under
the same workload. This is because FAST/FAIR
flushes cache lines continuously inducing smaller
overheads for DCPMM.

Finding 6: FAST/FAIR in the DCPMM benefits
from flushing cache-line continuously, reducing la-
tency when the load of the system is low. When
utilizing PM, the latency is only to 1.27x higher
than that of the btree.

4.3 Selective Persistence

We examine the efficiency of the selective persis-
tence technique described in Section [2:3] We store
the internal nodes in fast DRAM as they can be re-
built from the linked leaf nodes. First, as frequently
accessed index nodes are placed in DRAM, the per-
formance of leaf search benefits from selective per-
sistence. As shown in Figure[@a]and Figure [0D] stor-
ing index nodes in DRAM indeed improves the read
performance by about 1.5% closing the gap between
in-DRAM indexes and in-PM indexes. Second, the
selective persistence can improve the insertion per-
formance because it i) boosts the process of tree
traversal and ii) avoids the PM writes to update
the internal nodes stored in DRAM. As shown in
Figure [0d and Figure[0d] the insertion performance
is improved by up to 1.4x using the selective per-
sistence technique. One drawback of the selective
persistence approach is that it increases the recov-
ery time. We have measured the time that it takes
to rebuild the index nodes: as we increase the num-
ber of inserted entries from 10* to 102, the recovery
time increases from 10 milliseconds to 10 seconds
almost linearly.
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5 Workload Performance

In this section, we extend our experiments to more
diverse workloads and configurations.

5.1 Mixed Workloads

Figure[10| shows the index performance under work-
loads with varying ratios of PUT and GET oper-
ations and different number of execution threads.
The first row in Figure shows the performance
of different index structures in DRAM and the sec-
ond row shows the performance in PM. Two obser-
vations are made. First, The ratio of PUT/GET
operations has a greater impact on the performance
of the evaluated index structures in the DCPMM
platform. In particular, the throughput of the btree
degrades by 2.3x in the PM and only by 1.3x in the
DRAM as the write ratio increases from 20% to 80%
with 48 execution threads. This observation further
demonstrates the read /write asymmetry issue of the
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DCPMM. Second, in-memory indexes do not benefit
much from the improved write efficiency of unsorted
B-Trees when dealing with read-intensive workloads
or when the load of the system is low. For instance,
in a workload with 16 execution threads and 40%
PUT ratio, the unsorted leaf implementation only
achieves a 2% higher throughput.

5.2 Sensitivity to the Node Size

Figure [11] shows the effect of the node size on per-
formance. We make two observations. First, the
performance of all evaluated B-Tree indexes peaks
at the node size of around 512 Bytes in both Fill
Random and Read Random benchmarks. Figure
shows the profiling of btree under the Read Random
benchmark. As we can see, when the size of the
node increases from 128 bytes to 512 bytes, the L3
miss penalty (L3-miss stall cycles) is significantly
reduced, thus increasing overall performance.
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Figure 12: Profiling for btree under the Read Ran-
dom application

This can be explained by the improved efficiency
of the hardware prefetcher for large nodes spanning
consecutive cache lines. Note that the total amount
of data that needs to be read from DRAM on a
traversal is similar as trees with smaller nodes con-
tain more levels. When the node size increases be-
yond 512 bytes, the L3 miss penalty no longer de-
creases, however, the key-scanning overhead contin-
ues to increase, as larger nodes need to be searched,
leading to performance degradation. Second, the
performance gap between in-PM btree and in-PM
unsorted leaf increases as the size of the nodes in-
creases to 32 threads for the Fill Random workload
(F igure. In this case, the sorted B+-Tree expe-
riences an increasing number of PM writes as more
entries need to be moved during an insertion. We
also observe that the insertion performance of the
btree and unsorted leaf is comparable to the single-
thread workload (Figure [[1c). It shows that the
I/0 bandwidth limitation of the DCPMM in han-
dling write requests does not represent a bottleneck
in this case.

We find the insertion performance of in-PM btree
and in-DRAM btree peaks at different node sizes as
shown in Figure In particular, when the size
of the node increases from 256 byte to 512 byte,
the performance of the in-DRAM btree increases by
1.13x whereas that of the in-PM btree degrades by
1.08x. This is because in a write intensive work-
load, the overhead of writing more data to the PM
outweighs the reduced L3 miss penalty of increasing
the node size.

Finding 7: In order to maximize the performance,
parameters such as node size for in-DRAM indexes
need to be re-tuned for in-PM indexes.

6 Case Studies

In this section, we conduct three studies to show the
potential optimizations enabled by our findings. We
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focus on showcasing the key ideas and their impact
on performance.

6.1 Interleaving Operations

Major in-memory B+-tree operations such as query,
insertion, and removal are implemented by travers-
ing the tree from the root to leafs, resulting in the
pointer chasing problem: a node cannot be accessed
before the previous node’s pointer is resolved. If the
accessed node is not already in the CPU cache, the
CPU stalls waiting for data from the main memory.
As shown in Table[I] DCPMM’s longer read lantecy
compared to DRAM exacerbates the pointer chas-
ing issue. There are several techniques proposed to
hide memory latencies [9, 22 40] of B+-tree vari-
ants. One effective approach is to group multiple
operations against a data structure and then issue
them as a batch, thus increasing memory level par-
allelism [22,[40]. In this section, we examine the effi-
ciency of interleaving the execution of multiple GET
requests. The multi-GET performance of the btree
with varying node size and batch size is shown in
Figure where throughput is computed as batch
size times the number of multi-GET operations /
second. The efficiency of interleaving decreases as
the node size grows. For instance, with DRAM,
when the batch size is increased from 1 to 4, the
GET throughput increases by 2.1x with 256-byte
nodes but only by 1.2x with 1024-byte nodes. This
is due to the fact that modern CPU cores have a



limited number (10 20) of line fill buffers (LSB) to
support memory parallelism. With a smaller node
size, fewer cache lines need to be prefetched at once
for a single GET operation, hence more GET oper-
ations can be performed in parallel. Due to larger
access latencies in-PM B-+-tree benefits more from
interleaving. For instance, with 128-byte nodes the
multi-GET throughput of the in-PM btree increases
by 3.4x compared to the conventional implementa-
tion, whereas with the same configuration the in-
DRAM btree only increases performance by 2.5x.

Lesson 1: In-PM indexes benefit more from in-
terleaving compared to its in-DRAM counterparts
as long as adequate hardware resources (LSBs) are
provided. System designers should consider increas-
ing hardware resources on future CPUs to enable
higher memory parallelism.

6.2 Group Flushing

As described in Finding 4, when PM is used as
memory and no explicit cache-line flush is used to
ensure persistence, the order of the modified cache
lines being written back to the PM controller is im-
plicitly decided by the cache replacement algorithm.
Since the data in the CPU cache is managed at the
cache line granularity (typically 64 bytes), sequen-
tial updates on the software level may be translated
into small random accesses by the PM controller,
resulting in sub-optimal bandwidth utilization. In-
tuitively, the leaf and internal node updates in the b-
tree largely consist of sequential accesses and should
induce low write amplification within the device.
However, Table [2] shows that the device write am-
plification for the btree with the Fill Random work-
load is close to 4, indicating little sequentiality is
preserved when accessing the PM.

The most efficient solution to this problem is to
match the unit of the cache replacement policy to
the access granularity of the PM controller. How-
ever, this would require significant modifications to
the CPU architecture. We investigate the poten-
tial improvement of preserving sequentiality in PM
via a simple software-level solution—group flushing.
The key idea of group flushing is to explicitly flush
modified cache lines in contiguous groups via cache-
line flush instructions. We insert cache-line flushing
instructions into the source code following updates
to large blocks such as in the case of node updates
and node initializations in the B+-Tree implemen-
tation. CPU flushing involves non-trivial run-time
overhead, and is only beneficial if multiple adjacent
cache-lines can be flushed together. Therefore, we
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only perform flushes if two or more cache-lines can
be flushed in batch.

We denote a B4+Tree optimized with group flush-
ing as btree w GF. Figure [14] compares the btree w
GF to the original B+Tree (btree) as well as the
unsorted B+Tree (unsorted leaf). As we can see,
btree w GF achieves 24% higher insertion through-
put compared to the btree. The unsorted leaf still
achieves a slightly higher update performance, how-
ever, it sacrifices range search performance by up to
50% as shown in Figure [5b] and Figure [db] We also
observe that the latency of btree w GF is higher than
that of the btree when the thread number is less than
16. This is because, in the case of a low system load,
writes to PM do not represent the main performance
issue and the group flushing technique incurs ex-
tra instruction overheads due to additional clwb in-
structions. With Finding 2 showing that btree and
unsorted leaf have comparable performance under
low load, in practice btree can be used by only en-
abling group flushing when the system load is high.

Lesson 2: Prior research focuses on addressing the
write performance bottleneck by reducing writes at
the software level, for instance, by leaving nodes un-
sorted. Group flushing provides a new direction by
improving the I/O efficiency of PM by addressing
the granularity disparity between the CPU and the
PM. We envision group flushing to encourage hard-
ware designers investigating PM-aware CPU cache
replacement policies to further avoid the software
overheads.

6.3 Log-structuring

Finding 3 and Finding 6 motivate us to em-
ploy log-structuring for improving the update per-
formance of persistent B+-Trees. As shown in Fig-
ure[T5] random update operations on a conventional
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B+-Tree are translated to small random in-place
writes in the PM address space. Due to the access
disparity between CPU caches and the PM (64 vs
256 bytes), this random write pattern results in a
significant write amplification of 3.2x as shown in
Table 2l To confirm this issue, Table [2| shows that
the write amplification of the unsorted btree is al-
most 3, indicating that two thirds of the write band-
width is wasted, due to random in-place updates in
the PM address space.

By incorporating a log-structured layout [44], [45],
random writes can be batched into large sequential
runs to reduce write amplification and thus better
utilize the limited PM write bandwidth. However,
this approach requires an efficient way to locate data
in the log space. Virtualized B-Trees [34] [62] de-
couple the physical representation of the tree node
from the logical representation. An indirection layer
maps a logical identifier of a tree node to a chain of
delta records in the log space, each record in the
chain representing an update to the corresponding
node. The effectiveness of log structuring, to a large
degree, depends on the efficiency of garbage collec-
tion (GC) and failure recovery.

6.3.1 Design Considerations

Employ indirection only for leaf nodes. The
virtualized B+-Tree in prior works [34] [52] fully sep-
arates the physical representation from the logical
view. However, Wang et al. [51] demonstrates that
the indirection overhead of the BwTree [34] can be
as high as 18%. We propose a novel hybrid layout:
indirection is only used when accessing leaves that
are write-heavy. This approach represents a good
trade-off between read and write performance. Fig-
ure [I5] shows the organization of our proposed tree
where each leaf node is identified by its leaf node
ID (LNID) and a leaf node mapping table is used
to translate the LNID to the physical pointer to the
head of the delta (update) chain. For reads, a list
traversal is performed on the delta chain to identify
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the search key. For an update, a delta record is pre-
pared, the delta record is flushed to the DCPMM
and the newly prepared delta is prepended to the
delta chain. If the number of the items in the delta
chain exceeds the pre-defined node size, a split op-
eration is performed. The valid data on the chain is
then distributed into two new nodes of equal size.

Supporting multiple logs. A single log used by
all threads is the most straightforward log space or-
ganization, however, this approach severely limits
the concurrency of updates and recovery operations.
At the other extreme, a per-node log in persistent
unsorted trees avoids the scalability issues at the
cost of random writes and higher write amplifica-
tion. We choose the middle ground by adopting a
multi-log layout where updates are dispatched to a
circular buffer-backed log based on the hash of its
LNID. When the garbage of a log exceeds a pre-
determined threshold, a GC task is initiated by one
of the multiple GC threads to start at the head of
each circular buffer copying the valid data to its tail.
The validity of a delta record is determined by its
availability in the mapping table. During GC, valid
delta records of the same chain are consolidated by
the garbage collector into a new record and the ad-
dress is updated in the mapping table.

Avoiding random PM writes to the map-
ping table. FEach node update requires modify-
ing the corresponding chain head pointer in the leaf
node mapping table, producing undesirable random
writes. We recognize the fact that all the data re-
quired for the mapping table during recovery is al-
ways persisted in logs enabling us to keep the map-
ping table in DRAM and rebuild it upon recov-
ery. When a failure is detected, multiple log replay
threads are initiated each one assigned with a num-
ber of logs. The threads work in parallel by scan-
ning each log in the chronological order rebuilding
the delta chains in the mapping table.

Hiding access latencies with prefetching. The
delta chain reduces the spatial locality within a leaf
nod degrading search performance. For instance,
two consecutive items in a conventional B-Tree may
be separated in the log space of a virtualized B+-
Tree, resulting in an additional cache miss when
accessed together. Prefetching is used to mitigate
the performance degradation for reads. In particu-
lar, for each leaf node, we cache the pointers to the
most recent delta records, and prefetch them when-
ever a chain traversal is initiated. The number of
delta records cached, represents a trade-off between
read performance and the space consumption of the
mapping table.
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6.3.2 Evaluation

The results of the log-structured B+-tree imple-
mentation (denoted as btree-LS) are compared with
those of persistent unsorted and FAST/FAIR in Fig-
ure[I6] with GC disabled. One can see in Figure[16a]
that btree-LS achieves 41% higher insertion perfor-
mance as compared to FAST/FAIR, from efficiently
reducing the PM-level write amplification with a
high system load. A 37% degradation in read per-
formance is also observed (Figure , mainly be-
cause of the reduced spatial locality in cache.

Figure [I7] demonstrates the impact of log count
selection by running Fill Random with 48 threads.
Figure shows that the update performance first
increases drastically with the number of logs, as the
contention for log updates is removed. After the
number of logs goes beyond 48, the performance
gradually drops as write sequentiality diminishes.
Figure confirms that write amplification inside
the DCPMM increases from 1.4 to 1.7 as the num-
ber of logs increases. Figure shows the recov-
ery time of 160M entries by varying log count, with
the replayer count equal to the log count and GC
threshold set at 50MB. By effectively exploiting par-
allelism of the recovery process, with 48 replayer
threads (and 48 logs) the whole index can be recov-
ered in 0.89 secs and the speedup over the single-
thread implementation is 21 x.

We show the impact of garbage collection and

delta prefetching in Figure Figure shows
the impact of garbage collection. The background

1000
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GC workers attempt to keep the amount of garbage
data within a tunable threshold. The update perfor-
mance degrades by only up to 7% as the GC thresh-
old decreases from 1000MB to 100MB. Meanwhile
the read performance increases by 20%. This is be-
cause GC is also responsible for consolidating small
delta records and thus a more aggressive GC set-
ting better preserves spatial locality. Figure [I84]
shows the efficiency of delta prefetching. As the
number of cached delta entries is increased from
1 to 8, the read performance is improved by 26%.
Delta prefetching can barely improve performance
when the number cached delta entries goes beyond
4. We suspect this is because the maximum level
of memory parallelism supported by the hardware
is reached.

Lesson 3: Log-structuring efficiently utilizes the
limited write bandwidth by significantly reducing
device write amplification, at the cost of search per-
formance and additional implementation complex-
ities. By placing the indirection layer in DRAM,
exploiting parallelism within the log space and ju-
diciously selecting software parameters such as the
garbage threshold, we can make log-structuring
practical for PM indexes.

7

Several studies investigate persistent B+-Tree de-
signs for PM. Chen et al. [I0] highlight the im-
portance of reducing write overheads by propos-
ing leaving nodes in the B+-tree unsorted. NV-
Tree [58], FPTree [37], and wBT-Tree [I1] adopts
the unsorted node organization to reduce the con-
sistency overhead. NV-Tree [68] investigates the
effectivenss of selective-persistence. To facilitate
the search on an unsorted node, FPTree [37] ex-
tracts the fingerprint of the key into a metadata
area while keeping the node virtually sorted with a
small slotted array. FAST /FAIR [20] proposes a log-
free, failure-atomic shift and rebalance algorithm to
guarantee the failure-atomicity of write operations.

related work



WORT [28] shifts its focus to radix tree, arguing
that radix tree has more straightforward rebalanc-
ing operations as compared to B+-tree. Recent
work investigates hash-based indexing [36] [61] for
PM. Recipe [29] provides a principled approach for
converting concurrent DRAM indexes into failure-
atomic indexes for persistent memory. These works
utilize a simulation based methodology ignoring the
intricate details of real PM devices. Our work ex-
amines the effect of PM on B+-Tree indexing struc-
tures, presenting important findings that are miss-
ing from prior research.

Complementary to prior research on in-PM in-
dexes, our study evaluates the real-world perfor-
mance of in-PM B+-tree variants and explores the
corresponding design space constraints by the char-
acteristics of DCPMM. Xie et al. [55] conduct a
comprehensive performance evaluation of several
advanced in-DRAM index structures. Wu et al. [53]
study the basic performance and formalize an “un-
written contract” of of Intel Optane SSD. How-
ever, Intel Optane SSDs exhibit quite different char-
acteristics than their memory-form counterparts.
Izraelevitz et al. [21] and Yang et al. [57] uncover the
basic general performance characteristics and inter-
nal detals of DCPMM, while our work focuses on
in-PM index performance. Lersch et al. [33] study
the performance of PM range indexes in 3D XPoint
memory while our work complements it with new
insights and optimizations.

Relational database engines [T}, 2, 3] [26] 38 49]
have been optimized for persistent memory. Pel-
ley et al. [38] reduce the software complexity of
traditional ARIES-style WAL. Write-Behind Log-
ging [3] is a new logging and recovery protocol tai-
lored for enavbling fast random accesses in PMs.
3 Tier BM [49] includes PM as a new caching
layer and re-designs in-memory caching to lever-
age byte-addressability. In comparision to these
studies on database storage management, our work
focuses on the design of in-PM indexing struc-
tures. PM has also been incorporated into key-value
stores [19} 23], 24]. SLM-DB [23] utilizes a persistent
B-+Tree in PM for indexing and allows all SSTables
to be stored in a single level. NoveLSM [24] utilizes
a byte-addressable skip list in PM to reduce logging
and (de)serialization overheads. Our study on or-
dered indexing structures is complementary to the
above work.

In-memory indexing has been extensively re-
searched to address the increasing processor-
memory performance gap. Cache-conscious index
structures [41} 42] have been proposed to improve
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caching efficiency, while prefetching [9] and inter-
leaving [8), 22| 27], [40] can hide memory latency by
increasing memory-level parallelism. Several new
in-memory index structrures have been proposed in
the past decade including BwTree [34], a latch-free
implementation of the B+-Tree that utilizes indi-
rection and compare-and-swap operations for high
scalability. ART [31],[32] is a trie-based data struc-
ture with adaptive nodes to reduce space consump-
tion. Masstree [35] combines a trie and a B+-Tree
to efficiently handle arbitrary keys. Wormhole [54]
is a fast ordered index that combines the strengths
of three indexing structures (hash table, prefix tree,
B+-Tree). All these studies were conducted on
DRAM, ignoring PM specific performance issues.
We leave the study of these data structure on PM
for future work.

Log-structuring [44] is a classical storage tech-
nique and has been constantly revisited by mod-
ern storage system designs. NOVA [56] is a log-
structured filesystem designed for PMs that em-
ploys a per-inode log to improve concurrency. The
BFTL [562] layer transforms fine-grained B-Tree
operations into SSD-friendly block-based accesses
by virtualizing the disk-based B-Tree index. Bw-
Tree [34] virtualizes the in-memory B+-Tree in-
dex to enable i) latch-free updates and ii) log-
structuring for the flash memory storage. Our study
draws inspiration from the above work, while focus-
ing on the implications of utilizing log-structuring
for DCPMM.

8 Conclusion

Prior research on PM-aware data structures has
leveraged simulation or emulation methodologies,
ignoring the intricate details and performance
pathologies of persistent memories such as Intel’s
3D XPoint. This paper focuses on the B+-tree
and its variants, exploring the common design is-
sues of sorted index structures in a real system uti-
lizing persistent memory. We demonstrate how to
achieve high performance on a real-world persis-
tent memory platform, combining several different
techniques and providing an in-depth analysis of
their micro architectural performance characteris-
tics. Furthermore, we present two novel techniques
group flushing and log structuring for PM. Group
flushing improves performance by 24% by address-
ing the granularity disparity between CPU caches
and the DCPMM controller. In addition, our study
revisits the log structuring technique in the con-
text of persistent memories further improving per-
formance by 41%. We release the source code devel-



oped as part of this work as open-source to enable
future research on 3D XPoint-based indexing struc-
tures.
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