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Abstract
Byte-addressable non-volatile memory (BNVM) tech-
nologies are closing the performance gap between tra-
ditional storage and memory. However, the integrity of
persistent data structures after an unclean shutdown re-
mains a major concern. Logging and shadow paging are
commonly used to ensure consistency of BNVM sys-
tems. But both approaches can impose significant per-
formance and energy overhead by writing extra data into
BNVM. Our approach leverages the indirection of vir-
tual memory to avoid the need for logging actual data
and uses a novel cache line-level mapping mechanism
to eliminate the need to write unnecessary data. Thus,
our approach is able to significantly reduce the overhead
of committing data to BNVM. Our preliminary evalua-
tion results show that using OSP for transactions reduces
the overhead necessary to persist data by up to 1.96× as
compared to undo-log. Moreover, our approach can be
used to provide fast, low-overhead persistence for hard-
ware transactional memory, further facilitating the ac-
ceptance of BNVM into computing systems.

1 Introduction

Byte-addressable Non-Volatile Memory (BNVM) is be-
coming a reality, as technologies such as STT-RAM [10],
PCM [16] (Phase-Change Memory) and memristor [18]
show DRAM-like performance and disk-like persis-
tence. Building applications directly upon BNVM can
be simpler, since code that serializes and deserializes in-
memory data structures to and from persistent storage is
no longer needed [7] and more efficient, since overhead
from legacy system software layers such as file systems
and the block layer may be avoided [2, 3, 8, 9, 20]. How-
ever, applications need a mechanism to safely update
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their persistent data structures so they can recover from
an inconsistent state after an unclean shutdown such as a
crash.

Logging is commonly used to ensure storage consis-
tency [3, 6, 9, 20]. However, when logging is used, old
data (or new data) need to be copied to somewhere else
(a logging area in BNVM) before the data can be updated
in-place. However, using CPU instructions such as clwb,
movnti, and mfence to persist the copied data greatly
harms performance [24]. To combat this problem, we ob-
served that shadow paging can eliminate data copying
by taking advantage of virtual memory indirection.
Shadow paging is different from logging in that it has no
distinct log area and data area. It keeps the old data in-
place, writes the new data to any other free physical page,
and atomically updates the persistent virtual-to-physical
mappings when a transaction completes.

One challenge of using shadow paging, however, is the
amplified overhead caused by the gap between the large
page size (typically 4–8 KB) and the number of bytes that
are actually modified, which could be as small as few
bytes. Simply reducing the page size would result in an
unacceptable increase in virtual-to-physical mapping and
page table walk overhead [17].

To address this issue, we propose Optimized Shadow
Paging (OSP), which offers the same transactional se-
mantics as shadow paging with fine-grained persistence
at the level of a cache line. The key idea of OSP is to
employ compact cache line level mappings within each
valid page. OSP requires only two bits per cache line
to construct these mappings, and only requires them for
pages whose entries are currently in the TLB, since those
are the only pages actively being accessed. As Figure 1
shows, when OSP is used to perform transactional up-
dates, each virtual page is associated with two physical
pages, P0 and P1, enabling the system to maintain two
physical versions of each virtual cache line. This, in turn,
allows the system to preserve the previously-consistent
state of a virtual page as it presents the current state of
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Figure 1: Two states of a virtual page.
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Figure 2: Comparison of three mechanisms to provide
storage consistency.

this virtual page to memory accesses. To build practi-
cal durable transactions, we use lightweight journaling
or super pages to provide atomicity for multi-page trans-
actions, and we integrate page consolidation with TLB
eviction for space efficiency. Our proposed design can
be easily supported by hardware and only requires min-
imal OS changes. A hardware implementation improve
performances by avoiding the extra instructions required
by software [15].

Figure 2 compares two existing techniques, undo-
logging and shadow paging, against OSP. It demon-
strates that OSP transactions offer two advantages. First,
OSP does not require data copying in the critical path,
avoiding the performance overhead that results from it.
Second, BNVM technologies often have limited write
endurance [11], and OSP significantly reduces the num-
ber of writes to BNVM, thus mitigating this issue.

2 Design

Figure 3 shows the high-level components that are used
to build durable OSP transactions: an extended TLB, a
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Figure 3: Overview of OSP transactions.

consistent state table, and a lightweight journal. Cache
line level mappings of OSP are implemented as two sets
of bitmaps, a committed bitmap and an updated bitmap.
These bitmaps are combined in different ways to deter-
mine which cache lines make up the current state of a vir-
tual page, and which cache lines make up the most recent
consistent state of the page. Each TLB entry must be ex-
tended to contain both bitmaps for each page in the TLB,
but the bitmaps need not be in the page table. Instead, the
consistent states (committed bitmap) are also stored in a
persistent table. These durable consistent states allow ap-
plications to recover after an unclean shutdown. Transac-
tion commit advances the durable consistent state. When
multiple virtual pages are updated in a transaction, their
combined durable consistent state must be updated atom-
ically: either all pages move to their next consistent
states or none do. We propose two approaches to pro-
vide such atomicity: lightweight journalling, which only
tracks whose consistent states (e.g., virtual page num-
bers) need to be changed and how (e.g., updated bitmap);
and super page, which recursively combines multi-page
transactions into a single-page transaction.

2.1 Cache line Level Mappings

The two per-page bitmaps, with one entry for each cache
line in the page, allow OSP to track modifications to in-
dividual cache lines and to determine which cache line is
“current” and which represents state from the last trans-
action. Each cache line’s state is represented by a single
committed bit and a single updated bit, which is analo-
gous to the dirty bit in a regular cache. The committed bit
for a cache line “points” to the page containing the cache
line as it appeared at the most recent commit. The up-
dated bit is set to one whenever the cache line is written,
and is reset as part of the commit process. Since each bit
refers to the cache line at the same offset in both P0 and
P1, it is sufficient for the TLB entry to simply contain the
physical page number for each of P0 and P1; the offset is



determined as usual from the address.
As a transaction is being processed, reads are directed

to the page determined by XORing the committed bit and
the updated bit. If the cache line is clean, reads go to
the most recently committed version. If the cache line
has been modified in the transaction, the updated bit is
set and the read goes to the “other” cache line. Writes
always go to the page determined by committed bit⊕ 1,
and the updated bit is set as part of the write operation.

Because these operations are very simple and require
few gate delays, adding support for OSP is unlikely to
significantly affect the critical path for TLB translation.
TLB translations and cache accesses are done in parallel
in commonly-used virtually-indexed physically-tagged
caches, which could further hide the increase, if any,
in TLB translation latency. One potential issue, how-
ever, arises with virtually-addressed caches, since this
approach does cache access before TLB access com-
pletes. Moreover, virtually-addressed caches have no
support for including two versions of a single cache line,
beyond the use of a process-specific identifier. While our
approach works well with physically-addressed caches,
we are currently exploring options to support virtually
addressed caches.

Under OSP, TLB entries must be made wider to store
information about the current states of virtual pages. A
TLB entry now includes two PPNs, a committed bitmap,
and a updated bitmap. This enables the memory man-
agement unit to quickly access the values as part of TLB
access, and to determine which of the physical pages as-
sociated with a single virtual address should be used for
the memory access. Although OSP might double the size
of the TLB entries (assuming 64-bit bitmaps), we think
such overhead is acceptable. Alternatively, we can use a
separate hardware unit to store the OSP-related informa-
tion, so normal TLB entries would be immune to such
storage overhead.

2.2 Page Consolidation

It’s a waste of precious memory space to associate these
virtual pages that are not actively being updated with two
physical pages. Thus, when a virtual page is evicted from
the last TLB (not being actively accessed), we consoli-
date valid data to one physical page and free the other
one. The consolidation overhead is minimized by merg-
ing the page that has fewer valid cache lines into the other
one. Note that we currently couple page consolidation
with TLB eviction for simplicity, but page consolidation
could be done lazily. Finally, we update the virtual-to-
physical mapping table so that the virtual page refers to
the physical page with all the valid data. As an optimiza-
tion, page consolidation could be moved out of the crit-
ical path in a TLB fault, since it need not be performed

immediately on a TLB fault. We plan to investigate hard-
ware/OS support for asynchronous page consolidation in
the future.

2.3 OSP Semantics
Regular Memory Accesses. Because we envision fu-
ture systems will have a hybrid of DRAM and BNVM,
we distinguish two types of stores. Transactional stores
(e.g., stores to persistent memory) require a crash consis-
tency guarantee while regular ones (e.g., stores to volatile
memory) don’t. Regular memory accesses begin with ad-
dress translation. As discussed in Section 2.1, the TLB
function is changed in order to always present current
states to a running thread. Given a virtual address (as-
sume hit), depending on the corresponding bits (XOR
them) for the accessed cache line in committed bitmap
and updated bitmap, either P0 or P1 is returned to the
processor. The remainder of the path for memory ac-
cesses is unaffected.
Transactional Stores. Transactional stores involve three
steps. First, we must copy the cache line from its old
location to its new location if this is the first time that
the cache line has been updated in the transaction. This
step can be completed in hardware by simply updating
the cache tag to reflect the “current” page of the cache
line after we read this cache line from its old location.
Second, we update the TLB to indicate that the cache line
gets updated. This can be done unconditionally, since it’s
easier to always set the updated bit in the TLB than it is
to first determine whether it has already been set. After
this is done, a transactional write proceeds as a regular
write access, using the new value of the updated bit (set)
to determine which page to write.
Commit. When the current state of a virtual page
reaches a consistent state, the commit operation provided
by OSP is used to bring the consistent state of the virtual
page update-to-date by XORing the updated bitmap into
the committed bitmap and clearing the updated bitmap.
Abort. If a transaction must be aborted, this can easily
be done by simply clearing the updated bitmap, restoring
the page’s state to the most recent (successful) commit.

2.4 Making OSP Transactions Durable
OSP allows us to always keep a consistent state of a
virtual page while serving transactional updates, but we
must still ensure that transactions become durable. While
our techniques work well with a single page, we must
also allow multiple pages to be updated in a failure-
atomic way.
Make Consistent States Recoverable. The OS main-
tains a consistent state table of tuples of the form
〈V,P0,P1,CB〉, which associates a virtual page V with



two physical pages (P0 and P1) as well as a committed
bitmap CB, in BNVM. The OS only updates the con-
sistent state table on TLB misses (we assume software-
managed TLB is supported). A new tuple is added if
there is no tuple with the same V already in the set, and
a tuple is removed when it gets evicted from the last pro-
cessor TLB.
Make Transaction Commit Durable. Durable trans-
actions guarantee data persistence after commit requests
are acknowledged. The first step towards this goal is
to find the cache lines that have been updated by the
transaction and force them to be written back to NVM.
We are able to track the updated cache lines via the up-
dated bitmap in the extended TLB. Then, for new consis-
tent states to be retrievable even after power cycling, we
atomically update the corresponding committed bitmaps
stored in the consistent state table. Finally, we apply the
commit operation to all the updated virtual pages to bring
their consistent state up-to-date.
Lightweight Journaling for Multi-page Transactions.
For transactions that only update a single virtual page,
we are able to update a committed bitmap stored in the
consistent state table atomically (8 bytes atomic in-place
update). However, some transactions may update mul-
tiple virtual pages, so we must use journaling to atomi-
cally update multiple committed bitmaps in the consis-
tent state table. OSP journaling is lightweight since we
only need to record the updated bitmap as well as a small
amount of other information (e.g., virtual page number
which can be used to uniquely identify a tuple in the con-
sistent state table).
Super Pages for Multi-page Transactions. As an alter-
native to journaling, we can transform multi-page trans-
actions into single-page transactions using super pages.
We reserve a super page for each address space to store
the consistent state table. Super pages are themselves up-
dated with OSP semantics. When a transaction is com-
mitted, we persist the new updates, update the consistent
state table stored in the super page, and perform a single-
page transaction commit for the super page. Under this
mechanism, the OS need only maintain a persistent super
page table which keeps consistent states of super pages.
For the rest of this paper, we assume lightweight journal-
ing is used for multi-page atomicity.

2.5 Performance Implications

OSP can provide durable transactions with almost no
cost for workloads with decent locality. The perfor-
mance overhead of OSP mainly comes from journaling
and page consolidation. Our journaling only requires
one small record per updated virtual page. In compar-
ison, logging might require one record with actual data
per update. Page consolidation overhead is not a per-

transaction overhead. We only need to pay for it for space
efficiency when a virtual page is not being actively up-
dated. Journaling overhead depends on the spatial local-
ity of the workloads while page consolidation overhead
depends on the temporal locality of the workloads. OSP
can benefit from workloads with either of these localities.
Moreover, unlike redo-log, OSP has almost no overhead
of address remapping, since it doesn’t need to keep the
updates in a separate log area.

3 Evaluation

We evaluated OSP by comparing it, under simulation,
with an undo-logging approach. Our experiments show
that OSP is much more efficient than undo-logging, and
allow us to measure the components of overhead in OSP.

3.1 Experimental Setup

Simulator. We are implementing our design in
McSimA+ [1], a Pin-based cycle-accurate simulator. We
configure the simulator to model a system with out-of-
order processors, 64-entry L1 DTLB, etc. Our proto-
type has not been fully implemented yet, so we can not
provide overall performance measurement at this point.
However, we are able to collect some performance-
critical information such as CPU flushes. Note that we
use CPU flushes to represent cache flushes (e.g., data) as
well as write-combining buffer flushes (e.g., uncacheable
log). We do not use the bytes written; although the CPU
might issue word writes, the caching system typically
writes data back to memory at cache line granularity.
Workloads. We ran our system under seven transac-
tional workloads. These workloads cover data structures
that are commonly used in storage systems and cover dif-
ferent access patterns. SPS workloads randomly swap
elements in a large array. HT-uni, RBT-uni, and BT-uni
insert/delete nodes in a hash table, red-black tree, and
B-tree (respectively) in a uniformly random fashion. HT-
zipf, RBT-zipf, and BT-zipf insert/delete nodes in a hash
table, red-black tree, and B-tree (respectively) following
a Zipf distribution [5]. The elements, keys or values used
in these workloads are all 8-byte integers. The footprints
of these workloads range from 1 GB to 6 GB.

3.2 Results

CPU flushes. OSP can improve performance via saving
extra expensive persisting operations. As shown in Fig-
ure 4a, compared to baseline (a hardware undo-log), OSP
is able to reduce the number of CPU flushes by 1.6× on
average. Workloads SPS and HT-uni have no spatial and
temporal locality, and thus represent the least ideal work-
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Figure 4: Preliminary results. OSP significantly reduces
flushes relative to undo logging.

miss ratio uniform (%) Zipf (%)
SPS 3.6 3.6
HT 5.66 0.09
RBT 12.93 0.75
BT 1.44 0.15

Table 1: TLB miss ratio

loads for using OSP. However, OSP is still able to save
17% of CPU flushes.
Analysis. We break down CPU flushes into three
sources, as shown in Figure 4b, for OSP transactions. We
make two observations. First, better temporal locality
leads to lower page consolidation overhead. As shown
in Table 1, workloads HT-zipf and RBT-zipf have notice-
ably lower TLB miss ratios, which means less page con-
solidations caused by evictions, than workloads HT-uni
and RBT-uni. As a result, we observe fewer CPU flushes
caused by page consolidations in workloads HT-zipf and
RBT-zif than in their counterparts. Second, better spatial
locality leads to lower journaling overhead. Figure 4b
shows that journaling only contributes a minor portion of
the total CPU flushes in workload BT-uni because BTree
is optimized for the better spatial locality. Better local-
ity allows updates within a transaction to touch as few
virtual pages as possible.

To sum up, OSP incurs comparable CPU flushes (1.2×
fewer in our experiments) than logging when workloads
has poor locality. However, OSP eliminates nearly all of
the storage consistency cost for workloads with good lo-
cality. For example, in workload BT-zipf, 98% of CPU
flushes come from persisting new updates (in-place up-
dates) that are necessary for data persistence.

4 Related Work

BNVM-aware Data Structures and Systems. BNVM-
aware data structures [19, 23] only focus on reduc-
ing storage consistency costs for particular data struc-
tures. In contrast, OSP transactions support atomic and

durable updates of any data structure. Lightweight Per-
sistent Memory [3, 8, 9, 20] and BNVM-aware file sys-
tems [4,6,21,22] provide programming support for Non-
Volatile Memory, but they use either undo/undo logging
or shadow page to build durable transactions. OSP can
help make these approaches more efficient.
Reducing Storage Consistency Cost. Like OSP, both
Kamino-TX [14] and LSNVMM [8] attempt to reduce
the persistence overhead by eliminating the need to log
actual data. Kamino-TX maintains another backup,
and LSNVMM uses log-structured updates. How-
ever, both of them have inefficiencies. LSNVMM
introduces significant address remapping overhead by
adding another indirection in userspace, and Kamino-TX
still needs to apply updates to backup asynchronously.
DudeTM [13] enjoys the benefits of a redo-log (fewer
CPU flushes/barriers) while avoiding the drawbacks (ad-
dress remapping overhead). However, DudeTM still
must log the actual data and apply updates to persis-
tent storage afterward. In comparison, OSP requires no
costly software mapping, need not write the actual data
twice, and doesn’t need to apply the updates afterward.
Virtual Memory Systems. Page overlay [17] aims to
provide fine-grained memory management. However,
page overlay semantics don’t allow us to build durable
transactions efficiently, since page consolidations are re-
quired for every transaction commit. Instead, with OSP
semantics, we only need to do page consolidations upon
TLB evictions. EXCITE-VM [12] leverages the indirec-
tion of virtual memory to build more efficient snapshot
isolation transactions, but it doesn’t address the durabil-
ity issue for transactions on non-volatile memory.

5 Conclusions and Future Work

OSP extends shadow paging with cache line level map-
pings, allowing durable transactions to be implemented
without the need to log actual data for each update and
without incurring unnecessary persisting overhead. Our
preliminary results show that OSP can reduce overall
CPU flushes, including CPU flushes used to persist new
updates, by 1.2–1.96× as compared to undo-log. We
also show that OSP is able to provide a strong storage
consistency guarantee with almost no cost for workloads
with decent locality.

In our future work, we will investigate integrating our
OSP transaction with Hardware Transactional Memory
(HTM) to provide general, ACID transactions. OSP is
ideally suited for HTM because it allows speculative up-
dates to BNVM with nearly free rollback. Our future
work will also address issues such as correct and efficient
TLB shootdown and managing transactions that don’t fit
in the TLB. We also plan to investigate optimizations
such as asynchronous page consolidation.
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