
Intelligent Metadata Management for a Petabyte-scale FileSystem

Sage A. Weil
sage@cs.ucsc.edu

Scott A. Brandt
scott@cs.ucsc.edu

Ethan L. Miller
elm@cs.ucsc.edu

Kristal T. Pollack
kristal@cs.ucsc.edu

University of California, Santa Cruz

Abstract

In petabyte-scale distributed file systems that decouple
read and write from metadata operations, behavior of the
metadata server cluster will be critical to overall system
performance. We examine aspects of the workload that
make it difficult to distribute effectively, and present a few
potential strategies to demonstrate the issues involved. Fi-
nally, we describe the advantages of intelligent metadata
management and a simulation environment we have de-
veloped to validate design possibilities.

1 Introduction

A compelling architecture for petabyte-scale storage sys-
tems involves decoupling metadata transactions from file
read and write operations. In such a system a client will
consult a metadata server (MDS) cluster, responsible for
maintaining the file system namespace, to receive permis-
sion to open a file and information specifying the location
of its content. Subsequent reading or writing would take
place independent of the MDS cluster by communicat-
ing directly with one or more Object-based Storage De-
vices (OSDs), which intelligently manage their own on-
disk storage and enforce security policies. Although the
size of metadata is relatively small compared to the overall
size of the system, metadata operations may make up over
50% of all file system operations [12], making the perfor-
mance of the MDS cluster of critical importance. Further-
more, while the overall capacity of the OSD cluster can
easily scale by increasing the number of (relatively inde-
pendently operating) devices, metadata exhibits a higher
degree of interdependence, making the design of a scal-
able system much more challenging.

We have identified a number of key design issues that
will significantly affect the performance of a metadata
server cluster in such a system. First and foremost these
include the effectiveness of MDS caching, which will be
critical for sustaining high throughput and masking slow
disk performance. The distribution of client metadata re-
quests among servers will affect observed cache effective-
ness and the ability of the system to cope with extreme

workloads. Similarly, the mechanisms for ultimately stor-
ing and retrieving metadata from stable (disk) storage will
be affected by the partitioning strategy and the I/O de-
mands of requests not satisfied by caching.

We describe four partitioning strategies and examine
their strengths and weaknesses in light of specific design
choices. We contend that the metadata system require-
ments are such that the most promising approaches re-
quire intelligent management of metadata distribution, al-
lowing adaptation to changing workload characteristics.
Finally, we describe a simulation environment we have
developed to evaluate the specific trade-offs exhibited by
these choices, and future research.

2 Background

The Storage Systems Research Center at UC Santa Cruz
is currently researching a petabyte-scale (1015 byte) stor-
age system designed to handle both general-purpose and
scientific computing workloads by exporting a POSIX-
compliant interface. This architecture will consist of tens
of metadata servers (MDSs), thousands of object-based
storage devices (OSDs), and potentially hundreds of thou-
sands of clients. Intelligent OSDs (which will most likely
consist of a hard disk, a commodity CPU, and a network
interface) simplify file system design by handling block-
level allocation internally and presenting a simple object-
based interface—file data will be striped across many
such objects on many OSDs. Applications of such a sys-
tem currently include scientific computing environments,
the Internet Archive, and large data centers, whose storage
demands may well be typical of distributed file systems in
a few years time.

2.1 Metadata

Each file or directory metadata record handled by the
MDS cluster will include information that is normally
stored in an inode, including owner, file mode, c/mtime,
and file size. We will utilize a deterministic algorithm to
generate a sequence of OSDs and object identifiers for re-
liably distributing objects (and their replicas) across the



storage cluster [7, 14]. This allows the information neces-
sary to locate file data to be reduced to a fixed size value to
serve as the algorithm’s input, eliminating the need for a
variable-sized data structure to describe object allocation
(e. g., a block list) and allowing file metadata to be stored
in a record on the order of 64 or 128 bytes.

Handling directory contents is a bit more complicated,
since file names are variable length and individual directo-
ries must be able to efficiently contain only a few or many
thousands of files (or more). For each directory, the MDS
cluster must define a mapping of file names to metadata
records.

2.2 Workload

Because file read and write operations involve only the
client and one or more OSDs, the metadata cluster need
only concern itself with a relatively restricted set of oper-
ations. Basic metadata operations includeopen, close,
stat, getattr, andsetattr while directory opera-
tions includereaddir, create, link, unlink, and
rename.

A few typical sequences of operations tend to represent
the vast majority of a file system’s metadata workload:
open followed by close, andreaddir followed by
manystats [12]. In addition to efficient operation in
the general case, the system must additionally handle the
extreme usage patterns common to scientific computing
applications and less common “flash crowd” behavior in
general purpose workloads, including many thousands of
clients opening the same file or creating files in the same
directory.

With metadata records on the order of 128 bytes and an
MDS cluster size of ten servers containing 4 GB of RAM
each, the cluster would be capable of collectively caching
on the order of 300 million metadata records or directory
entries, assuming minimal cache overlap between ma-
chines and efficient memory usage. A multi-petabyte file
system may contain billions of files, so the cluster design
must scale such that its cache can mask sufficient read
operations to reduce read bandwidth to a tractable level.
These I/O requests will appear relatively random and in-
volve seeks by the underlying disk storage.

3 Design

A number of general design considerations present them-
selves. A distributed metadata server cluster requires that
the workload be partitioned among some set of hosts such
that the size of the cluster can be scaled to handle in-
creased client transactions. The underlying storage mech-
anism must also facilitate independent reads and updates
to the metadata itself.

3.1 Workload Partitioning

The metadata workload needs to be effectively partitioned
across the cluster of metadata servers such that average
case behavior results in balanced utilization and the sys-
tem can efficiently cope with extreme workloads, such
as thousands of clients opening the same file or writing
to the same directory. Furthermore, the partition should
be such that cache overlap between servers is minimized,
thus maximizing the overall effectiveness of the MDS
cluster at masking I/O requests to the underlying meta-
data storage subsystem. The system can be augmented
with a failover mechanism such that a failed node’s work-
load is redistributed among other servers or assumed by a
standby.

3.1.1 Consistency and Caching

Metadata updates must be serialized at some point within
the metadata cluster such that atomicity and consistency
are maintained. Since collaborative locking schemes tend
to be expensive, we believe a solution where metadata
records have a well-defined authority that is responsible
for serializing updates and writing to (potentially shared)
stable storage is best. Experience has shown that such
simple solutions tend to exhibit the best performance in
distributed caching environments by simplifying consis-
tency and coherency strategies: the authoritative node can
process updates and send invalidate messages (or disable
caching) as necessary.

We currently assume that it is undesirable for the MDS
cluster to track the contents of client caches,e. g., by issu-
ing leases, because of the resulting memory demands on
the cluster. This particular design choice warrants further
consideration than is given in this short position paper.

3.1.2 Path Traversal

The traversal of paths containing files that are being ac-
cessed typically serves two purposes. In most file systems,
each directory in the path is opened in order to identify the
inode for the next successively nested object. Traversal
also allows the file system to verify that the current user
has permission to visit the directory or file in question.
Clients cache recently visited prefixes, allowing them to
avoid unnecessary and costly consultation with the file
server. This traversal is also necessary within the MDS
cluster in order to verify that a client has permission to
access the files it requests.

3.1.3 Preservation of Locality

Both general-purpose and scientific workloads exhibit
significant locality of reference, within both individual
client workloads and across groups of clients that tend

2



to access similar files in similar directories. Ideally, the
MDS cluster should maximize the effectiveness of its
cache by distributing client requests to exploit both forms
of locality in the workload. This partition should be such
that cache overlap between servers is avoided, thereby
maximizing the amount of metadata that can be cached
and minimizing the I/O resulting from cache misses. This
is particularly important for effective prefix caching of
path traversals, which, in the worst case, may increase
memory demands by requiring many additional directory
records to be loaded and cached to handle a single request
deeply nested in the directory tree. Such locality in indi-
vidual MDS workloads allows the costs of path traversal
to be amortized over all subsequent accesses to the same
directory subtree.

3.1.4 Hotspot Development

Clients should ideally contact the metadata server that is
most likely to be caching the metadata they are looking
for. For an incoherent (low-contention) workload, this
yields optimal performance, since cache miss rates are
minimized. However, this approach can cause problems
for coherent scientific workloads in which thousands of
clients may open the same file at once: if all clients agree
on where a particular file should be found and decide
to open it simultaneously, that MDS may become over-
loaded by the sudden development of a “hot spot.” A sim-
ilar situation can develop when a large number of clients
create files in the same directory.

3.2 Storage

Ultimately all metadata must be stored on some sort of
permanent disk storage. Metadata for a 2 PB file system
that may contain more than a billion files may consume on
the order of 100 GB of disk space. This is likely to be too
large to reside completely in the collective RAM of the
metadata server cluster. Ideally the MDS memory caches
will satisfy most reads, but they will periodically need to
go to disk to retrieve the requested information, and all
updates must be saved to a stable store such as disk.

3.2.1 Short-term Log

All metadata transactions must be quickly written to sta-
ble storage for safety. Since a significant portion of reads
are expected to be satisfied by the metadata in-memory
caches, the primary demand will be on raw write band-
width. We believe a bounded log structure to be most ap-
propriate for the immediate storage of updates on each
metadata server, where entries that fall off the end of the
log without subsequent modifications are written to a sec-
ond, more permanent, tier of storage. With a log size on

the order of the amount of memory in the MDS, such an
arrangement has the convenient property that the log rep-
resents an approximation of that node’s working set, al-
lowing the memory cache to be quickly pre-loaded with
millions of records on startup or after a failure. The use of
NVRAM in the metadata servers could further mask the
latency of writes to the log or other underlying metadata
storage.

3.2.2 Permanent Storage

Entries that fall off the end of the metadata logs must be
stored elsewhere in the system. Ideally, data layout should
be optimized for reads such that expected access patterns
allow related records to be fetched without additional disk
seeks. An obvious approach is to exploit the hierarchical
file structure as a source of locality and store metadata for
objects in the same directory together. This is typically
the approach taken in general purpose file systems for di-
rectory entries, while inodes are stored in the same cluster
group when possible. In the WAFL file system [6], this
strategy is abandoned in favor of a write-anywhere ap-
proach; the authors found that simply writing metadata to
disk in the order it was written preserves some temporal
locality, which can be similarly advantageous. However,
in a system with 100,000 clients or more, we expect any
temporal correlation with future access patterns to be in-
significant.

The second tier of storage may or may not allow shared
access by all nodes in the metadata server cluster. Shared
access has the advantage of making it possible for any
MDS to read or modify the metadata it needs without
bothering other MDS nodes. On the other hand, shared
on-disk structures make concurrent updates and consis-
tency more difficult.

4 Approaches

We present four approaches that illustrate some of the
tradeoffs related to individual design choices, their in-
terdependencies, and the potential benefits of intelligent
metadata management.

4.1 Static Subtree Partitioning

Traditionally network file systems have partitioned work-
load and storage by simply assigning portions of the direc-
tory hierarchy to different file servers; this is the approach
taken by NFS [11], AFS [9], Coda [13], Sprite [10] and
others. This strategy allows a storage system to scale for
breadth, but not depth. Although it typically results in
good cache performance due to the enforced locality of
a particular server’s workload, changes in that workload,

3



as when many clients access a few files, result in a poor
distribution of load among file servers.

4.2 Static Hashing

A more consistent approach to partitioning workload is
to distribute metadata based on a hash of some unique
identifier, such as an inode number for file or directory
records or the parent directory’s ID and filename for di-
rectory entries [1, 4, 8]. As long as such a mapping is
well defined, this simple strategy presents a number of
advantages. Clients can contact the responsible MDS
directly and, for average workloads, load is evenly dis-
tributed across the cluster as long as the hash function is
well-behaved. Further, hot-spots of activity in the hierar-
chical directory structure, such as heavy create activity in
a single directory, do not correlate to individual metadata
servers because metadata location has no relation to the
directory hierarchy.

However, hot-spots consisting of individual files can
still overwhelm a single responsible MDS. Directing re-
quests at random servers would allow the cluster to dis-
tribute the sudden load by caching the metadata else-
where, but at the expense of a more costly average case.
More significantly, distributing metadata by hashing elim-
inates all hierarchical locality, and with it many of the
locality benefits typical of local file systems. Similarly,
hashing results in worst-case performance for the prefix
cache, which subsequently expects little to no overlap on
individual MDSs between prefix directories added to the
cache for each file metadata query. The result is substan-
tial overlap between metadata servers when more than one
file is accessed in a single directory, since those files will
likely not reside on the same MDS, but in both cases will
require a path traversal to verify that the client has permis-
sion to access them.

4.3 Lazy Hybrid

Lazy Hybrid (LH) metadata management [3] seeks to
merge the net effect of the permission check’s path traver-
sal into each file metadata record, eliminating any need for
path traversal on the MDS. Subsequent work has shown
that it may be possible to do so in a probabilistically con-
cise form (0 or 1 ACL records on average, 2 in unusual
cases) based on analysis of a general purpose file system.
Metadata for file and directory objects can then be lo-
cated, modified, and possibly stored on a particular meta-
data server based on a hash of the full path name.

Although this eliminates the need for path traversal and
avoids the related scalability issues in the general case,
modifications to the name, ownership or mode of a direc-
tory invalidate the path permission vectors for the entire
directory subtree it contains. Our trace analysis indicates

that the need for propagation of such changes are rare and
may effect reasonably small numbers of files for com-
mon usage patterns. Regardless, metadata servers need
to maintain a list of prefixes for which path permission
vectors are no longer valid until updates can be applied
to the entire subtree. Further analysis is required to de-
termine what the costs of maintaining such a cache would
be given a wider range of workloads, the costs of lazily
propagating changes (to potentially millions of files on a
larger file system) in order to retire items from the inval-
idate list, and if those costs compare favorably to a path-
traversal approach and (potentially) simpler metadata lo-
cation strategies.

4.4 Dynamic Subtree Partitioning

The loss of locality in hashed distribution schemes is wor-
risome because it degrades the performance of the prefix
cache, which past file system experience has shown to be
quite effective for most workloads. Lazy Hybrid avoids a
traversal by trading it for a log of invalidated prefixes that
must be applied to the file system either lazily or in the
background. Because the costs of such updates are un-
clear (but potentially quite large) for a large file system,
and because more subtle benefits of hierarchical locality
(e. g., efficient prefetching) are still lost, we propose a
fourth strategy that attempts to leverage the existing hier-
archical structure of the file system and intelligently man-
age metadata distribution based on workload demands.

Instead of locating metadata within the cluster based
on a single attribute such as an inode number or full path
name, metadata location can be a function of its parent
directory. If MDS load, directory size, or other factors
permit, metadata for objects within a small directory can
be located on the same MDS as the parent directory. If
not, directory content can be multiplexed across the en-
tire cluster based on a hash of the parent directory and
file name; a similar approach is taken by Lustre [2]. This
decision can be a function of any number of factors, in-
cluding directory size or past and present usage patterns.
Since the path must be traversed to validate permissions
anyway, there is no additional cost of using parent direc-
tory metadata to locate child records. Furthermore, work-
load permitting, entire subtrees of the directory hierarchy
can be managed on a single metadata server, avoiding in-
efficient duplication of metadata in the other MDS prefix
caches, and maximizing the benefit of currently cached
metadata.

A hierarchical distribution mechanism also allows the
MDS cluster to optimize for the overwhelmingly common
case of a single link to a single inode by collocating the
inode with the directory entry. Among other things, this
allows a MDS to exploit locality of access within a par-
ticular directory by loading its entire contents in one op-

4



eration. For instance, file accesses are often followed by
further accesses to the same directory, and areaddir is
usually followed by astat of every file. The rare case of
an inode with more than one link might simply degenerate
to a static distribution based on inode.

The primary challenge with this strategy is intelligently
adapting the metadata partition to changing workload de-
mands. The most basic case of a single MDS becoming
too busy can be resolved by simply shifting one or more
large subtrees to another MDS; this approach requires a
shared-storage mechanism that allows such a migration
of responsibility. Hot-spot development is more difficult,
because a small directory on one MDS may suddenly be-
come busy, or a particular file may become suddenly pop-
ular. We believe that such situations may be avoided by
maintaining a soft-state “popularity” value for each direc-
tory that indicates how many clients have opened it, and
therefore know how to locate metadata for its contents. By
increasing a popularity value each time a directory’s meta-
data is read and allowing it to decay over time, the value
can serve as an estimate of how many clients’ caches in-
dicate the current (or recent) locations of contained meta-
data. When the popularity of a directory gets too high, the
MDS can alter the current distribution by replicating the
record in multiple servers’ caches and responding with an
alternate distribution. This guarantees that any subsequent
requests will be distributed across the cluster, by virtue of
the fact that at any time the number of clients who know
where to find any one item is limited. In contrast, the more
common case of relatively small sets of clients (maybe
only thousands) sharing less popular files allows them to
directly contact the MDS with the metadata they need.

5 Evaluation and Further Work

These approaches involve a number of different meth-
ods for addressing different aspects of the system require-
ments. Although we have presented three viable options,
many of the individual mechanisms described can be in-
corporated into other approaches. There are a number
of specific dependencies and conflicts, however. For in-
stance, an adaptive distribution is incompatible with a
static hashing mechanism unless popularity monitoring
is employed only when revealing metadata locations to
clients for flash crowd avoidance. Combining metadata
records (inodes) with directory entries works only if file
metadata distribution is based on the containing directory,
but would be possible even if directory distribution were
based on static hashing. A lazy hybrid permission com-
pression mechanism may be useful for condensing por-
tions of the directory structure, perhaps the first five levels
of nesting, while requiring path traversal for points be-
yond. Finally, a consistency model that requires the MDS

cluster to know what metadata items are cached (leased)
by individual client nodes would avoid the need for a pop-
ularity estimate.

The large size of our target file system makes evalua-
tion of such models particularly challenging. Generating
a workload to evaluate performance will require signifi-
cant work to create realistic synthetic client activity. The
largest distributed file system described in the literature,
the Google file system [5], services a highly specialized
workload and is thus not useful for our purposes.

To evaluate performance ramifications of some of these
choices, we have constructed an event-driven simulator
package to allow fast prototyping and testing of MDS
cluster models. The package has primitives to simulate
caches (on metadata servers, clients, and disks), disk per-
formance, network delays, and processor utilization. We
plan to evaluate specific performance trade-offs related to:

• Cache overlap penalties for duplicate prefixes across
metadata nodes with static hashing distributions

• LH permission vector propagation costs

• Performance benefits or load balancing issues related
to combining inodes and directory entries

• Effectiveness of a popularity metric in avoiding flash
crowds (based on scientific workload traces)

• Overall I/O demands (read and write) and locality of
reference within that request stream

• MDS overhead associated with tracking client leases
on metadata

Although fully simulating a petabyte scale system may
prove impossible, we plan to demonstrate with a series
of smaller simulations that our design can be expected to
scale appropriately.

Another key area for further research attention is the
underlying permanent storage schema for the entire MDS
cluster. Although logs can satisfy the immediate write
throughput and latency demands for individual metadata
servers, a second-tier collaborative storage strategy will
be necessary to allow the dynamic redistribution of server
load, in particular with a dynamic subtree partitioning
scheme.

References

[1] P. Braam, M. Callahan, and P. Schwan. The intermezzo
file system. InProceedings of the 3rd of the Perl Confer-
ence, O’Reilly Open Source Convention, Monterey, CA,
USA, Aug. 1999.

[2] P. J. Braam. The Lustre storage architecture, 2002.

5



[3] S. A. Brandt, L. Xue, E. L. Miller, and D. D. E. Long. Ef-
ficient metadata management in large distributed file sys-
tems. InProceedings of the 20th IEEE / 11th NASA God-
dard Conference on Mass Storage Systems and Technolo-
gies, pages 290–298, Apr. 2003.

[4] P. F. Corbett and D. G. Feitelson. The Vesta parallel
file system. ACM Transactions on Computer Systems,
14(3):225–264, 1996.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. InProceedings of the 19th ACM Sympo-
sium on Operating Systems Principles (SOSP ’03), Bolton
Landing, NY, Oct. 2003. ACM.

[6] D. Hitz, J. Lau, and M. Malcom. File system design for
an NFS file server appliance. InProceedings of the Winter
1994 USENIX Technical Conference, pages 235–246, San
Francisco, CA, Jan. 1994.

[7] R. J. Honicky and E. L. Miller. Replication under scal-
able hashing: A family of algorithms for scalable decen-
tralized data distribution. InProceedings of the 18th In-
ternational Parallel & Distributed Processing Symposium
(IPDPS 2004), Santa Fe, NM, Apr. 2004. IEEE.

[8] E. L. Miller and R. H. Katz. RAMA: An easy-to-use,
high-performance parallel file system.Parallel Comput-
ing, 23(4):419–446, 1997.

[9] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H.
Howard, D. S. H. Rosenthal, and F. D. Smith. Andrew:
A distributed personal computing environment.Commu-
nications of the ACM, 29(3):184–201, Mar. 1986.

[10] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nel-
son, and B. B. Welch. The Sprite network operating sys-
tem. IEEE Computer, 21(2):23–36, Feb. 1988.

[11] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith,
D. Lebel, and D. Hitz. NFS version 3: Design and imple-
mentation. InProceedings of the Summer 1994 USENIX
Technical Conference, pages 137–151, 1994.

[12] D. Roselli, J. Lorch, and T. Anderson. A comparison
of file system workloads. InProceedings of the 2000
USENIX Annual Technical Conference, pages 41–54, San
Diego, CA, June 2000. USENIX Association.

[13] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, and D. C. Steere. Coda: A highly avail-
able file system for a distributed workstation environment.
IEEE Transactions on Computers, 39(4):447–459, 1990.

[14] Q. Xin, E. L. Miller, T. J. Schwarz, D. D. E. Long, S. A.
Brandt, and W. Litwin. Reliability mechanisms for very
large storage systems. InProceedings of the 20th IEEE /
11th NASA Goddard Conference on Mass Storage Systems
and Technologies, pages 146–156, Apr. 2003.

6


