
Twizzler: An Operating System for
Next-Generation Memory Hierarchies

Technical Report
UCSC-CRSS-17-01
UCSC-SSRC-17-01

December 5th, 2017

Daniel Bittman Matt Bryson Yuanjiang Ni
dbittman@ucsc.edu mbryson@ucsc.edu yuanjiang@ucsc.edu

Arjun Govindjee Isaak Cherdak
agovindj@ucsc.edu icherdak@ucsc.edu

Pankaj Mehra Darrell Long Ethan Miller
pankaj.mehra@ieee.org darrell@ucsc.edu elm@ucsc.edu

Center for Research in Storage Systems
Storage Systems Research Center

Baskin School of Engineering
University of California, Santa Cruz

Santa Cruz, CA 95064

http://crss.ucsc.edu/
http://ssrc.ucsc.edu/



Abstract
The introduction of NVDIMMs (truly non-volatile
and directly accessible) requires us to rethink all lev-
els of the system stack, from processor features to
applications. Operating systems, too, must evolve
to support new I/O models for applications access-
ing persistent data. We are developing Twizzler, an
operating system for next-generation memory hier-
archies. Twizzler is designed to provide applications
with direct access to persistent storage while provid-
ing mechanisms for cross-object pointers, removing
itself from the common access path to persistent
data, and providing fine-grained security and recov-
erability. The design of Twizzler is a better fit for
low-latency and byte-addressable persistent storage
than prior I/O models of contemporary operating
systems. We are in the process of building a pro-
totype inside FreeBSD, allowing us to leverage and
explore the ideas presented in this report without in-
vesting the time to build an operating system from
scratch first.

The purpose of this report is to provide an
overview of Twizzler and the design behind it while
giving a direction for our upcoming work. We in-
tend to further develop our ideas by extending our
FreeBSD prototype, followed by designing a kernel
and hardware extensions to make better use of some
of our designs (resulting in improved security, sim-
plicity, and improved support for persistent kernel
state).

1 Introduction
We are on the cusp of a fundamental shift in
the way that we program computers. For seven
decades, programmers have written programs that
are loaded, initialized, executed, and terminated.
In the very near future, multiple vendors will in-
troduce persistent memory that will attach to the
memory bus. Not since the days of small magnetic
core memories fifty years ago have we had mutable
memory from which our programs execute directly
and still survive power cycling. Unlike flash and
PCIe based memories, these new memories will be
byte addressable. Consequently, we are entering a
new era, and it is essential that the operating sys-
tem and other system software make the best pos-
sible use of this new technology. However, leaving
the design choices solely to operating system ven-
dors risks incremental change and the inability to
benefit from the dramatic improvements in perfor-
mance, programming models, and security that this
may facilitate.

Figure 1: Expanded form of the memory hierarchy.
We expect non-volatile memory to have asymmet-
ric access time with latency similar to DRAM [17].
We expect NVM presence to range from NVM-only
systems (IoT devices) to a mix between DRAM and
NVM.

Given a new memory hierarchy including byte-
addressable non-volatile memory (shown in Fig-
ure 1), we have a chance to revisit operating sys-
tem design. Existing systems maintain separate
management domains for volatile, high-speed mem-
ory, on which computation operates, and persistent
high-latency storage, which cannot be operated on
directly. Operating systems designed for such sys-
tems reflect this structure and provide applications
with interfaces to interact with the memory hierar-
chy. System calls such as write() and read() re-
flect the basic structure of using DRAM as a cache
for disk, while mmap() uses virtual memory to pro-
vide the illusion of direct persistent object access.
Both cases are fundamentally the same, with the
operating system interposing itself between the ap-
plication and its desired actions of persistent data
access, with the need to manage ephemeral copies
of persistent data in volatile memory. Moreover,
the existing approach to persistence via block stor-
age requires data serialization, exacting a penalty
that is becoming increasingly larger as NVM perfor-
mance increases [62]. Applications that use NVM-
optimized techniques for persistence [10, 34, 64]
avoid this overhead, but the problem of managing
persistent pointers in a very large address space re-
mains.

To address these challenges, our lab has been
developing Twizzler, an operating system designed
to support persistent, byte-addressable memory by
“getting out of the way” of applications as much as
possible as they operate on persistent data. We are
focusing on the following items that we believe to be
key requirements and challenges of an NVM-aware
system:

1



Persistent Object Access The I/O model that
the operating system provides must allow applica-
tions direct access to persistent data with mini-
mal kernel involvement while also providing a rich
enough model for cross-object data references and
a framework for object naming and late-binding.
Twizzler will maintain a namespace of data objects,
each with a unique 128-bit ID. These objects may
contain code, data, or both. Much like the Unix
and Plan-9 “everything is a file” approach, we plan
to have every piece of data on which applications
operate be one of these objects. Since these persis-
tent objects are directly accessible from the proces-
sor, and because we can uniquely identify objects
by ID, we can have “cross-object pointers”. Such
pointers refer to data in other objects, and an ap-
plication may use these pointers to read and oper-
ate on data in other objects. Cross-object pointers
allow us to support more natural programming se-
mantics for non-volatile memory without the man-
ual pointer-loading and swizzling (pointer transla-
tion) [39] required by applications on current oper-
ating systems [14].

Security of Persistent Objects Direct access to
persistent objects increases the need for richer secu-
rity models. Applications must be able to access
sensitive or protected data while protecting that
data from untrusted libraries or unverified subcom-
ponents. In Twizzler, we separate components of
applications into security contexts in order to pro-
vide isolation and access control. Security contexts
allow us to protect applications at finer granularity
than current systems, thereby reducing the risk of
allowing direct access to persistent data.

Persistent Kernel State The kernel must be de-
signed with persistent kernel state in mind. The
kernel uses persistent objects accessible from user-
space to determine the internal kernel state (such as
thread state and address spaces), thereby allowing
the operating system state to be recovered easily af-
ter a power failure. The kernel state is then a cache
of kernel state objects which can be reconstructed
after a power failure. Kernel state objects have the
added benefit of reducing system calls and simpli-
fying the application-kernel boundary.

Hardware Support for Persistent Objects
While we can implement our design on existing
hardware, extending processors with new primitives
will allow applications to be simpler and have higher
performance. We propose to increase the virtual ad-

dress space size and reintroduce segmentation sup-
port. While existing processors require us to emit
additional pointer swizzling and dereference instruc-
tions, hardware support to enable direct support for
our cross-object pointer design and security features
such as protection lookaside buffers could improve
performance and simplicity of Twizzler as well.

While our eventual goal is to provide this sup-
port by creating a new operating system (including
a new kernel), such an “all-or-nothing” approach
would require too much initial effort before being
able to demonstrate the efficacy of the approach.
Thus, we are currently implementing these tech-
niques inside FreeBSD, allowing us to evaluate them
without the need to build an entire operating sys-
tem from scratch. This incremental approach has
a second advantage: it allows system designers to
immediately leverage the techniques, which we will
open-source, without the need to adopt a new op-
erating system, thus increasing the impact of the
research. Our prototype Twizzler system imple-
mented in FreeBSD will provide applications with
a full Twizzler framework and interface, allowing
us to later implement a kernel ourselves to better
demonstrate some of our ideas.

2 Persistent Objects
Twizzler’s I/O model follows from our expectations
of upcoming memory hierarchies designs. Cur-
rent I/O models that use calls such as read() and
write() are designed for indirect, high-latency ac-
cess to persistent storage. These archaic models
involve significant operating system overhead that,
while acceptable in a two-tier memory hierarchy
model, is unacceptable in a memory hierarchy with
low-latency access to persistent storage. Since per-
sistent data is directly accessible, copying data into
temporary buffers, as is common when using read()
and write(), makes little sense. Instead, we can
directly map the same persistent data into multiple
address spaces without wasteful copying. Zero-copy
I/O [45, 52, 61] alleviates these problems to some
extent, but still has heavy kernel involvement and
is still designed for a model with an explicit device
I/O operation to persist and acquire data. While
memory mapping (mmap()) provides some relief, it
places a heavy burden on application programmers
who wish to share mapped regions across processes
because the address space layouts differ across pro-
grams and so shared data must be translated in
some way or be location-dependent.

2



Reducing copies means that each address space
that maps the same data will see the same con-
tents. If that data contains pointers, they must have
a form which allows any process to dereference the
pointer regardless of the mapped location. Tech-
niques such as explicit serialization are well stud-
ied [62], but fall short here—explicit serialization
would be wasteful since data is already stored in
persistent memory, and slow compared to the de-
vice latency. It makes more sense to keep the data
in a format that does not require an explicit serial-
ization step. Because concurrent access to objects
(without copies) from different address spaces will
be common, pointers must be kept in a format that
allows dereferencing from anywhere in any virtual
address space. We will discuss how we achieve this
in theory (below) and in practice (section 6).

Twizzler organizes logical units of storage into ob-
jects, similar to files in Unix, allowing users to co-
alesce data into meaningful units for ease of iden-
tification, storage organization, and access control.
An object is uniquely identified with a 128-bit ID
(though larger IDs would be possible). Twizzler pro-
vides applications with a logical view of the object
address space, allowing them to map objects con-
tiguously into their virtual address spaces. Since we
are already storing pointers in a universally accessi-
ble format, we allow for this format to refer to data
within external objects. These cross-object point-
ers are a natural programming model that arises
from the persistence of data in main memory, and
have been present in earlier operating system de-
signs [9, 13].

The use of cross-object references allows the con-
struction of applications where the operating system
code (and more specifically, kernel code) is rarely
invoked during persistent data access. Instead, ap-
plications are capable of doing most of their work
without having to involve the kernel for I/O. This
improves performance by reducing kernel boundary
crossings, boosts security by simplifying and shrink-
ing the kernel, and provides middleware with more
flexibility so applications can make the best deci-
sions for how to operate on data.

Invariant Pointers To support cross-object
pointers, Twizzler stores pointers in the form
object-id:offset. While this has been studied
before [13, 54, 55], we differ by adding a level of
indirection per object. Each object has a Foreign
Object Table (FOT)—a table of entries contain-
ing object IDs along with additional information
such as permissions. A pointer is then stored in

Figure 2: Translation of a pointer through the FOT.
The pointer and the FOT are contained within some
other object that is not shown.

a FOT-entry:offset format. When it is derefer-
enced, the appropriate entry in the FOT is selected
according to the FOT-entry field of the pointer,
where a value of 0 indicates an intra-object (local)
pointer. The target object ID entry is read from
the FOT and used to dereference the pointer, as
shown in Figure 2. The FOT is a per-object data
structure, so the combination of an object’s FOT
and a FOT-entry:offset pointer within the ob-
ject corresponds logically with a pointer of the form
object:offset.

Using a per-object FOT for indirection of pointers
provides a number of benefits:

• While an object may refer to relatively few ex-
ternal objects, we expect each object will have
a different set of referenced external objects,
making a system-wide FOT infeasible.

• We have elected to keep pointers 64 bits in or-
der to avoid increasing the memory usage and
hardware costs of storing and using pointers,
and to improve compatibility with current pro-
cessors. This means that the FOT-entry and
offset fields must share a limited space. In or-
der to allow objects to grow to large sizes, the
FOT-entry field is limited, likely to 16–24 bits.
Since this is not sufficient for globally unique
identifiers (GUIDs) for objects, we must use an
indirection table.

• By storing the larger object IDs in a table, we
can save memory when we have a large number
of pointers refer to the same object.

• We can support late-binding in the FOT by al-
lowing names in addition to fixed object IDs.
These names can then be resolved into an ob-
ject ID by a name resolver. Late-binding [13]

3



lets us use human-readable names and allows
pointers to refer to different objects over time
(for example, current account information).

• We can associate additional information with
FOT entries, and in a single operation, change
that data for a large number of pointers. This
works with names or object IDs, allowing us to
rebind groups of pointers easily at runtime.

The result of using an FOT is that a pointer
within an object refers not to a virtual memory ad-
dress, but instead to a particular location inside a
particular object. While this solves the problem
we introduced of supporting cross-object pointers,
it affords us even more flexibility when making our
system distributed. Invariant pointers have a uni-
versal form on any machine, making them a natu-
ral fit for distributed computation. While we are
not directly considering distributed computation in
Twizzler yet, it is a valuable feature-set to keep in
mind for future work.

The Twizzler Object Model is heavily influenced
by MULTICS [5, 12, 13] and single address space
operating systems [9, 31, 53, 59]. The complexity
required to properly support persistent segmented
data structures was difficult for the hardware and
software at the time of MULTICS, but now the cost
of silicon has dropped significantly enough that we
can build support for efficient address translations
for object:offset pointers. Segmentation support
has fallen by the wayside in modern processors, but
we believe that it is a natural model for persistent
object access. The Twizzler I/O Model fits naturally
with it, but does not require it. We have solutions
for support on contemporary hardware, as well as
a vision for future support to improve performance
and simplicity (section 6).

3 Security and Access Control
Because our design removes the operating system
from the path of the I/O accesses of applications,
Twizzler must ensure that access control to objects
is correctly specified in page-tables so that access
control can be enforced by the hardware. Addi-
tionally, the kernel must be able to check and as-
sign permissions quickly because the points at which
checks must occur may happen frequently. Twizzler
meets these goals by running threads in security
contexts, which contain the necessary information
for the kernel to determine the permissions for any
object mapping in an application’s address space.
Security contexts also allow the kernel to transpar-
ently separate trusted and untrusted components

of a process, partitioning the application’s address
space to protect sensitive data. By coalescing ac-
cess control information into security contexts, the
kernel can cache permission bits and can ensure sep-
aration of privilege for threads running in different
security contexts but in the same virtual address
space.

We separate the notion of access control from
the protections of a virtual address space in order
to facilitate sharing of page-table structures while
providing applications with a way to freely define
protections. This separation allows the system to
restrict processes’ access rights without needing to
check the protections defined by a process. In sec-
tion 6 we discuss how this is implemented on Intel
x86-64 processors using two-level address transla-
tion.

Security Contexts A thread may be associated
with any number of security contexts, each of which
may have many threads running inside it. However,
a thread may only have one active security context
at any given time, and the thread runs with the per-
missions defined by its active context. If a thread
attempts a memory access that is invalid in its ac-
tive security context, Twizzler looks for a security
context with which the thread is associated and in
which the attempted access is valid. If it finds one,
it switches the thread to it automatically. Secu-
rity contexts can thus be used to isolate components
of programs from each other or from untrusted li-
braries. An example of this is shown in figure 3.
The thread is associated with both contexts, but
only one is active. Should the thread attempt an
access in one context that is not valid, the kernel
can switch it to the other context. This prevents
the untrusted code from corrupting the protected
data while still letting the program use untrusted
services if necessary. We can also use this technique
to limit the access of a particular program or library
to outside communication.

Although the kernel could do a linear search
through security contexts looking for one in which
a particular access is valid, such an approach may
be slow if the kernel must search though a large
number of them; therefore a mechanism for optimiz-
ing the method the kernel uses for searching would
have potential performance benefits. Possible solu-
tions involve organizing the list of security contexts
a thread is associated with by most-recently-used,
or prioritizing certain security contexts over others.
The kernel’s thread scheduler could make use of ac-
tive security contexts in its scheduling decisions in

4



rw- r-xr-x

rw- r--r-x r-- r-xr-x

Figure 3: Two security contexts derived from a process’s virtual address space, designed to protect a “private
data” object from an untrusted library.

order to improve performance, however we plan to
explore methods of making a security context switch
lightweight with improved hardware support such
as support for protection lookaside buffers [66] (see
section 6).

Capabilities and Delegations Security con-
texts present to the kernel a set of capabilities
and delegations which together provide the access
rights to objects for threads in that security con-
text. The capabilities and delegations are signed
with a private key (per-object or per-user), and
are therefore unforgeable. Whereas previous sys-
tems often require kernel support to create capabili-
ties [28, 47, 57], signed capabilities would allow users
to create them [47], and the kernel need only ver-
ify them without needing to hide them from users or
maintain a protected set of them or verification data
internally. Furthermore, in a distributed environ-
ment, capabilities could prove access rights across
systems without needing heavy interaction between
machines or a centralized authorization system.

Each object references a public and a private key
with which its capabilities or delegations are signed.
The kernel needs only the public key to verify a
given capability or delegation, so we can keep pri-
vate keys protected either by not distributing them
(for objects on other machines) or by encrypting
them. Since the capabilities are signed, the natu-
ral semantics for creating capabilities is that anyone
who can read an object’s private key (and option-
ally decrypt it) can create capabilities and delega-
tions with that key. Since a private key is itself
an object, we can apply our existing access control
mechanisms to it.

4 Persistent Kernel State
In a memory hierarchy where persistent memory is
directly accessible from the processor, a power cy-
cle should result in only a minimal loss of system
state: CPU state and perhaps cache. Applications
can tolerate power cycling and state loss when op-
erating on persistent data through various existing
techniques [10, 11, 30, 55, 64, 65], but the operating
system is more complex and needs to manage low-
level hardware. Upon resume the operating system
must re-instantiate threads and address spaces so
that the system state is consistent once power is
restored, after which applications may resume us-
ing their choice of mechanism for consistency across
power cycling. Current operating system design
handles this poorly because it is built around the
idea of the kernel holding a large amount of system
state internally in a volatile manner with that state
mutating (primarily) through system calls.

In contrast, Twizzler is designed to keep kernel
state minimal and in persistent kernel state objects
(KSOs). An example of a KSO is a security context,
as described above. The persistent security context
KSO contains capabilities and delegations needed
for the kernel to correctly map objects, which the
kernel reads when needed. Another example of a
KSO is a thread object, which contains thread-local
data and thread control and state information for
the kernel. The information that the kernel reads
is then cached internally to improve future lookup
performance, and changes to that state are prop-
agated to the KSOs as necessary. Since all ker-
nel state is represented in KSOs, the kernel’s in-
ternal state is then just a cache of the information
present in the control objects in the system. When
a power cycle occurs, the state of the operating sys-
tem can be recovered easily by loading the appropri-

5



ate KSOs. Furthermore, the state can be recovered
quickly (since we no longer have to manually setup
the system state through numerous system calls),
making it possible to shutdown the system with
smaller interruptions in service. Using the Twizzler
model, small devices that only occasionally need to
do work can save significant power by both using
only NVDIMMs (which save power over DRAM’s
need for constant refresh [19]) and spending most
of the time powered off, only to wake up occasion-
ally to service a request before shutting down again.

When a program updates a kernel state object,
it must notify the kernel through an invalidation
system call. The kernel will then invalidate any in-
ternally cached information and reread the appro-
priate part of a KSO if necessary. Also note that not
all updates to KSOs require an invalidation system
call. For example, adding a capability to a secu-
rity context does not require an invalidation, since
the kernel has no information for that capability to
cache in the first place. This has the added benefit
of reducing the number of system calls required to
mutate kernel state.

The security of KSOs is a paramount issue; how-
ever, they are normal persistent objects, so we can
apply the standard access control system introduced
above. Additionally, the format of KSOs must help
the kernel protect itself from possibly malicious in-
put. To facilitate this, KSO data may not contain
external pointers, and the kernel must sanitize all
data read from KSOs. Giving super-users access
to KSOs in Twizzler is not unlike the unrestricted
powers of root on Unix today; however in Twizzler
we can apply much more fine-grained access control
to better protect the system against mistakes and
external attacks.

Of course, protection from kernel bugs is also nec-
essary. Whereas the go-to solution in the past for
program state corruption was to reboot the ma-
chine, persistent memory would not reset errors.
We must have a mechanism in the kernel to prevent
erroneous writes and to recover from them if they
occur. While programs must also be designed for
these concerns, the kernel is of more importance.
For one, the operating system will be involved in
resetting application state if necessary, and two, er-
roneous operating system state can be more devas-
tating. The operating system would keep a set of
“clean” kernel state objects which are not mapped
into memory unless necessary to recover the system.
Additionally, we can take advantages of techniques
described by PMFS [18] to protect persistent mem-
ory from the kernel, and we can go further by lever-

aging hardware extensions (such as those described
in section 6) to protect data from the kernel.

On system startup, including first-time initializa-
tion or after a power cycle, the initialization process
attaches KSOs to the kernel, which then allows the
kernel to resume threads that were running. Once
this is done, the kernel will have returned to the
state it was before power was lost. However, ap-
plications that were in the middle of an operation
may have lost updates or have partially completed
work. We expect applications to be programmed
such that they can be resumed safely and continue
near where they left off [10, 55, 64]. If an applica-
tion is not programmed this way (e.g., a traditional
Unix program), it can be optionally reset upon sys-
tem start up to emulate the lost-process semantics
of current operating systems. Some programs may
need to be informed that the power was cycled, and
can optionally receive a signal informing them be-
fore they resume. After receiving such a signal, the
recovery logic of the NVM support library can be in-
voked, followed by applications specific reinitializa-
tion logic. In this way, applications that use durable
transactions to update data structures can resume
safely after a power interruption.

For most types of KSOs, handling interrupted up-
dates is simple: security contexts and virtual ad-
dress space definitions are only read by the kernel
and only affect Twizzler processes. However, KSOs
that are updated by the kernel (for example, thread
control objects) require additional work. Both user-
space and the kernel must agree on how KSOs are
to be updated in a durable manner. Part of our re-
search into KSOs is determining how to safely up-
date state in KSOs.

For threads in particular, there are two options
to handle checkpointing and resuming. Threads
could register a signal handler for a “power-resume”
signal which is invoked when the system resumes.
Durable transactions that the thread performed on
persistent data maintain transaction semantics, al-
lowing the thread to make decisions on how to re-
sume. This had the advantage of not needing to
store thread control block data inside the persistent
object in order to resume it. Instead, the thread is
resumed by allowing it to return to a checkpoint and
continue, or choose an alternate approach. Alterna-
tively, the kernel could be modified to store thread
control block data inside a KSO. This would allow
a thread to be resumed close to where it left off, but
not necessarily exactly where it left off. In order to
handle interruption of execution inside the kernel,
the current system call number for the thread could

6



be stored in a KSO upon entry and cleared upon re-
turn to user-space. Then, when power resumes, the
kernel can restart the system call. Since the primary
system call is invalidation, there is little penalty to
running the system call multiple times. There is an
additional concern where a power-failure happens
while entering a system call. Should this occur, we
can support atomic transaction-like updates of the
thread control block in persistent storage.

5 FreeBSD Prototype
We are building a prototype of Twizzler inside
FreeBSD 11 for use on Intel x86-64 processors, with
plans to add support for RISC-V in order to explore
processor extensions (discussed below). Our early-
stage prototype runs Twizzler programs inside of a
FreeBSD process as threads within security contexts
and “views” into the object address space (see Sec-
tion 6). It currently provides support for these ad-
dress spaces and Twizzler threads. The threads have
access to the functionality required for the Twizzler
Object Model along with the ability to continue to
use existing FreeBSD services. We are currently im-
plementing a layer which allows us to handle POSIX
system calls within Twizzler, falling back to calls to
FreeBSD if necessary. This shim layer allows us
to run existing software on Twizzler with minimal
porting effort.

Implementing a prototype inside FreeBSD allows
us to explore our proposed ideas without commit-
ting to the effort of writing a kernel from scratch.
Even though Twizzler programs can continue to use
FreeBSD services, we consider Twizzler processes
operating together to be a separate operating sys-
tem that runs alongside FreeBSD. This is reflected
not only in the access control policies of Twizzler
processes, but also in the core sets of system calls,
user-space libraries, process listings, and program-
ming models. Our prototype further gives us the
ability to use parts of the Twizzler design inside
existing programs. For example, we can use the se-
curity contexts framework on existing POSIX pro-
grams to provide isolation of sub-components of a
process. Prior work has established the utility of
such a feature [7, 24, 43] in applications such as ssh
servers or data management programs for sensitive
data.

6 Hardware Support
While our designs are implementable on modern
hardware, extensions to current processor features
could improve performance and yield a simpler im-

plementation. We have been implementing our pro-
totype for Intel x86-64 processors, but doing so ef-
ficiently requires us to use certain components of
the hardware in new ways. A future target for sup-
port is the extensible RISC-V architecture [3], and
we will design modifications to RISC-V to better
support the Twizzler model. Extensions to pro-
cessor architecture are already required in order to
support consistency across power interruptions with
NVDIMMs [11, 49], so we will take this opportunity
to motivate additional features to improve persis-
tent object access as well.

Segmentation and Large Address Spaces
Many current processors limit their virtual address
spaces to less than 64 bits. We propose to ex-
tend the virtual address space to a full 64 bits.
Reintroducing segment registers would pair nicely
with this change by allowing us to directly use
object-id:offset type pointers by mapping the
object-id field to a segment register and deref-
erencing using the offset field with the segment
register, avoiding the need for pointer swizzling [39]
on external object accesses. Each segment has a
page-table to map (possibly large) pages to physi-
cal memory. This allows us to easily move object
data between components in a heterogeneous mem-
ory system while still providing similar features as
current virtual memory systems (such as demand
paging and “unlimited” address space). Note that
increasing the virtual address space size to 64 bits
may require deeper page-table structures if page
sizes are kept the same. However, since we map
objects contiguously at the thread level and objects
are less likely to be evicted from NVDIMMs, we can
afford to map larger contiguous regions of objects,
thereby reducing the page-table depth to balance
out the effect of the increased address space.

A possible extension to RISC-V would be to add
a small per-thread segment table along with in-
structions for dereferencing with segment:offset
arguments. The segment table would provide a fi-
nite number of valid segments that can be indexed
via a small integer, which would allow better hard-
ware support for the FOT. Each entry can contain
an object ID and a pointer to a page-table. User-
space code would then be able to add objects to
the segment table as needed, and the processor can
trap into the kernel in order to update references
to page-tables. We could then collapse the idea of
virtual address space protections and security con-
text access control using either a protection looka-
side buffer [66], which can be set per-thread to con-

7



trol the access to objects in the segment tables, or
fields in the segment tables to handle protections
with permission bits in page-tables to handle access
control.

The extension of a protection lookaside buffer (of
which some features are provided in Skylake server
x86 processors) would allow us to reduce the number
of page-table structures we use by decoupling per-
missions from mappings. This is useful here because
the page-tables are used to map objects into phys-
ical memory, not define address spaces. Therefore,
we would be able to keep the number of page-tables
to just those objects which are in physical memory
space. This is advantageous since those structures
need to be stored per object regardless in order to
keep track of page allocation for object data.

Intel x86-64 Support The solution we use on
x86-64 to support the mapping power of virtual seg-
ments is to use the Extended Page Tables (EPT)
hardware provided in the VT-x extensions for two
levels of mapping. The EPT allows us to map a vir-
tual address to a logical address before it is mapped
with another set of page-tables to a physical ad-
dress. We refer to the mid-level address space, typi-
cally called the guest physical address space, as the
object physical space (as shown in Figure 4). Here,
objects are contiguous in (logical) memory and are
given permissions associated with the current secu-
rity context of a thread. A thread’s virtual address
space also has objects contiguous in memory and is
broken up into “slots”. A virtual slot is mapped to
an object logical slot with protections defined by an
application. This allows us to easily page objects
in and out of memory or move them in physical
memory by only changing the object-logical map-
pings. Additionally, two-levels of mapping allow us
to reduce the number of page-tables required by the
system. Since threads may define their requested
protections of an object while their active security
context defines the limitations of that thread, the
number of page-table structures would be O(nm)
in a single-level mapping system, where n is the
number of running programs and m is the number
of security contexts. Instead, our two-level map-
ping approach has O(n + m) page-table structures
because they can be selected and exchanged inde-
pendently while the hardware applies the correct
permissions as a bitwise-and between the two lev-
els. As before, we need to store structures which
record the page allocations of objects anyway, for
which we can use the page-table structures in the
object physical layer.

r-x rw-

rwxr-- r--

Figure 4: The use of two-level address translation
in Twizzler for x86-64. Protections are assigned
in the object-virtual address space and permissions
(security context data) are assigned in the object-
physical address space. The final access control of a
mapping is the bitwise-and between the protections
of the two levels. Objects may be moved around
in physical memory without affecting object-virtual
address spaces, and the separation of security con-
texts and virtual address spaces reduces the number
of required mapping structures.

7 Name Resolution
With all data and code stored as objects, and ob-
jects residing in a single level store, our prototype
operating system manages objects more like a key-
value store than a file system, with no clear, built-in
organization of data. This presents an opportunity
to implement a more flexible method of organizing
and accessing objects. Our object name resolution
system, Nomenclature, is the mechanism Twizzler
will use to translate names in the FOT into actual
object GUIDs.

By including a pointer to a name resolver along
with the object identification data in the FOT,
Nomenclature allows the use of a wide range of
name resolution mechanisms within a single sys-
tem stack. Objects could have names in multi-
ple resolvers; for example, the same objects could
be organized by both a relational database resolver
and a hierarchical resolver similar to a conventional
filesystem. The implementation of non-hierarchical
file systems is well studied [2, 27, 29, 50, 51], but
these systems do not easily cooperate with one an-
other to organize the same files or objects. By using
a key-value store for the underlying objects, Nomen-
clature separates name translation from object re-
trieval, providing flexibility and extensibility for ob-
ject naming.

8



8 Related Work
The introduction of byte-addressable non-volatile
memory presents an outstanding opportunity to re-
think the way that operating systems handle mem-
ory and storage. When working with new technolo-
gies it is often best to turn to the past—ideas that
were only theoretically possible in the past may have
become more viable with the change in time. Such
is the case with the Twizzler project. Our design is
shaped by fundamental operating systems papers,
including Multics [12], Opal [9], IBM’s K42 [40], and
exokernel-style approaches [21, 22, 23, 37]. While
there has been a large amount of recent research
on building data structures in non-volatile mem-
ory [10, 11, 16, 44, 64], most of it has focused on
how applications can provide persistent versions of
existing data structures in the face of crashes that
may happen at any time. In contrast, we propose
to explore how persistent NVM can simplify operat-
ing systems and perhaps application programming
while improving performance.

Our approach will leverage non-volatile memory
characteristics to greatly reduce the need for an
operating system stack and provide full system re-
sumability, we draw on prior object-oriented operat-
ing system design work to simplify the kernel using
techniques developed in systems such as K42 [40]
and Exokernel [23, 38]. However, we also draw from
more recent work on providing operating systems
support for byte-addressable non-volatile memory
systems [8], integrating the two to provide high-
performance operating system support for applica-
tions running on a single-level store.

8.1 Memory Model

MULTICS was one of the first systems to use seg-
ments as a technique for partitioning memory and
supporting relocation [5, 13]. The MULTICS sys-
tem used segments to support location indepen-
dence, but still maintained them in a file system,
requiring manual linkage rather than the auto-
mated linkage we propose. Nonetheless, MULTICS
demonstrated that the use of segmenting for mem-
ory management can be a viable approach.

The core of our design of the Twizzler address
space is similar to concepts introduced by Opal [9],
which used a single 64 bit virtual address space
mapping for all processes on a system. This design
made it easier to share data between applications
since they use the same virtual address space, and
prevented naming conflicts when importing virtual

addresses for devices that may be [dis]connected
during runtime. Opal’s design resulted in signifi-
cant speedup of data transfer/sharing as well as in-
terfacing of devices, but it did not address the issue
of file storage and resolution of names. Opal still re-
quired a file system, since there was no way to have a
pointer refer to an object whose identity may change
over time. In contrast, our approach adds the abil-
ity for late resolution of object pointers, removing
the need for an explicit file system. Additionally,
our use of hardware virtualization support will pro-
vide much stronger security guarantees than Opal.
Other single-address space operating systems, such
as Mungi [31] and Sombrero [60], show that the sin-
gle address space approach has merit, but, like Opal,
did not consider how the use of NVM would alter
their design choices.

Single-level stores [56, 58] have been known for
some time, though “relatively little has appeared
about them in the public literature” [56], even in the
decade since the EROS paper was written. Single-
level stores eliminate the distinction between mem-
ory and persistent storage, using a single model
for data at all levels of the hierarchy. The Clouds
system [15] implemented a distributed object store
in which individual objects contained code, persis-
tent data, and both volatile and persistent heaps.
Our approach proposes lighter-weight objects, al-
lowing direct access to an object from outside, un-
like Clouds. Another example of such a system
is software persistent memory [30], which was de-
signed to operate within the constraints of existing
operating systems. Our proposal is to build a usable
single level store, developing pointer mechanisms
and name resolution that can leverage the built-
in persistence of NVM. This idea was described by
Meza [46], who suggested that hardware manage a
hybrid persistent-volatile memory store with fine-
grained data movement to and from persistent stor-
age. This is contrast to existing single-level stores
that must migrate data to and from disk in large
chunks, making it more difficult to provide fine-
grained persistence. Moreover, because most persis-
tence in our system is to NVM, which has low access
latency, our operating system need not interpose
on most data movement between persistent stor-
age and volatile temporary memory, instead simply
managing mappings of persistent objects into mem-
ory, thus reducing operating system overhead.

Recently, several projects have begun considering
the impact of non-volatile memories on operating
system structure. For example, Bailey, et al. [4]
suggest the use of a single-level store and the use

9



of NVM to ship an application as a checkpoint of
a running process. Our proposed research will ex-
plore this approach and its implications. The Mon-
eta project [8] noted that, in their prototype, elimi-
nating the heavyweight operating system stack dra-
matically improved performance by reducing over-
head. While this work was focused on I/O perfor-
mance, not on rethinking the system stack, we will
leverage their techniques to reduce operating sys-
tem overhead as much as possible, even when the
operating system must intervene. Lee and Won [41]
considered the impact of byte-addressable NVM on
system initialization by addressing the issue of sys-
tem boot as a way to restore the system to a known
state; we may need to include similar techniques
to address the problem of system corruption. Ker-
nel state objects are one of our solutions to prob-
lems of power-failure recovery, also discussed by
Narayanan [48]. However, Twizzler allows for sys-
tems which are not designed to serialize CPU state
on power-failure. Additionally, kernel state object
have additional performance, networking, and sim-
plicity benefits.

8.2 Object Model

IBM’s K42 operating system [40] provided inspira-
tion for the high-level design principles of Twizzler.
The object-oriented approach to designing a micro-
or exokernel used in K42 forms an efficient design
for Twizzler to implement operating system com-
ponents simply and modularly. Like K42, Twiz-
zler will lazily load or map in only the resources
that an application needs to execute. Similar tech-
niques for faulting-in objects at run-time have been
studied [33]. Communication between objects in
Twizzler will be implemented as protected proce-
dure calls, similar to K42, but we will develop new
methods to implement them on modern hardware.

Prior work such as Emerald [35, 36] and
Mesos [32] implemented object mobility over the
network, which Twizzler could support through its
object model. Emerald implemented a kernel, lan-
guage, and compiler to allow objects to become mo-
bile over the network, using wrapper data structures
to track metadata for each object and presenting
these objects in a object-oriented language. This ap-
proach adds layers of indirection for even simple op-
erations like integer addition, causing a performance
hit. Twizzler will improve on this implementation
by using modern CPU hardware support to allow
even lower overhead for cross-object references.

The Twizzler persistent object model was also
shaped by the design of NV-heaps [10]. NV-heaps
provide memory-safe persistent objects suitable for
non-volatile memory systems. The paper describes
memory safety pitfalls in providing direct access to
NVM for application programmers such as leaks and
invalid pointers. Language-level primitives are in-
troduced, which enable a program to actively utilize
persistent structures and techniques. Instead of im-
posing limitations, Twizzler aims to present the ben-
efits of persistent objects to the programmer with
fewer restrictions, more akin to Mnemosyne [64], to
allow more powerful applications to be constructed.
While NV-heaps manage different kinds of pointers
with the restriction that pointers in an NV-heap can
only refer to memory within the same heap, Twiz-
zler has no such restriction, allowing for executable
code to reside in an object and refer to different
data structure objects or library objects by a di-
rect pointer. We believe that some languages may
choose to provide the restrictions presented in NV-
heaps, but the Twizzler system will provide for more
powerful usage of NVM. Additional projects such as
PMFS [18] and NOVA [67] provide a filesystem for
NVM devices. Twizzler, in contrast, provides direct
NVM access atop of a key-value interface for ob-
jects. Although Twizzler does not direct supply a
filesystem, one can be easily built atop it (as is one
of the projects in involving Nomenclature in Twiz-
zler). Furthermore, while NOVA and PMFS provide
mechanisms for direct access to NVM, NOVA adds
an indirection layer with copies and both use mmap()
interfaces (which fall short as discussed above) and,
unlike Twizzler, require significant kernel interac-
tion when using persistent memory.

8.3 Security Model

Our use of a small kernel that “gets out of the way”
is influenced by systems such as Exokernel [23] and
SPIN [6], both of which drew on the Mach microker-
nel design [1]. In Exokernel, much of the operating
system functionality is implemented in user space,
with the kernel providing only resource protection.
Our approach is similar in some respects, but goes
much further in providing a single unified logical
name space for all objects, making it simpler to de-
velop applications that can directly leverage non-
volatile memory to make their state persistent. In
contrast, SPIN used type-safe languages to provide
protection and extensibility; our approach cannot
rely upon language-provided type safety since we
want to provide a general purpose platform.

10



Mungi proposed a system which operates sim-
ilarly to the proposed Twizzler design, namely a
microkernel with page fault handling to allow an
object-based approach with protected procedure
calls [31]. Mungi proposed a practical implemen-
tation based on the L4 microkernel on an MIPS
R4600 processor. Protected procedure calls were
implemented in Mungi by temporarily replacing the
threads protection domain by the union of selected
subsets of the caller and callees domains. We call
these protection domains security contexts in Twiz-
zler, and propose a novel implementation that takes
advantage of modern x86 virtualization hardware to
improve performance. Mungi recognized that this
object model would be highly suitable for persistent
objects, but did not propose any method of pointer
swizzling [39], instead opting to limit objects to a
single address space. Twizzler’s x86 implementation
allows efficient swizzling and even the transmission
of objects over the network.

Isolating components of a process has been stud-
ied before, but previous efforts have fallen short in
certain aspects. Wedge [7], for example, separates
privilege via separate Linux processes, resulting in
additional scheduling and context-switching over-
head. In our implementation of security contexts,
scheduling processes and threads has minimal addi-
tional overhead. Lightweight-contexts [43] improve
in this regard by making their protection contexts
orthogonal to threads with first-class support in the
kernel. While we also follow this approach, both
Wedge and Light-weight Contexts require applica-
tions to be refactored to make use of protection do-
mains. Our approach allows unmodified software
to undergo privilege separation. Previous work has
also been explored on threads switching entire ad-
dress spaces, whether as a performance optimization
(as in the case of Mach [25]) or as a method of ad-
dress space extension and data sharing (as in the
case of SpaceJMP [20]). Address space switching of
threads is also discussed by Lindstrom et al. [42].
While the primary goal of these systems is not to
provide privilege separation and security, our sys-
tem shares the thread migration nature of these
systems, and allows the kernel to automatically mi-
grate threads to the correct context as necessary.

While there are numerous existing operating sys-
tems which use capabilities as their primary form
of access control [26, 28, 47, 57, 63], these systems
either often keep and track capabilities in the kernel
or require the kernel to distribute or create them.
We plan to model our system around signed capa-
bilities, requiring only a public key to verify a capa-

bility. The capabilities can prove their authenticity
to the kernel without it needing to create or protect
them in a special way.

9 Future Work
Beyond extending our FreeBSD prototype, imple-
menting and testing kernel state object and security
contexts, and exploring the design of a userspace
built around our I/O model, there are three addi-
tional significant aspects to this work that we will
pursue:

1. Current toolchains do not emit the code nec-
essary to do the translation of pointers into a
usable form upon load or dereference. We will
modify the toolchain to automatically emit the
correct code by adding a pass to the LLVM
compiler. In the meantime, code we write will
need to include calls to functions to handle the
transformations of pointers. We also plan to
extend the compilers to include language sup-
port for defining cross-object pointers.

2. Building our own kernel will allow us to ex-
plore a kernel design based solely off of kernel
state objects. We will use that to develop an
operating system that is capable of handling
unexpected power cycles with resumability for
applications (up to their ability to checkpoint
and resume themselves).

3. We believe our object model and operating sys-
tem design is well equipped to handle a net-
worked environment. We plan to explore the
interplay between the object model, content-
addressable networks, and a capability-based
security model. We expect to build a dis-
tributed variant of Twizzler which will allow us
to cheaply move data and computation around
the system automatically.

10 Conclusion
Operating systems must evolve to support future
trends in memory hierarchy organization. Failing
to evolve will not only relegate new technology to
outdated access models thereby not allowing it to
reach its potential, but it will also make it more dif-
ficult for operating systems to evolve in the future.
We must not pass up a chance to provide applica-
tions with a better data access model going forward
than current modes designed for tape and disk. We
believe that Twizzler will show a way forward with
an object model designed around NVDIMMs and

11



an operating system that provides new semantics
for direct access to persistent memory with fine-
grained security and recoverability. The invariant
pointers we defined will allow us to support cross-
object pointers with low-overhead. The operating
system kernel itself will support persistent kernel
state and allow it to recover from power cycling and
crashes. It will remove itself from path of applica-
tions in their accesses to persistent data, thereby
providing middleware with improved flexibility and
performance. Twizzler will give us a system from
which we can build our a persistent-memory based
operating system and explore the future of applica-
tions, operating systems, and processor design on a
new memory hierarchy.

Acknowledgements
This research was supported in part by the National
Science foundation grant number IIP-1266400, by a
grant from Intel corporation, and by the industrial
members of the Center for Research in Storage Sys-
tems. The authors additionally thank the members
of the Storage Systems Research Center for their
support and feedback.

References
[1] Mike Accetta, Robert Baron, William Bolosky,

David Golub, Richard Rashid, Avadis Teva-
nian, and Michael Young. Mach: A new kernel
foundation for UNIX development. In Proceed-
ings of the Summer 1986 USENIX Technical
Conference, pages 93–112, Atlanta, GA, 1986.
USENIX.

[2] Sasha Ames, Nikhil Bobb, Kevin M. Greenan,
Owen S. Hofmann, Mark W. Storer, Car-
los Maltzahn, Ethan L. Miller, and Scott A.
Brandt. LiFS: An attribute-rich file system
for storage class memories. In Proceedings of
the 23rd IEEE / 14th NASA Goddard Confer-
ence on Mass Storage Systems and Technolo-
gies, College Park, MD, May 2006. IEEE.

[3] Krste Asanović and David A Patterson. In-
struction sets should be free: The case for
RISC-V. Technical Report EECS-2014-146,
University of California at Berkeley, 2014.

[4] Katelin Bailey, Luis Ceze, Steven D. Gribble,
and Henry M. Levy. Operating system impli-
cations of fast, cheap, non-volatile memory. In
Proceedings of the 13th Workshop on Hot Top-
ics in Operating Systems (HotOS-XIII), May
2011.

[5] A. Bensoussan, C. T. Clingen, and R. C. Daley.
The Multics virtual memory: Concepts and de-
sign. In Proceedings of the 2nd ACM Sympo-
sium on Operating Systems Principles (SOSP
’69), 1969.

[6] Brian N. Bershad, Stefan Savage, Przemyslaw
Pardyak, Emin Gün Sirer, Marc E. Fiuczynski,
David Becker, Craig Chambers, and Susan Eg-
gers. Extensibility, safety, and performance in
the SPIN operating system. In Proceedings of
the 15th ACM Symposium on Operating Sys-
tems Principles (SOSP ’95), December 1995.

[7] Andrea Bittau, Petr Marchenko, Mark Hand-
ley, and Brad Karp. Wedge: Splitting appli-
cations into reduced-privilege compartments.
In Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implemen-
tation, NSDI’08, pages 309–322, Berkeley, CA,
USA, 2008. USENIX Association.

[8] Adrian M. Caulfield, Arup De, Joel Coburn,
Todor Mollov, Rajesh Gupta, and Steven
Swanson. Moneta: A high-performance stor-
age array architecture for next-generation, non-
volatile memories. In Proceedings of The 43rd
Annual IEEE/ACM International Symposium
on Microarchitecture, 2010.

[9] Jeffrey S. Chase, Henry M. Levy, Michael J.
Feeley, and Edward D. Lazowska. Sharing and
protection in a single-address-space operating
system. ACM Transactions on Computer Sys-
tems, 12(4):271–307, November 1994.

[10] Joel Coburn, Adrian M. Caulfield, Ameen
Akel, Laura M. Grupp, Rajesh K. Gupta, Ran-
jit Jhala, and Steven Swanson. NV-Heaps:
Making persistent objects fast and safe with
next-generation, non-volatile memories. In
Proceedings of the 16th International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems (ASPLOS
2011), March 2011.

[11] Jeremy Condit, Edmund B. Nightingale,
Christopher Frost, Engin Ipek, Benjamin Lee,
Doug Burger, and Derrick Coetzee. Better I/O
through byte-addressable, persistent memory.
In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP ’09),
pages 133–146, Big Sky, MT, October 2009.

[12] Fernando J. Corbató and Victor A. Vyssotsky.
Introduction and overview of the Multics sys-
tem. In Proceedings of the November 30 — De-
cember 1, 1965, fall joint computer conference,

12



part I, pages 185–196. ACM, 1965.
[13] Robert C. Daley and Jack B. Dennis. Virtual

memory, processes, and sharing in MULTICS.
Communications of the ACM, 11(5):306–312,
May 1968.

[14] P. Dasgupta, R. C. Chen, S. Menon, M. P.
Pearson, R. Ananthanarayanan, U. Ramachan-
dran, M. Ahamad, R. J. LeBlanc, W. F. Ap-
pelbe, J. M. Bernabeu-Auban, P. W. Hutto, M.
Y A Khalidi, and C. J. Wilkenloh. Design and
implementation of the clouds distributed oper-
ating system. Computing systems, 3(1):11–46,
12 1990.

[15] Partha Dasgupta, Richard J. LeBlanc, Jr.,
Mustaque Ahamad, and Umakishore Ra-
machandran. The Clouds distributed operating
system. IEEE Computer, November 1991.

[16] Biplob Debnath, Sudipta Sengupta, and Jin Li.
FlashStore: High throughput persistent key-
value store. In Proceedings of the 36th Con-
ference on Very Large Databases (VLDB ’10),
September 2010.

[17] Xiangyu Dong, Cong Xu, Norm Jouppi, and
Yuan Xie. Emerging Memory Technologies:
Design, Architecture, and Applications, chap-
ter 2, pages 15–50. Springer, 2014.

[18] Subramanya R. Dulloor, Sanjay Kumar, Anil
Keshavamurthy, Philip Lantz, Dheeraj Reddy,
Rajesh Sankaran, and Jeff Jackson. System
software for persistent memory. In Proceedings
of the Ninth European Conference on Com-
puter Systems, EuroSys ’14, pages 15:1–15:15,
New York, NY, USA, 2014. ACM.

[19] Sean Eilert, Mark Leinwander, and Giuseppe
Crisenza. Phase change memory: A new mem-
ory enables new memory usage models. In
Memory Workshop, 2009. IMW’09. IEEE In-
ternational, pages 1–2. IEEE, 2009.

[20] Izzat El Hajj, Alexander Merritt, Gerd Zell-
weger, Dejan Milojicic, Reto Achermann, Paolo
Faraboschi, Wen-mei Hwu, Timothy Roscoe,
and Karsten Schwan. Spacejmp: Program-
ming with multiple virtual address spaces. In
Proceedings of the Twenty-First International
Conference on Architectural Support for Pro-
gramming Languages and Operating Systems,
ASPLOS ’16, pages 353–368, New York, NY,
USA, 2016. ACM.

[21] Dawson R Engler, Sandeep K Gupta, and
M Frans Kaashoek. Avm: Application-level
virtual memory. In Hot Topics in Operating

Systems, 1995.(HotOS-V), Proceedings., Fifth
Workshop on, pages 72–77. IEEE, 1995.

[22] Dawson R Engler and M Frans Kaashoek.
Exterminate all operating system abstrac-
tions. In Hot Topics in Operating Systems,
1995.(HotOS-V), Proceedings., Fifth Workshop
on, pages 78–83. IEEE, 1995.

[23] Dawson R. Engler, M. Frans Kaashoek, and
James O’Toole, Jr. Exokernel: An operat-
ing system architecture for application-level re-
source management. In Proceedings of the 15th
ACM Symposium on Operating Systems Prin-
ciples (SOSP ’95), December 1995.

[24] Bryan Ford and Russ Cox. Vx32: Lightweight
user-level sandboxing on the x86. In USENIX
Annual Technical Conference, pages 293–306.
Boston, MA, 2008.

[25] Bryan Ford and Jay Lepreau. Evolving mach
3.0 to a migrating thread model. In Proceedings
of the USENIX Winter 1994 Technical Confer-
ence on USENIX Winter 1994 Technical Con-
ference, WTEC’94, pages 9–9, Berkeley, CA,
USA, 1994. USENIX Association.

[26] Bill Frantz, Norman Hardy, Jay Jonekait, and
Charles R Landau. Gnosis: A prototype oper-
ating system for the 1990’s. In Proceedings of
SHARE, volume 52, pages 3–17, 1979.

[27] David K. Gifford, Pierre Jouvelot, Mark A.
Sheldon, and James W. O’Toole, Jr. Seman-
tic file systems. In Proceedings of the 13th
ACM Symposium on Operating Systems Prin-
ciples (SOSP ’91), pages 16–25. ACM, October
1991.

[28] Li Gong. A secure identity-based capability
system. In In Proceedings of the 1989 IEEE
Symposium on Security and Privacy, pages 56–
63, 1989.

[29] Burra Gopal and Udi Manber. Integrating
content-based access mechanisms with hier-
archical file systems. In Proceedings of the
3rd Symposium on Operating Systems Design
and Implementation (OSDI), pages 265–278,
February 1999.

[30] Jorge Guerra, Leonardo Mármol, Daniel
Campello, Carlos Crespo, Raju Rangaswami,
and Jinpeng Wei. Software persistent mem-
ory. In Proceedings of the 2012 USENIX An-
nual Technical Conference, 2012.

[31] Gernot Heiser, Kevin Elphinstone, Stephen
Russell, and Jerry Vochteloo. Mungi: a dis-

13



tributed single address-space operating system.
Technical Report 9314, School of Computer
Science and Engineering, University of New
South Wales, November 1993.

[32] Benjamin Hindman, Andy Konwinski, Matei
Zaharia, Ali Ghodsi, Anthony D. Joseph,
Randy Katz, Scott Shenker, and Ion Sto-
ica. Mesos: A platform for fine-grained re-
source sharing in the data center. In Proceed-
ings of the 8th USENIX Conference on Net-
worked Systems Design and Implementation,
NSDI’11, pages 295–308, Berkeley, CA, USA,
2011. USENIX Association.

[33] Antony L. Hosking and J. Eliot B. Moss. Ob-
ject fault handling for persistent programming
languages: A performance evaluation. In Pro-
ceedings of the Eighth Annual Conference on
Object-oriented Programming Systems, Lan-
guages, and Applications, OOPSLA ’93, pages
288–303, New York, NY, USA, 1993. ACM.

[34] Qingda Hu, Jinglei Ren, Anirudh Badam,
and Thomas Moscibrod. Log-structured non-
volatile main memory. In Proceedings of
the 2017 Usenix Annual Technical Conference,
June 2017.

[35] Eric Jul, Henry Levy, Norman Hutchinson, and
Andrew Black. Fine-grained mobility in the
emerald system. ACM Transactions on Com-
puter Systems, 6(1):109–133, February 1988.

[36] Eric Jul and Bjarne Steensgaard. Implementa-
tion of distributed objects in Emerald. In Ob-
ject Orientation in Operating Systems, 1991.
Proceedings., 1991 International Workshop on,
pages 130–132. IEEE, 1991.

[37] M. Frans Kaashoek, Dawson R. Engler, Gre-
gory R. Ganger, Hector M. Briceño, Rus-
sell Hunt, David Mazières, Thomas Pinckney,
Robert Grimm, John Jannotti, and Kenneth
Mackenzie. Application performance and flex-
ibility on exokernel systems. In Proceedings
of the Sixteenth ACM Symposium on Operat-
ing Systems Principles, SOSP ’97, pages 52–65,
New York, NY, USA, 1997. ACM.

[38] M. Frans Kaashoek, Dawson R. Engler, Gre-
gory R. Ganger, Héctor M. Briceno, Rus-
sell Hunt, David Mazieres, Thomas Pinckney,
Robert Grimm, John Jannotti, and Kenneth
Mackenzie. Application performance and flex-
ibility on exokernel systems. In ACM SIGOPS
Operating Systems Review, volume 31, pages
52–65. ACM, 1997.

[39] Alfons Kemper and Donald Kossman. Adapt-
able pointer swizzling strategies in object
bases: Design, realization, and quantitative
analysis. VLDB Journal, 4:519–567, 1995.

[40] Orran Krieger, Marc Auslander, Bryan Rosen-
burg, Robert W. Wisniewski, Jimi Xenidis,
Dilma Da Silva, Michal Ostrowski, Jonathan
Appavoo, Maria Butrico, Mark Mergen, Amos
Waterland, and Volkmar Uhlig. K42: Building
a complete operating system. In Proceedings of
the 1st ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2006, EuroSys
’06, pages 133–145, New York, NY, USA, 2006.
ACM.

[41] Dokeun Lee and Youjip Won. Bootless boot:
Reducing device boot latency with byte ad-
dressable NVRAM. In 2013 International
Conference on High Performance Computing,
November 2013.

[42] A. Lindstrom, J. Rosenberg, and A. Dearle.
The grand unified theory of address spaces. In
Proceedings of the Fifth Workshop on Hot Top-
ics in Operating Systems (HotOS-V), HOTOS
’95, pages 66–, Washington, DC, USA, 1995.
IEEE Computer Society.

[43] James Litton, Anjo Vahldiek-Oberwagner, Es-
lam Elnikety, Deepak Garg, Bobby Bhat-
tacharjee, and Peter Druschel. Light-weight
contexts: An os abstraction for safety and per-
formance. In 12th USENIX Symposium on
Operating Systems Design and Implementation
(OSDI 16), pages 49–64, GA, 2016. USENIX
Association.

[44] Youyou Lu, Jiwu Shu, and Long Sun. Blurred
persistence: Efficient transactions in persistent
memory. ACM Transactions on Storage, 12(1),
January 2016.

[45] Alex Markuze, Adam Morrison, and Dan
Tsafrir. True iommu protection from dma
attacks: When copy is faster than zero
copy. ACM SIGOPS Operating Systems Re-
view, 50(2):249–262, 2016.

[46] Justin Meza, Yixin Luo, Samira Khan, Jishen
Zhao, Yuan Xie, and Onur Mutlu. A case for
efficient hardware/software cooperative man-
agement of storage and memory. In 5th
Workshop on Energy-Efficient Design (WEED
2013), June 2013.

[47] Sape J Mullender, Andrew S Tanenbaum, and
Robbert van Renesse. Using sparse capabilities
in a distributed operating system. In Proceed-

14



ings of the 6th IEEE conference on Distributed
Computing Systems, 1986.

[48] Dushyanth Narayanan and Orion Hodson.
Whole-system persistence. SIGPLAN Not.,
47(4):401–410, March 2012.

[49] Matheus Ogleari, Ethan L. Miller, and Jishen
Zhao. Steal but no force: Efficient hardware-
driven undo+redo logging for persistent mem-
ory systems. In 24th IEEE International Sym-
posium on High-Performance Computer Archi-
tecture, February 2018.

[50] Yoann Padioleau and Olivier Ridoux. A logic
file system. In Proceedings of the 2003 USENIX
Annual Technical Conference, pages 99–112,
San Antonio, TX, June 2003.

[51] Aleatha Parker-Wood, Darrell D. E. Long,
Ethan L. Miller, Philippe Rigaux, and Andy
Isaacson. A file by any other name: Managing
file names with metadata. In Proceedings of the
7th Annual International Systems and Storage
Conference (SYSTOR 2014), June 2014.

[52] Luigi Rizzo. netmap: A novel framework for
fast packet i/o. In 2012 USENIX Annual Tech-
nical Conference (USENIX ATC 12), pages
101–112, Boston, MA, 2012. USENIX Associa-
tion.

[53] Timothy Roscoe. Linkage in the Nemesis sin-
gle address space operating system. Operating
Systems Review, 28(4):48–55, October 1994.

[54] Andy Rudoff. Persistent memory program-
ming. In ;Login: The Usenix Magazine, vol-
ume 42, pages 34–40. USENIX Association,
2015.

[55] Andy Rudoff et al. Persistent memory pro-
gramming library. http://pmem.io/nvml/.

[56] Jonathan S. Shapiro and Jonathan Adams. De-
sign evolution of the EROS single-level store. In
Proceedings of the 2002 USENIX Annual Tech-
nical Conference, pages 59–72, Monterey, CA,
June 2002. USENIX.

[57] Jonathan S. Shapiro, Jonathan M. Smith, and
David J. Farber. Eros: A fast capability sys-
tem. In Proceedings of the Seventeenth ACM
Symposium on Operating Systems Principles,
SOSP ’99, pages 170–185, New York, NY,
USA, 1999. ACM.

[58] Eugene Shekita and Michael Zwilling. Cricket:
A mapped, persistent object store. Technical
Report 956, University of Wisconsin, August
1990.

[59] Alan Skousen and Donald Miller. Operating
system structure and processor architecture for
a large distributed single address space. In
Proceedings of the 1998 Conference on Paral-
lel Distributed Computing and Systems (PDCS
’98), 1998.

[60] Alan Skousen and Donald Miller. Using a single
address space operating system for distributed
computing and high performance. In Proceed-
ings of the 18th IEEE International Perfor-
mance, Computing and Communications Con-
ference (IPCCC ’99), pages 8–14, February
1999.

[61] Moti N. Thadani and Yousef A. Khalidi. An ef-
ficient zero-copy i/o framework for unix. Tech-
nical report, Sun Microsystems Laboratories,
Inc., may 1995.

[62] Hung-Wei Tseng, Qianchen Zhao, Yuxiao
Zhou, Mark Gahagan, and Steven Swanson.
Morpheus: Creating application objects effi-
ciently for heterogenous computing. In 2016
ACM/IEEE 43rd Annual Intenational Sympo-
sium on Computer Architecture, 2016.

[63] J. Vochteloo, S. Russell, and G. Heiser.
Capability-based protection in the mungi op-
erating system. In Proceedings Third Interna-
tional Workshop on Object Orientation in Op-
erating Systems, pages 108–115, Dec 1993.

[64] Haris Volos, Andres Jaan Tack, and Michael M.
Swift. Mnemosyne: Lightweight persistent
memory. In Proceedings of the 16th Interna-
tional Conference on Architectural Support for
Programming Languages and Operating Sys-
tems (ASPLOS 2011), March 2011.

[65] Zhaoguo Wang, Han Yi, Ran Liu, Mingkai
Dong, and Haibo Chen. Persistent transac-
tional memory. IEEE Computer Architecture
Letters, 14(1), 2015.

[66] John Wilkes and Bart Sears. A comparison
of protection lookaside buffers and the PA-
RISC protection architecture. Technical Re-
port HPL-92-55, HP Laboratories, March 1992.

[67] Jian Xu and Steven Swanson. Nova: A log-
structured file system for hybrid volatile/non-
volatile main memories. In Proceedings of the
14th Usenix Conference on File and Storage
Technologies, FAST’16, pages 323–338, Berke-
ley, CA, USA, 2016. USENIX Association.

15


	Introduction
	Persistent Objects
	Security and Access Control
	Persistent Kernel State
	FreeBSD Prototype
	Hardware Support
	Name Resolution
	Related Work
	Memory Model
	Object Model
	Security Model

	Future Work
	Conclusion

