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Abstract

One of the goals of upcoming hybrid hard disks is to re-
duce power consumption by adding a small amount of non-
volatile flash memory (NVCache) to the drive itself. By us-
ing the NVCache to satisfy writes while the rotating media is
spun-down, hard disk power consumption can be decreased
by lengthening low-power periods. However, the NVCache
must eventually be flushed back to the rotating media in
order to cache additional data. In this paper we explore
two questions: wWhen and how should NVCache content be
flushed to rotating media in order to minimize the overhead
of data synchronization. We show that by using traditional
1/0 mechanisms such as merging and reordering, combined
with a “flush only when full” policy, flushing performance
improves significantly.

1 Introduction

Over the past few years, power has evolved into a first
class resource [14] in computing environments. There are
several reasons power consumption is relevant in desktop
and laptop environments. From a monetary perspective,
power is expensive and manifests itself in several ways. For
example, in large organizations where each employee has
a laptop or desktop the aggregate cost of several thousand
computers is significant, although the individual power cost
of each computer may only be dollars per year. Power is
also important in the context of availability (primarily for
laptops). When laptops are not running on AC they run on
battery, which has a finite power supply. When that supply
is exhausted, the laptop is no longer available. The implica-
tions of availability differ drastically, from minor inconve-
nience to mission critical. Power is considered a first class
resource for other reasons as well, including environmental
concerns, heat generation, and cooling.

Power management mechanisms exist in desktop and
laptop computing in both the hardware and software lay-
ers. Hard disks provide different power states with varying
levels of power consumption. Some power states can dy-
namically adjust the power consumption based on I/O ac-
tivity, such as with Hitachi’s ABLE technology [9]. Soft-
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ware solutions also exist at the operating system level, such
as spin-down algorithms which determine the appropriate
hard disk power state [8, 7].

Unfortunately, desktop operating system I/O behavior is
often not suitable for hard disk power management because
the I/O subsystem is not aware that I/O operations may re-
duce hard drive reliability or be blocked for several seconds
while the rotating media spins up. However, work has been
done to ameliorate this situation by reducing observed spin-
up latency [3]. Additionally, applications do not consider
the potential impact their I/O has on hard disks, possibly
exacerbating hard drive issues associated with power man-
agement. For example, e-mail clients receive and store new
e-mail messages regardless of the hard disk power state—
all e-mails must be written to disk. The operating system
must service such requests even if it means that the corre-
sponding I/O will cause the hard disk platters to spin up. As
a result, it is often difficult to reconcile the desires of both
application I/O and power management functionality.

In the near future, hybrid disks [15] with a small amount
of flash memory (NVCache) will be available, as depicted
in Figure 1. The NVCache is stored logically adjacent to
the rotating media. A hybrid disk maintains a single block
address space, but the NVCache allows particular sectors to
be stored indefinitely on the NVCache rather than on rotat-
ing media. An operating system can utilize such a device to
reconcile power management and I/O performance. Con-
tinuing with the e-mail example, when the system is idle
(no user activity), e-mail messages may sill arrive, but can
be stored on the NVCache rather than the rotating media,
allowing the heads to remain parked and the spindle spun-
down.



In order for such I/O redirection to occur, hybrid disks
introduce a new power mode, "NV Cache Power Mode”. In
this mode, the NVCache acts as a write-cache for incoming
writes and the disk firmware implements its own rotating
media spin-down algorithm. Read requests can be serviced
solely from the NVCache if the corresponding sectors from
a request are all located in the NVCache. If the NVCache
becomes full or a read cannot be completely serviced from
the NVCache, the rotating media must be spun up to make
room for new requests or to service the read request.

The details of such I/O redirection and synchronization
to and from the NVCache are left up to the manufacturer.
As a result, it is unknown what the best algorithms are.
For example, what is the best algorithm to flush data from
the NVCache to rotating media? And, should the entire
NVCache be flushed on each spin-up? These are the ques-
tions we explore in this paper with the goal of providing a
performance baseline for manufacturers to compare against
and an indication of the most efficient synchronization ap-
proaches.

2 Flushing Policies

Synchronizing data from the NVCache to the rotating
media occurs when the NVCache is being used as a write
cache (NV Cache Power Mode is on); all writes to the
device are redirected to the NVCache. Eventually the
NVCache will fill up and need to be flushed to the rotating
media. In this paper we explore NVCache synchronization.
In particular, we examine:

e When to synchronize the NVCache to the rotating me-
dia

e How to schedule synchronization

Our examination of when to synchronize the NVCache
to the rotating media focuses on two alternatives: com-
pletely filling the NVCache before flushing it to the rotat-
ing media vs. flushing the NVCache on each spin-up. Our
examination of how to schedule synchronization explores
several scheduling algorithms used to flush NVCache data
to rotating media.

2.1 When to Flush

This section discusses the trade-offs regarding the deci-
sion of when to flush NVCache data back to the rotating
media. We investigate two natural policies: flush on each
spin-up and flush only when the NVCache becomes full.

Flushing the NVCache after each spin-up means that if
the rotating media is spun-up, regardless if it was because
of a read or write, the NVCache is flushed to rotating me-
dia. As a result, the chances of the NVCache filling up de-
creases, meaning read requests are most likely responsible
for spin-up operations. Since the NVCache is cleared of all

content on each each spin-up, the coherent location of all
sectors becomes rotating media—any subsequent request
will only go to rotating media. As a result, the probability
that the NVCache will contain read requested sectors dur-
ing future spin-down periods decreases as those sectors will
likely have been flushed to rotating media during a previous
flushing operation.

Flushing the NVCache each spin-up also means that,
while the rotating media is spun-up, subsequent I/Os will
go to the rotating media. The synchronization process will
also contend with user-initiated I/O, decreasing overall I/O
performance. The overhead of flushing the NVCache to ro-
tating media is relatively periodic because it occurs after
every rotating media spin-up. Although somewhat subjec-
tive, users tend to find periodic stimulus more acceptable
than aperiodic stimulus [4], so users may find such flushing
policy acceptable.

Alternatively, flushing the NVCache when it becomes
full means that it will only be initiated on a redirected write
request. As a result, flushing will not occur after each spin-
up; flushing operations will occur less frequently, but each
operation will be longer. From a user’s perspective, flushing
only when the rotating media is full is analogous to aperi-
odic stimulus. Therefore, users may be less tolerant of such
performance degradation.

Although writes are more likely to cause spin-up op-
erations when using the flush when full policy, reads are
still the predominant cause of spin-up operations. However,
since the NVCache will contain more valid sectors when
read operations occur, the chances that read requests can be
satisfied while the rotating media is spun-down increases. If
valid sectors are stored on the NVCache while the rotating
media is spun-up, subsequent requests (while rotating me-
dia is spun-up) may be forced to go to both rotating media
and the NVCache, resulting in reduced I/O performance.
However, another benefit of waiting until the NVCache is
full to flush is that if sorting and merging occur, there may
fewer sectors that need to be flushed back to rotating media.
Such a feature is described in the next section, Section 2.2.

Considering the two approaches above, flushing on each
spin-up effectively translates into flush-on-read, while flush
when full translates into flush-on-write. Since read requests
are often user initiated, flushing on each spin-up means
that the flushing process will contend with user-initiated I/O
consisting of read and probably write requests. On the other
hand, flushing when full will occur in response to a write re-
quest while the rotating media is spun-down, meaning there
is no user-activity. Therefore, flushing when full will likely
result in data synchronization that a user never observes.

2.2 How to Flush

This section describes algorithms which aim to decrease
the time to flush data from the NVCache to rotating media.
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Figure 2. Flush Algorithms

An algorithm which flushes data from an NVCache to rotat-
ing media requires three resources: rotating media, DRAM,
and FLASH. Hybrid disks will contain all these three re-
sources. Fundamentally, flushing data from the NVCache
to the rotating media involves reading the data from the
NVCache into DRAM, and then writing it to rotating me-
dia. This in turn frees up the that data from DRAM and
the NVCache. The four flushing algorithms (shown in Fig-
ure 2) build upon each other, aiming to make flushing more
efficient.

The first algorithm, because of its simplicity, serves as a
baseline. This algorithm is shown in Figure 2(a). It reads
one request at a time from flash into the DRAM buffer. By
request we mean a request redirected to the NVCache. Once
the request is in DRAM it is written to the appropriate lo-
cation on rotating media. This algorithm is independent of
the DRAM size such that no matter how large the DRAM is
only one request at a time will be read into DRAM and then
written to rotating media.

The second algorithm improves upon the first by lever-
aging the size of the DRAM buffer to reduce the number
of NVCache read operations and the time rotating media is
blocked waiting for NVCache data to be read into DRAM.
The main idea behind algorithm 2 is that when reading
NVCache requests into DRAM, as many redirected requests
(as can fit into DRAM) are read into DRAM with one large
read request, as shown in Figure 2(b). We refer to reading
multiple NVCache requests into DRAM at once as reading
a chunk. Included in the chunk is each request’s data, plus
metadata describing the request’s location on rotating me-
dia. The size of a chunk depends on the size of the DRAM
buffer allocated for synchronization. We assume redirected
requests are written to the NVCache in log order, which
enables performing a single NVCache read request for mul-
tiple redirected requests. Once a chunk is read into DRAM
each request within the DRAM chunk is processed in the
same log order.

Both of these algorithms suffer from the fact that either
the rotating media or the NVCache is waiting to use the
DRAM buffer. However, the NVCache is predominately

blocked waiting for the rotating media to finish writing
data. This happens because reading sequentially from the
NVCache with a single request is faster than performing
small random access writes to rotating media. Therefore,
by further reducing the time rotating media is blocked on
DRAM, we can increase the relative time spent writing to
rotating media.

The third algorithm uses two DRAM buffers as shown
in Figure 2(c). The DRAM buffer is actually split logically
into two equal size DRAM buffers. By using two DRAM
buffers we can ensure that the rotating media is always be-
ing written to. The main idea is that while requests from one
DRAM buffer are being written to rotating media, the other
DRAM buffer is being filled by the next set of redirected
requests from the NVCache. The rotating media must still
wait for the initial DRAM buffer to fill (starting a flush se-
quence) before writes can begin being written to rotating
media. Therefore, relative to the question of when to flush,
the initial wait time will occur more often with flush on each
spin-up.

The fourth algorithm is shown in Figure 2(d). It ex-
tends algorithm three by adding merging and sorting to each
DRAM buffer being written to rotating media. It is impor-
tant to note that, as shown in the figure, sorting and merg-
ing occurs locally within the respective DRAM chunks,
meaning coherency is still preserved. First, all requests are
sorted in the DRAM chunk by rotating media sector address
(LBA). The benefit of request sorting is that the disk arm
will make a logical progression through the block address
space when flushing each DRAM buffer, reducing overall
seek time. Next, all overlapping requests are merged (us-
ing the request occurring last as the data source). Requests
that partially overlap are also coalesced. By merging mul-
tiple requests into a single large request, disk I/O time is
reduced.

2.3 Partial I/Os

It is often the case that when reading a chunk of mem-
ory into DRAM from the NVCache the last request doesn’t
completely fit into the DRAM chunk. For example, if the



Name \

Type \ Duration \ Year ‘

Eng Linux Engineering Workstation 7 days | 2005
HPLAJW | HP-UX Engineering Workstation 7 days | 1992
WinPC Windows XP Desktop 7 days | 2006
Mac Mac OS X 10.4 Powerbook 7 days | 2006

Table 1. Block-Level Trace Workloads

chunk is IMB and two redirected requests are .75MB each,
one full I/O and one-third of the other will be present in the
chunk. As a result, only the first redirected request in mem-
ory can be flushed to rotating media. The partial I/O request
is ignored and re-read into the DRAM on the next DRAM
chunk read.

Alternatively, if a small DRAM size is used to move data
from flash to rotating media, the first redirected I/O may of-
ten be larger than the total DRAM chunk size. Still, the
request must eventually be written to disk. In order to ac-
complish this, a redirected flash request is written to rotating
media in the form of partial I/Os, where the partial I/O size
is equal to the DRAM chunk size. When the last partial I/O
for a redirected request is written out to rotating media, the
next redirected request is flushed from NVCache to rotating
media. Naturally, as the DRAM chunk size increases the
chances of a partial I/O request occurring decreases.

3 Experimentation

To emulate a hybrid disk and the proposed algorithms we
use a 2.5 in disk and compact flash card. The 2.5 in disk is
a Hitachi Travelstar E7K100 and the flash device is a San-
disk Ultra IT CompactFlash memory card; the flash device
represents the NVCache. Traditional DDR memory simu-
lates a hybrid disk’s DRAM cache. The host system used
for the experiments is a Linux 2.6 machine with a Pentium
4 3.06GHZ processor. Raw-device access is used to access
the block address space of both the NVCache and rotating
media.

To properly examine which sectors, written to disk, are
written back to rotating media during a flushing operation,
we replayed several real block-level I/O traces through a
spin-down algorithm. When the spin-down algorithm spins
down the rotating media, subsequent trace I/O requests
are redirected to the NVCache. Writes are redirected to
NVCache with a metadata sector describing the redirected
requests sector number, offset, and length. We use zero-
filled bytes as the actual data transferred between the dif-
ferent storage media. The rotating media is left spun-down
while writes are redirected to the NVCache. Reads are also
redirected to the NVCache if the rotating media is spun-
down in the hopes that the NVCache can service the re-
quest. If the NVCache cannot service a read request, the
rotating media is spun-up and services the request, possi-
bly gathering the requested data from both rotating media

and NVCache sectors. After the rotating media is spun-
up, and if the NVCache should be flushed to rotating me-
dia, requests from the NVCache are read into DRAM, then
written out to rotating media, according to the algorithms in
Section 2.1. The traces are used to determine when to spin-
down the rotating media, the size of redirected requests, and
where those requests belong on rotating media.

The spin-down algorithm implemented is the multiple
experts spin-down algorithm. It is an adaptive spin-down al-
gorithm developed by Helmbold et al. [8]. The spin-down
algorithm is based on a machine learning class of algorithms
known as Multiple Experts. In the dynamic spin-down al-
gorithm, each expert has a fixed time-out value and weight
associated with it. The time-out value used is the weighted
average of each expert’s weight and time-out value. It is
computed at the end of each idle period. After calculating
the next time-out value, each expert’s weight is decreased
proportional to the performance of its time-out value. Mul-
tiple experts has been shown to outperform any fixed spin-
down timeout.

3.1 Traces

The block-level access traces we use are from four real
desktop workloads gathered from four different desktop op-
erating systems, which are shown in Table 1. Each work-
load is a trace of disk requests from a single disk, and each
entry contains: I/O time, sector, sector length, and read or
write. The first workload, Eng, is a trace from the root disk
of a Linux desktop used for software engineering tasks; the
ReiserFS file system resides on the root disk. The trace was
extracted by instrumenting the disk driver to record all ac-
cesses for the root disk to a memory buffer, and transfer it
to user space (via a system call) when it became full. A
corresponding user space application appended the mem-
ory buffer to a file on a separate disk. The trace, HPLAJW,
is from a single-user HP-UX workstation [16]. The WinPC
trace is from an Windows XP desktop used mostly for web
browsing, electronic mail, and Microsoft Office applica-
tions. The trace was extracted through the use of a filter
driver. The final trace, Mac is from a Macintosh Power-
Book running OS X 10.4. The trace was recorded using the
Macintosh command line tool, fs_usage, by filtering out file
system operations and redirecting disk I/O operations for
the root disk to a USB thumb drive.
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to rotating media. Figure 5 shows these results for each
trace, including a break-down of time spent for each media.
The amount of DRAM in these experiments is 16MB and an
NVCache size of 64MB. In these figures the label Each rep-
resents flushing the NVCache after each spin-down period.
The label Full represents flushing the NVCache only when
the NVCache is full. And Total represents the total flush-
ing time, including both time to read the flash buffers into
memory and write corresponding requests back to the ap-
propriate location on rotating media. The labels NVCache
and Disk are a breakdown of the flushing time for each par-
ticular media.

This figure shows several interesting properties about
flushing performance. First, we see that when comparing
Full to Each for total time, Full is generally faster than
flushing on each spin-up—it reduces the amount of time
each media is blocked. Second, flushing is largely domi-
nated by disk. This is because the NVCache can issue a
single 64MB read to the NVCache, which consists of sev-
eral redirected requests, each of which must be written to
the rotating media.

When comparing the individual algorithms to each other
the first thing to observe is that when looking at the Total
time for Each, we see that algorithm algl performs better
than alg2 many times. Looking at the respective Disk and
NVCache timings, we see that the NVCache time typically
decreases slightly from algl to alg2 but the disk time in-
creases. The NVCache decreases because fewer 1/Os are
needed to read the NVCache. However, we suspect that
the disk timing increases because with alg2 potentially hun-
dreds of 1/Os are pushed out to the disk all at once, while
with algl, the disk has a chance to catch up while the
NVCache reads each redirected request.

The figure also shows that alg3 improves performance
over alg2. This occurs even though the NVCache time ac-
tually increases and the Disk time remains the same. The
reason is that because the DRAM buffer is split into two
smaller portions, the NVCache is blocked on each for less
time, resulting in a overall decrease in flush time. Alg4 im-
proves performance because less and larger I/Os end up go-
ing to rotating media which are also ordered. As a result,
Disk timing decreases, but the NVCache timing increases.
Finally this figure shows that all algorithms improves when
shifting to Full. This occurs because more data is cached
per flushing period, resulting in less disk flushing time, but
with roughly the same amount of NVCache flushing time.

Figures 6—12 show different metrics as a function of both
DRAM and FLASH size, with the goal being to show how
varying these parameters affect each metric. In these figure,
we show results for algorithm 4 only because it is the best
performing and most natural to use of the four flushing al-
gorithms. In each set of figures the left figure, DRAM, rep-
resents scaling the DRAM size between 100KB and 64MB.
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Figure 6. Total Flush Time

The right figure, NVCache, represents scaling the NVCache
size from 1MB to 256MB. Each of the four traces is shown
in every figure. Additionally, each trace is shown twice:
once with a “-full” appended to the trace name, and once
with a “-each”appended, as shown in the legend of each fig-
ure. The “-full” represents flushing when full and “-each”
represents flushing on each spin-up. Note, when scaling the
DRAM size, the NVCache size remains fixed at 64MB. And
when scaling the NVCache size, the DRAM size is fixed at
16MB.

Figures 6, 7, and 8 show flushing performance, similar to
Figure 5. However, in these results we vary the DRAM and
NVCache sizes. Figure 6(a) shows that by increases DRAM
size, total flushing time decreases significantly. This is be-
cause with a larger DRAM buffer more data can be read
into DRAM which can then be flushed back out to rotating
media. The flushing performance flattens out because the
benefit of reordering and coalescing plateaus. Figure 6(b)
shows that the total flushing time is stable relative to the
NVCache size, which as shown in Figure 5 is because the
NVCache is not the bottleneck. Both figures show that at
larger NVCache and DRAM sizes, the superiority of the
flush on full policy over flush on each spin-up is obvious.
Note that the reason for the sharp drop off for the HP-full
trace at 256MB is because the NVCache never fills up and
so never flushes its data to the rotating media.

Figure 7 shows a similar pattern to that of Figure 6, ex-
cept that in Figure 7(a) the disk time continues to decrease
even after I0MB of DRAM is used. Figure 7(b) shows that
disk time is relatively independent of the NVCache size,
which is natural. Figure 8 shows the results for NVCache
performance. Figure 8(a) shows that the NVCache time de-
creases slightly with bigger DRAM sizes, as bigger and
fewer read I/Os can be issued to the NVCache. Fig-
ure 8(b) shows that as the NVCache increases, the amount
of time reading from the NVCache increases only slightly.
Again, the HP-full trace is an exception because between
64-128MB, fewer flush operations occur, and none with
256MB.

Figure 9 shows the number of merges (only shown for al-
gorithm four because it is the only algorithm to provide such
functionality). Figure 9(a) shows that the number of merges
is directly affected by the DRAM size. However, scaling the
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NVCache (Figure 9(b)) does not yield a significant increase
in the number of merges. Slightly more surprising is that the
number of merges for the “-full” trace is not more than for
the “-each” traces, especially for the larger NVCache sizes,
where the NVCache should be more utilized.

Figure 10 shows the number of disk I/Os during flushing.
Figure 10(a) is an important result because it shows algo-
rithm four is able to coalesce more requests from DRAM,
up to the point when the DRAM size is larger than the
NVCache size. Also, the ”-full” traces do not flatten out
with DRAM sizes greater than 10MB because they can
leverage more of the NVCache. Figure 10(b) shows that
the number of disk I/Os decreases until the DRAM size is
reached. However, with the ”-full” trace the number of I/Os
is lower than the ”-each”traces.

Figure 11 shows the number of read I/Os. The num-
ber of read I/Os decreases linearly in Figure 11(a) because
the determining factor is the DRAM size. Likewise in Fig-
ure 11(b) the number of read I/Os decreases until the default
DRAM size is reached. Fundamentally, the number of read
I/Os is limited by both the DRAM and NVCache size.

Figure 12 shows the amount of data flushed from the
NVCache to rotating media. Figure 12(a) shows that the
amount of flushed data in independent of the DRAM size.
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Figure 11. Flash I/Os

This is because the DRAM just serves as temporary medium
in which to flush the redirected requests stored in the
NVCache. Figure 12(b) shows that the amount of flushed
data increases with an increase of NVCache because as
the NVCache grows the longer the disk stays spun-down.
With smaller NVCache sizes, the rotating media stays spun-
up more often which causes writes to be serviced by the
rotating media and not the NVCache, of which does not
have to flushed. Lastly, this figure shows that with a suf-
ficiently large NVCache and DRAM, flushing performance
approaches that of an infinite NVCache.

5 Related Work

There are several works which consider combining flash
and rotating media to decrease hard disk power consump-
tion. Marsh et al. propose that flash (FLASHCACHE)
exist as a layer between DRAM and rotating media [13].
Data passes through the FLASHCACHE with an LRU pol-
icy. They show it is possible to reduce hard disk power
consumption and increase performance. NVCache [2] and
SmartSaver [6] are hard-disk energy saving schemes, which
use flash to buffer requests during standby and prefetch disk
data to increase standby periods. The significant difference
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between these approaches is the eviction policy. NVCache
uses a combination of LRU and LFU, while SmartSaver
uses an algorithm akin to GreedyDual-Size [5] originally
developed for web-caching.

Alternatively, another work named FlashCache uses
flash memory to reduce the power consumed by main-
memory in web servers [12]. Fundamentally, FlashCache
acts like a secondary buffer cache to reduce main-memory
power consumption during idle-time without impacting net-
work performance. There are several other works that uti-
lize some form of non-volatile memory to increase 1/O per-
formance. Ruemmler and Wilkes [16], Baker et al. [1], Hu
et al. [11], and WAFL [10] all buffer disk I/O in NVRAM
to some extent.

Hybrid disks place a small amount of flash memory log-
ically adjacent to the rotating media. Interfaces to leverage
the NVCache are specified in the ATAS8 specification [17].
However, implementation is largely left to the manufacturer.
Unfortunately, this means most hybrid disk technology will
not be published. Therefore, it is our goal to provide func-
tionality and performance measurements to serve as base-
line for future hybrid disk technology and research.

One work that explores ways to leverage hybrid disks
to minimize power consumption is by Bisson et al. [3].
This work leverages hybrid disks at the OS layer to reduce
power consumption, spin-up latency, and wear-leveling im-
pact. This work presents four algorithms exploiting I/O that
occurs while the rotating media is spun-down.

6 Conclusion

We have presented several algorithms which improve the
efficiency of synchronizing NVCache data to rotating media
for upcoming hybrid hard disks when the NVCache is used
as a write-cache to reduce hard disk power consumption.
We focused on two fundamental policy questions: when to
flush and how to flush. We found that flushing the NVCache
only when full can reduce flushing time by over 75% rela-
tive to flushing on each spin-up. We also found that ordering
and merging are effective in reducing the overall number of
I/O operations to rotating media, and ordering reduces disk
seek time, together reducing flushing time by as much as
90% over algorithms without ordering or merging.
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