
Interconnection Architectures for Petabyte-Scale
High-Performance Storage Systems

Andy D. Hospodor
Senior Member, IEEE

andy.hospodor@ieee.org

Ethan L. Miller
Storage Systems Research Center

University of California, Santa Cruz
elm@cs.ucsc.edu

Abstract

As demand for storage bandwidth and capacity grows,
designers have proposed the construction of petabyte-
scale storage systems. Rather than relying upon a few
very large storage arrays, these petabyte-scale systems
have thousands of individual disks working together to
provide aggregate storage system bandwidth exceeding
100 GB/s. However, providing this bandwidth to storage
system clients becomes difficult due to limits in network
technology. This paper discusses different interconnection
topologies for large disk-based systems, drawing on previ-
ous experience from the parallel computing community. By
choosing the right network, storage system designers can
eliminate the need for expensive high-bandwidth commu-
nication links and provide a highly-redundant network re-
silient against single node failures. We analyze several dif-
ferent topology choices and explore the tradeoffs between
cost and performance. Using simulations, we uncover po-
tential pitfalls, such as the placement of connections be-
tween the storage system network and its clients, that may
arise when designing such a large system.

1. Introduction

Modern high-performance computing systems require
storage systems capable of storing petabytes1 of data,
and delivering that data to thousands of computing el-
ements at aggregate speeds exceeding 100 GB/s. Just
as high-performance computers have shifted from a few
very powerful computation elements to networks of thou-
sands of commodity-type computing elements, storage sys-
tems must make the transition from relatively few high-
performance storage engines to thousands of networked
commodity-type storage devices.

1A petabyte (PB) is 250 bytes.

The first part of this shift is already occurring at the
storage device level. Today, many storage subsystems uti-
lize low-cost commodity storage in the form of 3.5” hard
disk drives. The heads, media and electronics of these de-
vices are often identical to storage used on desktop comput-
ers. The only remaining differentiator between desktop and
server storage is the interface. At present, Fibre-Channel
and SCSI remain the choice of large, high-end storage sys-
tems while the AT attachment (ATA) remains the choice of
desktop storage. However, the introduction of the Serial
ATA interface provides nearly equivalent performance and
a greatly reduced cost to attach storage.

Most current designs for such petabyte-scale systems
rely upon relatively large individual storage systems that
must be connected by very high-speed networks in order to
provide the required transfer bandwidths to each storage el-
ement. We have developed alternatives to this design tech-
nique using 1 Gb/s network speeds and small (4–12 port)
switching elements to connect individual object-based stor-
age devices, usually single disks. By including a small-
scale switch on each drive, we develop a design that is more
scalable and less expensive than using larger storage ele-
ments because we can use cheaper networks and switches.
Moreover, our design is more resistant to failures—if a sin-
gle switch or node fails, data can simply flow around it.
Since failure of a single switch typically makes data from
at least one storage element unavailable, maintaining less
data per storage element makes the overall storage system
more resilient.

In this paper, we present alternative interconnection net-
work designs for a petabyte-scale storage system built from
individual nodes consisting of a disk drive and 4–12 port
gigabit network switch. We explore alternative network
topologies, focusing on overall performance and resistance
to individual switch failures. We are less concerned with
disk failures—disks will fail regardless of interconnection
network topology, and there is other research on redun-
dancy schemes for massive-scale storage systems [16].

This paper appeared in the21st IEEE / 12th NASA Goddard Conference on Mass Storage Systems and Technologies
(MSST2004), College Park, MD, April 2004.

2. Background

There are many existing techniques that provide high-
bandwidth file service, including RAID, storage area net-
works, and network-attached storage. However, these tech-
niques cannot provide 100 GB/s on their own, and each has
limitations that manifest in a petabyte-scale storage sys-
tem. Rather, network topologies originally developed for
massively parallel computers are better suited to construct
massive storage systems.

2.1. Existing Storage Architectures

RAID (Redundant Array of Independent Disks) [2] pro-
tects a disk array against failure of an individual drive.
However, the RAID system is limited to the aggregate per-
formance of the underlying array. RAID arrays are typi-
cally limited to about 16 disks; larger arrays begin to suffer
from reliability problems and issues of internal bandwidth.
Systems such as Swift [9] have proposed the use of RAID
on very large disk arrays by computing parity across sub-
sections of disks, thus allowing the construction of larger
arrays. However, such systems still suffer from a basic
problem: connections between the disks in the array and
to the outside world are limited by the speed of the inter-
connection network.

Storage area networks (SANs) aggregate many de-
vices together at the block level. Storage systems are
connected together via network, typically FibreChannel,
through high-performance switches. This arrangement al-
lows servers to share a pool of storage, and can enable the
use of hundreds of disks in a single system. However, the
primary use of SANs is to decouple servers from storage
devices, not to provide high bandwidth. While SANs are
appropriate for high I/O rate systems, they cannot provide
high bandwidth without appropriate interconnection net-
work topology.

Network-attached storage [6] (NAS) is similar to SAN-
based storage in that both designs have pools of storage
connected to servers via networks. In NAS, however, in-
dividual devices present storage at the file level rather than
the block level. This means that individual devices are re-
sponsible for managing their own data layout; in SANs,
data layout is managed by the servers. While most exist-
ing network-attached storage is implemented in the form of
CIFS- or NFS-style file systems, object-based storage [15]
is fast becoming a good choice for large-scale storage sys-
tems [16]. Current object-based file systems such as Lus-
tre [13] use relatively large storage nodes, each imple-
mented as a standard network file server with dozens of
disks. As a result, they must use relatively high-speed inter-
connections to provide the necessary aggregate bandwidth.
In contrast, tightly coupling switches and individual disks

can provide the same high bandwidth with much less ex-
pensive, lower-speed networks and switches.

2.2. Parallel Processing

Interconnection networks for computing elements have
long been the subject of parallel computing research. No
clear winner has emerged; rather, there are many different
interconnection topologies, each with its own advantages
and disadvantages, as discussed in Section 3. Traditional
multiprocessors such as the Intel Touchstone Delta [14]
and the CM-5 [10] segregated I/O nodes from computing
nodes, typically placing I/O nodes at the edge of the par-
allel computer. File systems developed for these configu-
rations were capable of high performance [3, 12] using a
relatively small number of RAID-based arrays, eliminating
the need for more complex interconnection networks in the
storage system.

There have been a few systems that suggested embed-
ding storage in a multiprocessor network. In RAMA [11],
every multiprocessor compute node had its own disk and
switch. RAMA, however, did not consider storage systems
on the scale that are necessary for today’s systems, and did
not consider the wide range of topologies discussed in this
paper.

Fortunately, storage systems place different, and some-
what less stringent, demands on the interconnection net-
work than parallel processors. Computing nodes typically
communicate using small, low latency messages, but stor-
age access involves large transfers and relatively high la-
tency. As a result, parallel computers require custom net-
work hardware, while storage interconnection networks,
because of their tolerance for higher latency, can exploit
commodity technologies such as gigabit Ethernet.

2.3. Issues with Large Storage Scaling

A petabyte-scale storage system must meet many de-
mands: it must provide high bandwidth at reasonable la-
tency, it must be both continuously available and reliable,it
must not lose data, and its performance must scale as its ca-
pacity increases. Existing large-scale storage systems have
some of these characteristics, but not all of them. For exam-
ple, most existing storage systems are scaled by replacing
the entire storage system in a “forklift upgrade.” This ap-
proach is unacceptable in a system containing petabytes of
data because the system is simply too large. While there
are techniques for dynamically adding storage capacity to
a existing system [7], the inability of such systems to scale
in performance remains an issue.

One petabyte of storage capacity requires about 4096
(212) storage devices of 250 GB each; disks with this ca-
pacity are appearing in the consumer desktop market in

2

Request size (KB)

4 10 100 1000 10000 100000

T
hr

ou
gh

pu
t (

M
B

/s
)

0
5

10
15
20
25
30
35
40
45 10000 RPM FibreChannel

7200 RPM ATA

Figure 1. Disk throughput as a function of
transfer size.

early 2004. A typical high-performance disk, the Seagate
Cheetah 10K, has a 200 MB/s FibreChannel interface and
spins at 10000 RPM with a 5.3 ms average seek time and
sustained transfer rate of 44 MB/s. In a typical transac-
tion processing environment, the Cheetah would service a
4 KB request in about 8.3 ms for a maximum of 120 I/Os
per second, or 0.5 MB/s from each drive. The aggregate
from all 4096 drives would be 4096× 0.5 MB/s, or only
2 GB/s—far below the required bandwidth of 100 GB/s. By
increasing the request size to 512 KB, disk throughput is in-
creased to 25 MB/s per drive, for an aggregate bandwidth of
100 GB/s. Alternatively, Figure 1 shows that low-cost se-
rial ATA drives, such as the 7200 RPM Seagate Barracuda
7200, could also meet the 100 GB/s requirement with a
slightly larger request size of 1 MB.

3. Interconnection Strategies

The interconnection network in a petabyte-scale storage
system must be capable of handling an aggregate band-
width of 100 GB/s as well as providing a connection to
eachn-storage node capable of transferring 25nMB/s of
data. Thus, a 1 Gb/s network link can support nodes with
at most 2–3 disks, and a 10 Gb/s network link can support
up to 25 disks per node. As with any technology, however,
faster is more expensive—1Gb/s networks cost less than
$20 per port, while 10 Gb/s can cost $5000 per port. In
time, 10 Gb/s networks will drop in price, but it is likely
that storage bandwidth demands will increase, making a
tradeoff still necessary. This non-linear tradeoff in cost-
performance compels us to consider complex architectures
that can leverage 1 Gb/s interconnects.

The challenge facing storage system designers is an ar-
chitecture that connects the storage to servers. Figure 2(a)
shows a simple strategy that connects a server to 32 stor-
age devices through a switch. Simple replication of this
strategy 128 times yields a system capable of meeting the
requirement. This strategy is remarkably similar to RAID

���

� � � � � �� � � 	 � �

� �
 � � � �
 � � �

���

� � � � � �� � � 	 � � �

(a) Disks connected to a single server. This configuration issus-
ceptible to loss of availability if a single switch or serverfails.

���

� � � � � � � � � � �

���

� � � � � �� � � � � !

� � � � � �� � � � � � " # $ � � �

" # $ � � �

(b) Disks connected to redundant servers. Switch failure isstill an
issue, but routers allow for more redundancy.

Figure 2. Simple interconnection strategies.

level 0, known as Just a Bunch of Disks (JBOD), and suf-
fers from similar issues with reliability described later in
the paper. Here, the port cost would be 4096 switch ports
of 1 Gb/s and 128 ports of 10 Gb/s. However, the placement
of data becomes crucial in order to keep all storage devices
active. Since individual servers can only communicate with
a small fraction of the total disk, clients must send their re-
quests to the correct server. Unless there is a switching net-
work comparable to that in the designs we discuss below
interposed between the clients and the servers, this design
is not viable. If thereis a switching fabric between clients
and servers, the designs below provide guidelines for how
the network should be designed.

3

3.1. Fat Trees

Figure 2(b) shows a hierarchical strategy similar to a fat-
tree that provides redundant connections between compo-
nents. This strategy expands to have each server connect to
two of eight routers that interconnect with the 128 switches
that finally attach the 4096 storage devices. Each router
has 32 ports attached to the servers and 128 ports attached
to each of the switches and seven additional ports to the
other routers. The port cost would be 4096 ports of 1 Gb/s,
2048 ports of 10 Gb/s that connect the 128 switches to the
8 routers (one port at either end), 112 ports of 10 Gb/s that
interconnect the 8 routers, and 256 ports of 10 Gb/s that
connect each servers to two routers. This configuration has
the added drawback that the routers must be very large; it is
typically not possible to build monolithic network devices
with over 100 ports, so the routers would have to be con-
structed as multi-stage devices. While this device would
allow any client to access any disk, the routers in this con-
figuration would be very expensive. Furthermore, the 2418
ports of 10 Gb/s add nearly $10M to the overall cost, mak-
ing this configuration a poor choice.

3.2. Butterfly Networks

Butterfly networks provide a structure similar to the hi-
erarchical strategy at a more reasonable cost. Figure 3
shows a butterfly network interconnection strategy that
connects disks to servers. The butterfly network can have
relatively few links, but the links may need to be faster be-
cause each layer of the network must carry the entire traffic
load on its links. In order to keep the individual links be-
low 1 Gb/s, the butterfly network would need 1024 links
per level for an aggregate throughput of 100 GB/s. Build-
ing a full butterfly network for 4096 disks using 1024 links
and 128 switches per level would require three levels of
16-port switches and an additional level of 36-port “con-
centrators” to route data to and from 32 disks. Alterna-
tively, the switching network could be built entirely from
five levels of 8-port switches, using an additional level of
10-port switches to aggregate individual disks together. We
use this second configuration in the remainder of the paper
because, while 16 port switches are possible, we believe
that the 8 port switches necessary for the second design are
more reasonable.

While butterfly networks appear attractive in many
ways, they do not have the fault-tolerance provided by
cube-style networks such as meshes and torii. In fact, only
a single path exists between any pair of server and storage
devices connected by the butterfly network. In traditional
parallel computers, network failures could be handled ei-
ther by shutting down the affected nodes or by shutting
down the entire system. Storage fabrics, on the other hand,

% & ' () *

% & ' () *

% & ' () *

% & ' () *

% & ' () *

% & ' () *

% & ' () *

% & ' () *

+ , - (. /

+ , - (. /

+ , - (. /

+ , - (. /

% . / 0 . / 1

% . / 0 . / 2

% . / 0 . / 3

% . / 0 . / 4

Figure 3. Disks connected in a butterfly net-
work topology.

must continue to run even in the face of network failures,
making butterfly networks less attractive unless there is a
method to route traffic around failed links. Cube-style net-
works have many routes between any two nodes in the fab-
ric, making them more tolerant of link failures.

3.3. Meshes and Torii

Figure 4(a) shows a mesh strategy that combines the
storage device with a small switch that contains four 1 GB/s
ports. The 4096 storage devices would be arranged as
a 64× 64 mesh with routers connecting the edge of the
mesh to the servers. This configuration would require eight
routers to connect to 128 servers to provide the necessary
100 GB/s bandwidth. This configuration would require
16384 1 Gb/s ports for the storage, 256 10 Gb/s ports that
connect the 8 routers to the servers on two edges of the
mesh, and the 256 10 Gb/s ports that connect the servers to
the routers. Optionally, another 256 ports would connect
all four sides of the mesh to the routers, although this much
redundancy is not likely to be necessary. Router intercon-
nects are no longer necessary because the mesh provides
alternate paths in case of failure.

Torus topologies, shown in Figure 4(b), are similar to
meshes, but with the addition of “wrap-around” connec-
tions between opposing edges. The inclusion of these ad-
ditional connections does not greatly increase cost, but it
cuts the average path length—the distance between servers
and storage for a given request—by a factor of two, reduc-
ing required bandwidth and contention for network links.
However, this design choice requires external connectivity
into the storage fabric through routers placed at dedicated
locations within the torus .

Mesh and torus topologies are likely a good fit for large
scale storage systems built from “bricks,” as proposed by
IBM (IceCube [8]) and Hewlett Packard (Federated Ar-
ray of Bricks [5]). Such topologies are naturally limited
to three dimensions (six connections) per element, though
they may resemble hypercubes if multiple highly connected
disks are packed into a single “brick.”

4

5 6 7 8 9 :

5 6 7 8 9 :; 9 : < 9 : =
; 9 : < 9 : =

; 9 : < 9 : =

(a) Disks connected in a mesh topology.

> ? @ A B C

> ? @ A B C

D E F G E F H

D E F G E F I

(b) Disks connected in a torus topology.

Figure 4. Mesh and torus interconnection
topologies.

3.4. Hypercubes

Figure 5 shows a hypercube strategy [1] of a two-
dimensional hypercube of degree four that intersperses the
routers and storage devices throughout the hypercube. In a
4096 node storage system, 3968 storage devices and 128
routers could be arranged in a hypercube of degree 12.
Each node in this configuration has twelve 1 Gb/s ports and
each router has two additional 10 Gb/s ports that connect
to two servers. Bandwidth in the hypercube topology may
scale better than in the mesh and torus topologies, but the
cost is higher because the number of connections at each
node increases as the system gets larger. Note also that hy-
percubes are a special case of torii; for example, a degree

J K L M N O

P N O Q N O R

Figure 5. Disks connected in a hypercube
topology.

12 hypercube can also be considered a 6-D symmetrical
torus. Furthermore, the hypercube can be extended as a
torus by adding nodes in one dimension; there is no need
to add nodes in powers of two.

Hypercubes and high-dimensional torii need not be built
from individual disks and routers. To make packaging less
expensive, a small group of disks may be assembled into
a unit, and the units connected together using a lower-
dimensional torus. For units with eight disks in a degree 12
hypercube, this approach requires each unit to have 48 ex-
ternal connections—eight connections per cube face. This
is not an unreasonable requirement if the system uses giga-
bit Ethernet or optical fiber network connections.

4. Analytic Results

All of the topologies listed in Section 3 appear capable
of providing 100 GB/s bandwidth from a cluster of 4096
disks. Further inspection shows that, because of limitations
in link capacities, this is not the case. Moreover, the topolo-
gies differ in several critical ways, including overall system
cost, aggregate bandwidth, latency and resistance to com-
ponent failures. We analyzed the basic characteristics of
seven specific topologies, listed in Table 1.

4.1. System Cost

One benefit for the designs in which switches are em-
bedded in the “storage fabric” is that they require far fewer
high speed ports at the cost of additional low speed ports.
The 2004 cost of a gigabit Ethernet port is less than $20,
whereas the cost of a 10 gigabit Ethernet port is on the or-

5

Network Dimensions Ports

Fat Tree 32-8-32-1024 6,512
2D mesh 64×64 16,384
2D torus 64×64 16,384
3D torus 16×16×16 24,576
4D torus 8×8×8×8 32,768
5D torus 4×8×4×8×4 40,960
6D hypercube 4×4×4×4×4×4 49,152
Butterfly 256 4×4 switches/layer 14,336

Table 1. Switching fabric topologies to ac-
commodate about 4000 disks.

Network type

In
de

pe
nd

en
t

F
at

−
T

re
e

2−
D

 M
es

h

2−
D

 T
or

us

3−
D

 T
or

us

4−
D

 T
or

us

5−
D

 T
or

us

6−
D

 H
yp

er
cu

be

B
ut

te
rf

ly

A
ve

ra
ge

 p
at

h
le

ng
th

0

10

20

30

40

50

60
A

ve
ra

ge
 li

nk
 lo

ad
 (

G
b/

s)

0

0.5

1

1.5

2

2.5
Link load

Figure 6. Average number of network hops
and expected per-link bandwidth for each in-
terconnection network topology. The “inde-
pendent” topology is omitted because it re-
lies upon the host computer for communica-
tion between storage nodes.

der of $5000. This non-linear tradeoff makes the fabric-
type structures more appealing than the other structures be-
cause they simply cost less. The overall cost of a 4096 node
system with different configurations is shown in Figure 7.
The “independent” system is shown as a baseline; in such
a system, each disk is connected to exactly one server, and
servers are not connected to one another. While this is by
far the least expensive option, it requires that the file sys-
tem use the network of host servers to manage client access
of data from the entire storage system, and limits the stor-
age system’s ability to perform internal communication for
reliability and other functions. Among the other options,
lower dimensionality “cubes” are the least expensive, with
higher-dimension and cubes and torii being the most ex-
pensive and butterfly networks in between.

Network type

In
de

pe
nd

en
t

F
at

−
T

re
e

2−
D

 M
es

h

2−
D

 T
or

us

3−
D

 T
or

us

4−
D

 T
or

us

5−
D

 T
or

us

6−
D

 H
yp

er
cu

be

B
ut

te
rf

ly

S
ys

te
m

 c
os

t (
m

ill
io

ns
 o

f $
)

0

1

2

3

4

15 Network cost
Disk cost

Figure 7. Total system cost for different in-
terconnection network topologies. The “in-
dependent” topology relies upon the host
computer for communication between stor-
age nodes.

4.2. System Bandwidth

Another consideration for massive storage systems is
the average number of network hops between a disk and
a server, as shown in Figure 6. The number of hops is
crucial because the maximum simultaneous bandwidth to
all disks is link speed×number of links

average hops . Systems with a small
number of links but few average hops may perform bet-
ter than systems with more links but longer average path
distances between the disk and the server. For example,
a 16×16×16 torus might seem like a good topology be-
cause it is relatively low cost and is easy to assemble. How-
ever, this topology would have 4096×6/2= 12288 links,
and the average distance from an edge to a desired node
would be 16/4+16/4+16/4= 12 hops. This would limit
the theoretical bandwidth to 1×12288/12= 1024 Gb/s, or
128 GB/s at most, which might be insufficient to meet the
100 GB/s demand. Figure 6 shows the expected number
of hops for each network topology as well as the expected
load on each network link.

Our models have assumed that links are half-duplex. If
full-duplex links are used, individual links can double their
theoretical maximum bandwidth. However, this doubling
is only realized if the load on the link is the same in both
directions. For mesh and torus topologies the load in both
directions will depend on the location of the router nodes.
However, for butterfly and fat-tree topologies, the abilityto
do full-duplex transmission is largely wasted because, for
large reads, data flows in only direction through the net-
work: from disks to routers. Large writes work similarly—
data flows in one direction only, from routers to disks.

6

A prime consideration is the ability of individual con-
nections into the storage fabric to supply the necessary
bandwidth. For a 4096 node system supplying 100 GB/s,
we have assumed that 128 external connections would be
sufficient; certainly, 128 links at 10 Gb/s could indeed pro-
vide 100 GB/s of aggregate bandwidth. However, designs
in which individual nodes have relatively few links can-
not support such routers because the intra-fabric bandwidth
available to a router is too low to support an external link
of 10 Gb/s. For example, a two-dimensional fabric has four
ports per node; at 1 Gb/s/port, the total bandwidth available
to an external link is about 4 Gb/s, far less than the 10 Gb/s
capacity of the external link and insufficient to allow 128
such nodes to provide 100 GB/s to the outside world.

Figure 6 shows that the link bandwidth required by the
4-D, 5-D and 6-D configurations could be served by 1 Gb/s
interconnects, such as Gigabit Ethernet. Unfortunately, the
bandwidth needs of the 2-D and 3-D configurations require
the use of a faster interconnect, such as 10 Gigabit Ether-
net, to meet the 100 GB/s requirement of the overall sys-
tem. The cost of the necessary 10 Gb/s ports add $80M to
the 2-D configuration, and a whopping $100M to the 3-D
configuration.

Figures 6 and 7 make it clear that, although low-
dimensionality torii are attractive because of the low num-
ber of links they require, they cannot meet the 100 GB/s re-
quirement without resorting to more costly interconnects.
On the other hand, high-dimensionality hypercubes require
less bandwidth per link, yet have many links and require
switches with many ports. The 4-D and 5-D torii appear to
have the best combination of relatively low cost, acceptable
bandwidth on individual links and reasonable path lengths.
Compared to butterfly networks, the resiliency of the 4-D
and 5-D torii offset the 30% to 40% added cost.

The 6-D hypercube has the highest cost and highest ag-
gregate throughput performance. Dividing the cost by ag-
gregate throughput, as shown in Figure 8, shows that the
cost per GB/s of bandwidth is nearly identical for the but-
terfly and hypercube topologies. The 6-D hypercube be-
comes a cost effective choice for a large reliable system
with quality of service constraints.

5. Simulation Results

While analytic results show theoretical performance,
there are many real-world considerations that affect perfor-
mance. We simulated usage of the networks whose perfor-
mance was analyzed in Section 4, using a simple simulator
that modeled network traffic loads along the network links.
Each router between outside clients and disks made 0.5 MB
requests of randomly-selected data that induced load suffi-
cient to drive the overall system bandwidth to 100 GB/s.
Requests were routed through mesh, torus, and hypercube

Network type

In
de

pe
nd

en
t

F
at

−
T

re
e

2−
D

 M
es

h

2−
D

 T
or

us

3−
D

 T
or

us

4−
D

 T
or

us

5−
D

 T
or

us

6−
D

 H
yp

er
cu

be

B
ut

te
rf

ly

S
ys

te
m

 c
os

t p
er

 G
B

/s
(t

ho
us

an
ds

 o
f d

ol
la

rs
)

0

20

40

150

Figure 8. Cost per gigabyte per second
for different interconnection network topolo-
gies.

interconnection networks using dimensional routing [4];
routing in butterfly networks is fixed because there exists
only one route between requester and disk.

We generated a range of interconnection networks with
4096 nodes, including either 128 routers through which
clients would connect to the storage fabric; the remainder
of the nodes were storage nodes. The butterfly networks,
on the other hand, had 4096 nodes connected through a
switching fabric to 128 routers. The specific fabrics we
tested are listed in Table 1.

In our first cube-style networks (meshes, torii, and hy-
percubes), we connected external clients through routers
placed at regular locations within the network. This re-
sulted in very poor performance due to congestion near the
router nodes, as shown in Figure 9. A histogram of load
distribution on individual links in a 4×4×4×4×4×4 hy-
percube is shown in Figure 9(a). When routers were placed
in a regular arrangement, some links had bandwidths of
1.25–2.25Gb/s. Individual disks require about 25% of a
single 1 Gb/s link’s bandwidth and are not affected greatly
by requests that “pass through” the switch next to the disk.
Routers, on the other hand, require nearly the full band-
width of all the incoming connections. When routers are
adjacent, the bandwidth is greatest nearest the routers and
falls off further from the routers, resulting in overloaded
links in part of the fabric and underloaded links elsewhere.
Figure 9(a) shows that, in addition to overloading some
links, regular placementunderloadsmost of the remain-
ing links—the histogram is shifted to the left relative to that
for random node placement. The cumulative distribution of
link load is shown in Figure 9(b); under regular placement,
about 5% of all links experience overload.

We addressed the problem of crowding by placing
routers randomly throughout the storage fabric. While this

7

0

10

20

30

40

Average link load (Gb/s)
0 0.5 1 1.5 2 2.5

P
er

ce
nt

 o
f l

in
ks

0

10

20

30 Random router placement

Regular router placement

Excess load on links near routers

(a) Histogram of link load.

Average link bandwidth (Gb/s)
0 0.5 1 1.5 2 2.5

C
um

ul
at

iv
e

%
 o

f l
in

ks

0
10
20
30
40
50
60
70
80
90

100

Maximum link bandwidth

Regular placement
Random placement

(b) Cumulative distribution of link load.

Figure 9. Distribution of load on links in a 4×
4×4×4×4×4 hypercube. Randomly-placed
router nodes improve the evenness of load
in the fabric.

did not decrease average path length, it dramatically re-
duced the congestion we noticed in our original network
designs, as Figure 9 shows. As a result, bandwidth was
spread more evenly throughout the storage fabric, reduc-
ing the maximum load on any given link. We believe that
it might be possible to further balance load by devising an
optimal placement; however, this placement is beyond the
scope of this paper.

6. Future Work

This paper merely scratches the surface of issues in
network design for petabyte-scale storage systems. Some
of the unanswered questions about this design can be an-
swered best by building an inexpensive proof of concept
system using commodity drives, gigabit networking, and
small-scale switches. This setup would allow us to verify
our models against a small system, providing some confi-
dence that the large systems we are modeling will perform
as expected.

As with many other computer systems, changes in the

ratios between disk bandwidth and network bandwidth will
also affect storage system design. For example, when
10 Gb/s network connections become inexpensive, it is
likely that designs with multiple disks per switch will be-
come feasible. Given the aggregate bandwidth limitations
using 1 Gb/s links, however, placing two or three disks per
switch will overload the network for most topologies.

Of course, standard issues such as protocol choice, stor-
age system network congestion, and reliability concerns are
relevant to systems in which storage is embedded in a net-
work fabric. However, other questions such as the place-
ment of connections into the network (edge or core), the
use of a few “shortcut” links to reduce dimensionality, and
other problems specific to dense interconnection networks
will be relevant to designs such as those presented in this
paper.

Perhaps the most important question, though, is whether
this design is applicable to commercial environments, in
which bandwidth is less crucial, as well as scientific com-
puting environments. If this design is a good fit to com-
mercial systems, it is likely that the “bricks” used to builda
storage fabric will become cheaper, allowing the construc-
tion of higher performance scientific computing storage
systems as well as faster, more reliable commercial stor-
age systems.

7. Conclusions

In this paper, we have introduced the concept of build-
ing a multiprocessor-style interconnection network solely
for storage systems. While this idea has been alluded to
in the past, our research shows the tradeoffs between dif-
ferent configurations and demonstrates that “storage fab-
rics” based on commodity components configured as torii
and hypercubes improve reliability as well as performance.
More specifically, the 4-D and 5-D torii appear to be rea-
sonable design choices for a 4096 node storage system ca-
pable of delivering 100 GB/s from 1 PB. Furthermore, these
designs become faster as the system grows, removing the
need to replace the entire storage system as capacity and
bandwidth demands increase. It is for these reasons that we
believe that storage network topologies as described in this
paper will become crucial to the construction of petabyte-
scale storage systems.

Acknowledgments

Ethan Miller was supported in part by Lawrence Liv-
ermore National Laboratory, Los Alamos National Lab-
oratory, and Sandia National Laboratory under contract
B520714. The Storage Systems Research Center is sup-
ported in part by gifts from Hewlett Packard, IBM, Intel,
LSI Logic, Microsoft, Overland Storage, and Veritas.

8

References

[1] W. C. Athas and C. L. Seitz. Multicomputers: message-
passing concurrent computers.IEEE Computer, 21:9–24,
Aug. 1988.

[2] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson. RAID: High-performance, reliable secondary
storage.ACM Computing Surveys, 26(2), June 1994.

[3] P. F. Corbett and D. G. Feitelson. The Vesta parallel file sys-
tem. ACM Transactions on Computer Systems, 14(3):225–
264, 1996.

[4] D. Culler, J. P. Singh, and A. Gupta.Parallel Computer Ar-
chitecture: A Hardware/Software Approach. Morgan Kauf-
mann, 1999.

[5] S. Frølund, A. Merchant, Y. Saito, S. Spence, and A. Veitch.
FAB: Enterprise storage systems on a shoestring. InPro-
ceedings of the 9th Workshop on Hot Topics in Operating
Systems (HotOS-IX), Kauai, HI, May 2003.

[6] G. A. Gibson and R. Van Meter. Network attached storage
architecture.Communications of the ACM, 43(11):37–45,
2000.

[7] R. J. Honicky and E. L. Miller. Replication under scal-
able hashing: A family of algorithms for scalable decen-
tralized data distribution. InProceedings of the 18th In-
ternational Parallel & Distributed Processing Symposium
(IPDPS 2004), Santa Fe, NM, Apr. 2004. IEEE.

[8] IBM Company. IceCube – a system architecture for stor-
age and Internet servers. http://www.almaden.ibm.com/
StorageSystems/autonomicstorage/CIBHardware/.

[9] D. D. E. Long, B. R. Montague, and L.-F. Cabrera.
Swift/RAID: A distributed RAID system.Computing Sys-
tems, 7(3):333–359, 1994.

[10] S. J. LoVerso, M. Isman, A. Nanopoulos, W. Nesheim, E. D.
Milne, and R. Wheeler.sfs: A parallel file system for the
CM-5. In Proceedings of the Summer 1993 USENIX Tech-
nical Conference, pages 291–305, 1993.

[11] E. L. Miller and R. H. Katz. RAMA: An easy-to-use,
high-performance parallel file system.Parallel Computing,
23(4):419–446, 1997.

[12] N. Nieuwejaar and D. Kotz. The Galley parallel file system.
In Proceedings of 10th ACM International Conference on
Supercomputing, pages 374–381, Philadelphia, PA, 1996.
ACM Press.

[13] P. Schwan. Lustre: Building a file system for 1000-node
clusters. InProceedings of the 2003 Linux Symposium, July
2003.

[14] R. Stevens. Computational science experiences on the In-
tel Touchstone DELTA supercomputer. InProceedings of
Compcon ’92, pages 295–299. IEEE, Feb. 1992.

[15] R. O. Weber. Information technology—SCSI object-based
storage device commands (OSD). Technical Council Pro-
posal Document T10/1355-D, Technical Committee T10,
Aug. 2002.

[16] Q. Xin, E. L. Miller, D. D. E. Long, S. A. Brandt,
T. Schwarz, and W. Litwin. Reliability mechanisms for very
large storage systems. InProceedings of the 20th IEEE /
11th NASA Goddard Conference on Mass Storage Systems
and Technologies, pages 146–156, Apr. 2003.

9

