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Abstract 

An accurate estimate of host reliability is important for 
correct analysis of many fault-tolerance and replication 
mechanisms. In a previous study, we estimated host system 
reliability by querying a large number of hosts to find how 
long they had been functioning, estimating the mean time- 
to-failure (MTTF)  and availability from those measures, and 
in turn deriving an estimate of the mean time-to-repair 
(MTTR). Howevel; this approach had a bias towards more 
reliable hosts that could result in overestimating MTTR and 
underestimating availability. To address this bias we have 
conducted a second experiment, using a fault-tolerant 
replicated monitoring tool. This tool directly measures TTe 
TTR, and availability by polling many sites frequently from 
several locations. We find that these more accurate results 
generally confirm and improve our earlier estimates, 
particularly for TTR. We also find that failure and repair are 
unlikely to follow Poisson processes. 

1 Introduction 

Accurate analyses of distributed fault-tolerance, 
caching, and replication mechanisms depend on an accurate 
model of the reliability of the systems that make them up. 
The overall reliability of a replication protocol, for example, 
depends on the probability that some fraction of the replica 
sites are functioning when data must be read or written. 

There are several important measures used to quantify 
system reliability, including time-to-failure (TTF), time-to- 
repair (TTR), availability, and reliability. Throughout this 
study, “failure” is defined in a distributed-environment 
sense; that is, as an inability to access a host within a 
specified time. The term encompasses both hardware and 
software faults attributable to the host, and can include 
power failures and scheduled downtime. It can also be 
caused by off-site communications failures, ranging from 
temporary routing failures to problems with the physical 
communications links. We have not attempted to 
characterize the causes of failure, though it seems that most 
failures are brief and are probably caused by software faults 
or voluntary reboots. 
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Time-tofailure and time-to-repair are the distributions of 
how long a system is available for use, and how long it takes 
to bring the system back to normal operation after a failure has 
occurred. These distributions are often summarized by their 
means (MTTF and MTTR). 

Many studies have assumed that failure and repair 
followed Poisson processes, that is, that the distributions for 
TI7: and ‘ITR were exponential. This assumption is often 
made more for analytic simplicity than out of a conviction that 
it is the best model of reality. For example, some analyses of 
replication protocols using Markov models [P2ris86, Long891 
depend on that assumption. We investigate the accuracy of 
this assumption in $3.1.2 and 53.2.2. 

Availability is the fraction of time a system is functioning. 
More precisely, it is the stationary probability of the system 
being in a state where it can be accessed. For a replication 
protocol, for example, it gives the probability that a replica 
site will be functioning when a client starts executing a read 
or write protocol. Availability can also be used in conjunction 
with MTTF to derive an estimate of M’ITR. 

Reliability is the (non-stationary) probability that a 
system will remain constantly available over a fixed time 
period. Consider a system that functions for one second, then 
fails, but recovers in a small number of milliseconds. This 
system would have a high availability, but would not be useful 
for applications like process control that must remain 
continuously functioning for extended periods. Reliability is 
a more appropriate measure for these applications because it 
includes duration. 

There have been few analyses of host system reliability 
published, and most of those have been for specific systems. 
Recent studies include analyses of Tandem systems [Gray 85, 
Gray901 and the IBM/XA system [Mourad85]. It is certain 
that most companies perform reliability studies of their 
products internally. 

We have measured the reliability of a wide variety of host 
systems connected to the Internet. For this study, we 
monitored nearly 1 200 hosts for an extended period, polling 
them to determine how long they were available. The 
emphasis on a heterogeneous set of hosts, selected so that its 
composition should be similar to the overall population of 
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Internet hosts, makes our results more generally applicable 
than studies specific to one type of system. 

We conducted a similar study four years ago [Long91], 
but the method we used to estimate time-to-failure and time- 
to-repair was biased. Estimates of M'ITF were derived by 
querying systems for their up-time. This was the best 
information available from the host system, since it is not 
generally in a position to give its failure time as its dying 
gasp. As a result, there was a bias towards more reliable 
hosts which means that the estimate of M'ITF may be larger 
than the true value. 

Our new study uses direct measurement of l-I'F and 
TTR, rather than an estimate. We measured these 
distributions by polling each selected host every few 
minutes. The resulting distributions should reflect all but the 
shortest periods of failure. Instead of estimating parameters 
such as M " F  based on a large sample with an unknown 
distribution, we recorded the actual events (with an epsilon 
error). Since the quantities are being directly measured, 
questions such as the governing distribution are less 
important. 

The current study used a distributed, fault-tolerant 
measurement system (the Tattler [Long92]) to reduce bias 
from the measurement approach. The tattler system consists 
of replicated monitoring sites placed at strategic locations 
around the Internet. Individual tattlers were placed to 
minimize the amount of shared network so that a failure of 
a router or a link was unlikely to disable more than one 
monitor. The tattlers replicated their measurements using a 
weak-consistency group communication mechanism so that 
even the permanent failure of some monitors would not 
cause a significant loss of information. 

In the sections that follow, we present our experimental 
method, followed by the results we obtained and our 
analysis. 

2 Experimental method 

We began the study by selecting a large number of 
candidate hosts for measurement, and eliminating 
unsuitable ones. The Tattler system then monitored these 
hosts for an extended period to measure their 'ITF and lTR. 
In this section we detail how these steps were accomplished. 

2.1 Selecting hosts 

Our first step was to find a list of at least a thousand 
hosts that could respond to our polling (using RPC calls to 
rpc.statd, which is common on systems using NFS). We 
wanted a method that would probably yield a set of hosts 
statistically similar to the overall population of hosts on the 
Internet. 

We began by compiling a list of all visible host names 
on the Internet. We used the Census tool [Ganatra92], which 

queries the top-level DNS servers for the names of the hosts 
at each site and for secondary domain servers, then 
recursively applies the process to the entire visible Internet 
DNS name-tree. This resulted in almost three million hosts- 
nearly ten times the figure we reported four years ago. 

This approach does not consider all the hosts connected 
to the Internet. Some installations, particularly corporations, 
choose to shield their internal network behind a gateway; 
those subnetworks are thus invisible to the network at large. 

From the census results we chose 15 000 hosts at random. 
This list was then filtered to ensure that the hosts actually 
existed, could respond to the poll, and that their administrators 
would not mind the poll. In the end we obtained a list of 1 170 
hosts. 

These hosts were uniformly distributed over the name 
space, and all responded to our RPC polls. Geographic 
locations with more hosts had a stronger representation than 
those with fewer. Limiting ourselves to systems responding to 
the rpc.statd protocol biased the list, but we believe that the 
typical workstation on the Internet-the kind of system that is 
of most interest to us-is likely to include this protocol. 

In our previous study we grouped hosts by type, based on 
information reported in the name service's host information 
(HINFO) records. This has proven impossible in the newer 
study. We found that in general these records are not as well 
maintained now as they were four years ago, so that in most 
cases we cannot determine what kind of host we are polling. 
Many sites no longer provide HINFO records, and many of the 
ones that were provided did not include enough information 
to determine system models. 

2.2 Measuring host systems 

There were two ways we could have measured the 
systems. In our first study, we queried each site to determine 
the time since its last initialization and used this to estimate 
M'ITF, and separately estimated overall availability. In this 
study, we chose to take direct measurements of the 
distributions of 'ITF and 7TR by repeated polling each site for 
an extended period. 

The first method has the advantage of requiring only a 
single query for each host, but the results are not as accurate 
as those of the second. Randomly sampling the length of time 
since the last system initialization, which we used in the first 
study, is distinct from sampling the length of time between 
initialization and failure. Sampling system uptime reports 
results in a skewed set of data, as hosts which have been up 
the longest are more likely to be polled. Analysis of the data 
must accommodate this effect. 

In this study, on the other hand, we directly measured 'ITF 
and I T R  by polling each of the selected hosts frequently. We 
used an exponential distribution of times between polls, with 
a mean of ten minutes, both for statistical purposes and to 



avoid synchronous behavior where multiple tattlers poll the 
same host at once. 

The Tattler system, the monitoring tool we built, 
maintained a data base of available epochs for each host 
being monitored. Each epoch represented one period when 
the host was known to be functioning, and was stored as a 
tuple <host, boot time, last sample time>. The intervals 
between the available epochs were treated as periods when 
the host was unavailable. 

Each poll returned either the time since the host was last 
initialized, or a failure. The durations were merged into the 
list of available epochs for the host, extending an epoch if 
they had the same boot time. 

At the end of the experiment, we extracted the list of 
available epochs for each measured host and computed the 
distributions for ?TF and T171. Our analysis then derived 
availability from these values. 

The accuracy of our measurements depended on each 
machine maintaining an accurate record of its boot time and 
current time of day. We observed some systems that 
appeared not to maintain this information, resulting in 
negative or multi-decade uptimes; we removed these 
outliers before analyzing the data. 

The measurements were also sensitive to the polling 
frequency. If a machine failed after less than ten minutes, the 
Tattler might well miss the period the host was available, 
though it would detect very short downtimes using the boot 
time in each sample. 

2.3 The Tattler system 

We built the Tattler as a distributed, fault-tolerant 
system. The Tattler is composed of a number of replicated 
monitors, the individual tattlers, at geographically dispersed 
sites, as shown in Figure 1. These monitors are called 
tattlers since they periodically inquire about other hosts and 
then “tattle” to each other about what they learn. In practice 
we used six tattlers: four at the University of California, 
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Figure 1: The overall structure of the Tattler system 

Santa Cruz; one at San Diego State University; and one at the 
Georgia Institute of Technology. 

There are several advantages to replicating the tattlers 
around the network. First, it provides a fault-tolerant method 
for monitoring hosts. All but one of the tattlers can fail and the 
set of hosts can still be monitored (albeit in a degraded mode). 
It also provides a way of mitigating the effect of transient 
network failures. When monitoring hosts from a single point, 
the failure of one router can prevent any host from being 
polled. When several relatively independent polling daemons 
work together, it will be very unlikely that a total failure can 
occur. Second, because the tattlers are distributed they can 
perform many more queries than a single polling program- 
with six tattlers, each tattler polled each host on average only 
once an hour to achieve an overall mean time between polls 
of ten minutes. While a single polling program would create 
roughly the same message traffic, it would concentrate all the 
traffic onto a small number of network links from the 
monitoring host to the Internet backbone networks. The 
parallelism of using multiple nodes also decreases the load on 
them, so we could use ordinary workstations without 
disturbing their users. A non-replicated monitor would also 
take significantly longer to complete its task since it would 
have to poll for a longer period to make up for data lost due to 
failures. 

Each tattler maintained a copy of the list of hosts to poll, 
and of the data base of available epochs for each host. The list 
of hosts was a sequence of tuples <host, poll method, 
poll interval>. The data base contained a sequence of tuples, 
one per available epoch for each host being monitored, of the 
form <host, boot time, sample time>. 

The tattler replicas were coordinated using a weak 
consistency group communication protocol [Golding92]. This 
protocol provides operations for new replicas to join the 
group, sending the new replica a copy of the data base in the 
process; for leaving the group, when a tattler is to be shut 
down; and for propagating metadata and data base changes. 
The tattlers did not communicate in real time; instead, they 
proceeded independently and periodically merged their data 
bases. This allowed the system to continue functioning when 
individual tattlers were temporarily unavailable or the 
network had partitioned-common events for a system built 
on the Internet. 

An individual tattler was composed of several 
components: a tattler daemon, a data base daemon, and a 
polling daemon, as shown in Figure 2. The tattler daemon 
coordinated the other daemons, and was responsible for 
managing the consistency of the replicated data base through 
the group communication channel. The data base daemon 
provided stable storage for sample observations (from the 
polling daemon), and metadata from the tattler daemon. 

The polling daemon produced sample observations. It 
took samples at a specified rate, and could be requested to start 
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or stop sampling. For this study, it used exponentially 
distributed random intervals with a mean of one hour. 

The system also provided a user interface for 
controlling individual tattlers. It allowed hosts to be added 
and deleted from the monitoring list, and allowed a user to 
suspend monitoring of certain hosts. It could inform a tattler 
that it should shut down and leave the process group. New 
tattlers could be added equally easily. The user interface 
contacted a single tattler-preferably the closest-to 
perform all of these operations, and the group 
communication protocols ensured that the operation was 
eventually known by all tattlers. 

3 Results 

This study was conducted over a seven-month period. 
The study is continuing, and as more time passes the 
accuracy of our results will improve. 

3.1 Time-to-failure 

During the seven-month experimental period, we 
observed 13 250 intervals when systems were available. 

There are two ways to analyze these periods: to 
aggregate all hosts together, or to separate them. The results 
are notably different because the aggregated measures are 
heavily influenced by unreliable hosts that contributed many 
short available epochs. The aggregated results are useful if 
one is trying to characterize the “average” host-perhaps as 
might be seen as a client of a wide-area service. Different 
makes of host, however, are likely to fail in different ways- 
and indeed analysis of our data indicate that the hosts are not 
homogeneous-so we also present unaggregated statistics. 

3.1.1 Aggregated TTF 

The average (aggregated) duration of all available 
periods was 12.99 days, or 311.8 hours. Table 1 summarizes 
these measurements. 

The distribution is rather skewed, with a few very long 
intervals. Figure 3 shows the density. 

These values are close to what system administrators 
would expect, according to anecdotal reports we have 
gathered. The values differ greatly from the M l T F  values 

polling 
daemon 

user 
interface 

Figure 2: The structure of an individual tattler replica 

Table 1 : Measured aggregate TTF 

mean 12.99 days (311.8 hours) 
k0.15 (50% confidence) 
rfr0.42 (95% confidence) 
+OS6 (99% confidence) 

median 4.080 days 
~t 13 250 intervals 
d 24.92 

min 0.000428 
25% 0.8986 
50% 4.080 
75% 14.12 
max 550.4 

reported by manufacturers because we are using a different 
definition of failure: manufacturers are generally concerned 
with permanent hardware failures, while we are concerned 
with the ability to communicate with a service. 

The number reported is also much shorter than the time 
between operating system or hardware “failures”. Manually 
shutting down a machine-for software maintenance or to 
conserve power, for example-make the system unavailable 
according to our definition. Many people reboot their systems 
nightly or weekly, contributing many short intervals. The 
spike at one day in Figure 3 bears this out. 

This difference may also account for another difference 
between our observation and common wisdom: that failure 
rates follow the “bathtub curve” so that failures are likely 
soon after a repair has been completed. Figure 3 does not 
exhibit this behavior. This would be expected, however, if 
many system shutdowns are planned reboots that do not 
involve changes to the system’s configuration. 

0.06 1 

0.01 0:1 i Ib 160 1000 
Time to failure (days, aggregated) 

Figure 3: Aggregate TTF distribution 
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3.1.2 Is failure a Poisson process? 

In our previous study, we found evidence that the time- 
since-initialization values we measured were not 
exponentially distributed, and argued that if TTF were 
exponential, time-since-initialization must be as well- 
indicating that TTF most likely does not follow a Poisson 
process. In this section, we apply the same test statistic to 
the data we collected in this study. 

We use a test statistic based on the parametric family of 
distributions with linear failure rate density, which has been 
shown to be applicable to a large class of nonparametric 
distributions as well, and has been shown to be applicable to 
machine behavior [Doksum84]. This test does not depend 
on advance knowledge of the mean of the proposed 
governing distribution. For n samples t ,  through tn with 
mean t , the test statistic is given by: 

If the null hypothesis Ho that the samples come from a 
single exponential distribution is true, the test statistic T has 
a standard normal distribution when the sample size n is 
large. Thus the null hypothesis H ,  can be rejected at a 
specified level of significance when the value of the 
equivalent formula 

r 97 

T = :&[1-:] 

is large, where 82 is the sample variance. 
The test statistic T can be also used in testing the null 

hypothesis that the samples come from a population with a 
linear failure-rate density as well as a population with a 
nondecreasing failure-rate average. For these cases, the null 
hypothesis can be rejected for extreme values of the test 
statistic ?I, the significance probability is calculated from the 
standard normal distribution. 

No matter how large the sample size, no amount of 
testing can assure that a population distribution is 
exponential. By contrast, the test statistic T can quantify the 
prohibitively small probability that certain samples were 
derived from an exponential population distribution. 

We calculated T for the TTF values for each host, and 
found -3280, which gives a vanishingly small probability 
that TTF is exponentially distributed. 

3.1.3 Unaggregated TTF 

Rather than aggregating all hosts, we can also consider 
them separately, examining the distribution of mean TTF for 
the host population we followed. We would expect this 
measure to be less influenced by unreliable hosts than the 

aggregated one, and to help show differences in the failure 
processes of different hosts. 

The average mean duration of all hosts was 29.39 days, 
or 705.4 hours-significantly longer than the aggregated 
measure, as expected. Table 2 summarizes these 
measurements. 

Table 2: Measured MTTF 

mean 29.39 days (705.4 hours) 
f0.77 (50% confidence) 
f2 .3  (95% confidence) 
53.0 (99% confidence) 

median 18.12 days 
n 1139 hosts 

(J 38.76 

min 0.1419 
25% 9.406 
50% 18.12 
75% 34.58 
max 546.9 

The distribution is also skewed, with a few very long 
intervals, as shown in Figure 4. 

3.1.4 Comparison with previous study 

In our previous study, we observed MTTF values ranging 
from 15.85 to 20.14 days, depending on the kind of system, as 
compared to our observation of 24.92 days (aggregated) and 
29.39 days (unaggregated) in this study. Those systems with a 
large population tended to be in the upper portion of that 
range, with MTTF between 17.96 to 20.14 days. 

The samples in our previous study were biased to over- 
represent more reliable systems, which increased the time-to- 
failure measure. These new results confirm the bias in the 

1.1.1.11. 
0.01 0.1 i I O  160 Id00 

Time to failure (days, unaggregated) 
Figure 4: MTTF distribution 
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earlier study, and encourage our belief that we have 
remedied it. 

3.2 Time-to-repair 

The measured overall mean aggregated TI72 was 
2;018 days (48.43 hours), with 12 053 epochs when systems 
were unavailable. Table 3 summarizes the results. 

Once again the distribution is strongly skewed, with the 
median time (just over seven hours) much shorter than the 
mean. Figure 5 shows the distribution. 

Table 3: Measured aggregate TTR 

mean 2.018 days 
f0.097 (50% confidence) 
f0.28 1 (95% confidence) 
k0.369 (99% confidence) 

median 0.2941 days 
n 12 053 intervals 
0 15.73 

min 0.000660 
25% 0.09741 
50% 0.2941 
75% 1.259 
max 1449 

3.2.1 Unaggregated MTTR 

We can also consider the distribution of M7TR over the 
various hosts. The measured overall mean MTTR was 
3.880 days (93.11 hours) for 1081 hosts. Table 4 
summarizes the results. 

Once again the distribution is strongly skewed, with the 
median time ('just over 36 hours) much shorter than the 
mean. Figure 6 shows the distribution. 

Table 4: Measured MTTR 

mean 3.880 days 
f0.265 (50% confidence) 
f0.771 (95% confidence) 
fl.O1 (99% confidence) 

median 1.508 days 
n 1081 hosts 

(T 12.93 

min 0.002662 
25% 0.8598 
50% 1.508 
75% 2.552 
max 147.2 

3.2.2 Is repair a Poisson process? 

As with failure, repair is often assumed to follow a 
Poisson process. We applied the same test statistic to our 
measured repair times, which yielded T = -154.4. Once 
again, the chance that repair is exponential is vanishingly 
small. 

3.2.3 Comparison with previous study 

In our previous study, we estimated MTTR values 
between 1.86 and 2.96 days for the most common lunds of 
hosts, and with few exceptions the MTTR estimates for other 
models were notably longer than our current measurements. 

How could significant errors have been introduced into 
our previous estimates of MTTR? In that study we derived 
MTTR from the M'ITF and availability A by: 

MTTF (1 - A )  
A 

MTTR = 

This is most easily derived from two state birth-death process, 
but by using results from the theory of renewal processes this 

0.06 

0.10 

2 3 0.04 
-c -c 

E 

8 
% 

.g .B c 

B 
0 5 0.05 

0.02 

- 
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100 

Time to repair (days, aggregated) Time to repair (days, unaggregated) 
Figure 6: MTTR distribution Figure 5: Aggregate TTR distribution 
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result can be shown to be independent of the distributions of 
MTTF and A [Trivedi82]. 

The MTTR estimate is linearly dependent on MTI'F. If 
the MTTF were overestimated, the estimated MlTR would 
be proportionally longer than the actual. Also, if the 
confidence interval for the availability of the M?TF is large, 
then the estimated MTI l i  can deviate significantly from the 
true value. 

An accurate MTIX also depended on the accuracy of 
the availability measure. Consider the rate at which the 
value of MTTR changes when an error is made in the 
estimate of A: 

a MTTF ( 1  - A )  - -MTTF - --  
aA A A2 

The error introduced into the estimate of M'ITR is 
quadratic in the error in the estimate of A .  As we will see, 
the availability measure from the earlier study was flawed. 

3.3 Availability 

In this study, we computed availability as the ratio of 
the time we observed that a host was available to the total 
time, both failed and functioning. We computed an overall 
availability of 0.8783 for a population of 1 134 hosts, or a 
mean of 46 days unavailable per year. Table 5 summarizes. 

Table 5: Computed availability 

mean 0.8783 
k0.00297 (50% confidence) 
-t0.00864 (95% confidence) 
+0.0114 (99% confidence) 

n 1134 hosts 
median 0.9203 

Figure7 shows a histogram of the distribution over the 
hosts. Again, the distribution is highly skewed. Only a small 
fraction of the hosts (1 1.7%) were available less than 75% 
of the time. 

Many of the hosts (242, or 5%) have availability of 1.0. 
These hosts have not failed in the time we have been 
monitoring them. We expect that as we continue to monitor 
them we will be able to better characterize these highly- 
reliable hosts. 

The time that these systems are unavailable-several 
days per year-is very different from anecdotal accounts of 
behavior of dedicated server systems. In general we believe 
that this is because we are monitoring the average host on 
the Internet, which is likely to be a workstation-class 
machine for a single user or for a small workgroup. These 
users do not generally invest in unintermptible power 

supplies, redundant processors, or other special mechanisms 
for ultra-highly reliable systems. 

3.3.1 Comparison with previous study 

In the previous study we reported much lower availability 
for most kinds of systems. This in turn led to substantially 
different results for MTTR. We measured availability by 
polling a large list of host names to determine which names 
corresponded to real systems, then polling again two months 
later to measure what fraction were reachable. 

That method suffered from two problems. First, it over- 
represented reliable systems, since the poll actually measured 
the conditional probability of being able to reach the host a 
second time, and the probabilities of the polls being 
successful were not independent. Second, it did not 
differentiate between the reliability of the network and the 
reliability of the host. A transient network failure that lost the 
query packets would be indistinguishable from a host failure, 
and packet loss is likely when network segments become 
congested. 

4 Summary 

We have performed a longitudinal measurement study of 
the 'ITF and 7TR of a sample of hosts connected to the 
Internet. We collected data from almost 1 200 hosts, using 
only data that could be obtained via the Internet with no 
special privileges or added monitoring facilities. 

and l T R ,  rather than 
trying to estimate them from other measures. We did this by 
polling each host regularly to determine how long it had been 
functioning. We ran the monitor for three months to obtain 
long-term measures of 7TF and TTR. We used these measures 
to compute overall availability. 

The results of the previous study reflected a bias toward 
more reliable hosts that needed addressing. Our use of direct 

We chose to directly measure 

1 4 0.1 

0.0 0.5 110 
Availability 

Figure 7: Availability distribution. 

8 



measurement improves upon the earlier results. We now 
believe that we have eliminated all significant sources of 
bias in the measurements, and in so doing have presented 
the most accurate statistic on host reliability available. 

In order to accomplish this task, we constructed the 
Tattler, a fault-tolerant distributed monitor that continuously 
polled hosts over the Internet. Its distributed nature allowed 
us to avoid putting too great a load on any particular host or 
on any particular segment of the Internet. By dispersing the 
tattlers geographically, we were able to minimize the effects 
of network failures, which biased the previous availability 
estimate. 

From our TTF measurements, it appears that many 
systems stay up for about one week. The data suggest daily 
and weekly patterns, where systems are unavailable for a 
short period each day or week. For both TTF and 'ITR, the 
mean and median are significantly different, suggesting that 
only a few systems stay up a long time, but that most are 
unavailable for only a short time. 

The TTF and TTR distributions are clearly not 
exponential. We believe that care needs to be taken in future 
reliability analyses to ensure that assumptions about 
exponential behavior do not cause problems. As more data 
are collected we hope to be able to better explore the 
distributions that these take. 

We intend to continue the monitoring experiment for 
the foreseeable future, and including at least one new cohort 
of systems, focussing on server hosts. Those interested in 
participating in this study, by running tattlers on their 
systems, should contact the authors. 
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