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Abstract 

Available copy protocols provide the highest data avail- 
ability and data reliability of all replication protocols that 
do not regenerate failed replicas. Unfortunately, all existing 
implementations of available copy protocols either rely on 
complex procedures for ascertaining which replicas are up 
to date after a total failure or have to wait for the recovery 
of all failed sites. 

We present a simple technique for eficiently implement- 
ing the available copy protocol. Our protocol does not 
require version numbers and maintains only n + log( n) bits 
of state per replica. We also show under standard Marko- 
vian assumptions that our new protocol provides the same 
data availability as the best feasible implementations of the 
available copy protocol. 

Keywords: distributed $le systems, data replication, 
replication control protocols 

1. Introduction 

Critical data are often replicated either to reduce read 
access times or to provide constant data availability in the 
presence of failures. This technique is known as data repli- 
cation. As can be expected, data replication introduces its 
own problems, the most important of which is maintaining 
all replicas in a consistent state. This is a complex task 
because host failures and network partitions may occasion 
incomplete updates that leave some replicas inconsistent. 
Special replication control protocols have been devised to 
perform this task in a transparent fashion. These protocols 
differ in their message overhead, their handling of network 
partitions and the data availabilities they provide. 
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A first class of protocols makes the assumption that net- 
work partitions are either unlikely or unlikely to occasion 
conflicting updates. The best known of them are the avuil- 
able copy protocol (AC) [2, 71, the regeneration algorithm 
[17] and the Coda replication control protocol [ 183. 

The second class of protocols take the approach that data 
consistency is much more important than data availabil- 
ity. These protocols rely on quorums to provide mutual 
exclusion and prevent conflicting updates. As a result, they 
provide lower data availabilities than the other protocols. 
The best known quorum-oriented protocols include major- 
ity consensus voting (MCV), weighted voting (WV) [5 ] ,  
dynamic voting (DV) 141, dynamic-linear voting (DLV) [9] 
and voting with witnesses (VWW) [151. 

A common feature of all replication control protocols is 
the use of metadata to record the states of the replicas. These 
metadata nearly always include a version number, that is an 
integer that is incremented each time the replicated data are 
modified. Protocols such as optimistic available copy [ 103 
and all dynamic voting protocols also require each replica 
to keep track of the identities of the replicas it believes to be 
operational. This information is kept in a metadata structure, 
variously called a was-available set, a connection vector or 
a majority block. 

Despite the important role played by these metadata, the 
problem of finding the most efficient metadata organization 
for a given replication control policy has not received the 
attention that it deserves. As we will see, the results of this 
neglect have been replication control protocols with bloated 
metadata and complex procedures for ascertaining which 
replicas are up to date. 

We present anew implementation of Bernstein and Good- 
man’s available copy protocol [21. Our new protocol main- 
tains for each replica a cohort set that is updated any time a 
failure is detected or a replica residing on a site that failed 

http://cs.ucsc.edu


is repaired. By requiring that all changes in the cohort set 
involve all sites in the new cohort set, we guarantee that 
all replicas sharing the same cohort set are identical and re- 
move the need for maintaining version numbers. As a result, 
our protocol requires only n + log(n) bits of metadata per 
replica, that is n bits for storing the cohort set and log(n) 
bits for storing the identity of the replica The recovery pro- 
cedure is also greatly simplified as it suffices now to gather 
all the replicas in any mutually agreed cohort set to find the 
current version of the replicated object. 

The remainder of this paper is organized as follows: Sec- 
tion 2 contains a review of existing replication control pro- 
tocols and Section 3 introduces our new protocol; Section 4 
includes a study of the dependability of our protocol. Pos- 
sible extensions are discussed in Section 5 while Section 6 
has our conclusions. 

2. Available Copy Protocols 

Available copy protocols are based on the observation that 
if any one site has received all updates to a given data object 
it holds the current version of the data object. Since they 
discount thepossibilityof networkpartitions, they can allow 
access to a replicated data object as long as a single replica 
of the data object remains available. As a consequence 
of this, they provide the highest data availability and data 
reliability of all replication protocols that do not regenerate 
failed replicas [ 161. 

There are three parts to an available copy protocol: write, 
read and recovery. The rule for writing is extremely simple: 
write to all accessible replicas. Since all accessible replicas 
receive each write, they are kept in a consistent state: the 
replicated data can then be read from any accessible replica. 
When a site holding a replica recovers from a failure, this 
replica needs to be compared, in some manner, with another 
replica that contains the current version of the data object. 
If all sites holding replicas of the data object have failed, no 
replica can recover until the last site(s) to fail can be found. 
This is the most complex part of any available protocol and 
the only one to differ significantly from one implementation 
to another. 

2.1. The original available copy protocol 

The original available copy protocol [2, 71 relies on a 
complex mechanism to locate that site. Several sets of failure 
information are to be maintained in real time, including the 
set of sites participating in the replication of the data object 
and the sets of sites that had been specifidly included or 

excluded. An included site s is one that is known to hold 
a current replica of the data object while an excluded site t 
is one that has failed and whose failure has been recorded 
by an operational site executing an exclude(s) transaction. 
When a failed site t repairs following a failure, it attempts 
to locate another site s thait is operational. If such a site can 
be found, then t will repair from s and request s to execute 
the transaction include(t),, In the presence of a total failure, 
the sets of included and exxluded sets are used to determine 
the site-or set of sites-that failed last and holds a current 
replica of the data object. 

2.2. The naive availablle copy protocol 

The nai've available copy (NAC) protocol [16] avoids 
the problem of failure detection by not maintaining any site 
failure information. It behaves like the original available 
copy protocol except in the event of a total failure, in which 
case itmust wait for all sitesparticipating in thereplication to 
recover. The only metadata maintained by the NAC protocol 
are the version numbers of the replicas. 

The price for the simlplicity of the NAC protocol is a 
slower recovery after a total failure and a lower overall data 
availability. In most cases, total failures will be rather ex- 
ceptional events that are much more likely to result from a 
catastrophic event affecting all sites holding replicas than 
from successive site failures. When this is the case, all 
available copy protocols will have to wait for the recovery 
of all sites holding replicas. 

23. The optimistic available copy protocol 

Like the original available copy protocol, the optimistic 
available copy (OAC) pnotoCol[ 101 maintains availability 
information about each and every replica but it only updates 
this information when the replicated data object is modified 
or when a recovery occuirs. The protocol maintains two 
pieces of information at each site holding a rcplica: a version 
number and a was-available set. The was-available set for 
an active replica s, denoted W,, lists those replicas that 
s knows to be up to date. This includes all replicas that 
received the most recent write and all replicas that have 
repaired from s since the last write. 

Was-available sets can be maintained inexpensively by 
ascertaining which replicas are operational when the repli- 
cated data object is first accessed and by sending this in- 
formation along with the first write; the second write will 
contain the set of replicas which received the first write and 
so forth. 
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Similarly, when a replica t recovers from a replica s, s 
sends to t its new was-available set W, U { t} .  Recovering 
from a total failure requires finding the last site(s) that failed. 
These sites are known to belong to the closure of the was- 
available set with respect to the recovering site s, that is 

n 

C*(WS) = U C"%) 
k=O 

3. A More Efficient Available Copy Protocol 

One of the major objectives of the OAC protocol was 
to reduce the costs of updating Ihe was-available sets of 
operational sites [ 113. So it was decided that: 

1. was-available set updates should always be piggy 
backed on existing read, write and site recovery oper- 
ations, and 

2. was-available set updates should never involve sites 
that were not involved in each read, write or site re- 
covery operation. 

Hence, site recovery operations only updare the was- 
available set of the two sites actually participating in the ac- 
tual recovery, namely the recovering site and that of the site 
from where the recovering site obtained the correct state of 
the replicated data object. As a result, the was-available sets 
of the operational sites cease to be identical after a site re- 
covery because only two operational sites will have included 
the site that recovered in their was-available sets. Updating 
the was-available sets of all operational sites would have had 
the two advantages of (a) making all available sets current 
and (b) removing the need to compute the closure of these 
sets every time the system has to recover from a total failure. 

As it happened, the OAC protocol was formalized [lo] 
well before its data availability was fully analyzed [ 11, 161. 
So the benefits of updating the was-available sets at recovery 
time were only understood after the protocol had been fully 
specified and this update was done independently of the site 
recovery process itself [ 11, 161. 

An even more important simplification could be achieved 
if the was-available sets could be always be correctly updated 
every time the replicated object is modified. We would know 
then that all the sites in the most recent was-available sets 
would all have the most recent version of the replicated 
object and would not need version nurnbers to distinguish 
them. 

Table 1. Example of failure and recovery 

C A  I CB I CC 
A,B,C I A,B,C I A,B,C 
A,B A,B 1 1 k B  1 A.B.C 1 

We propose to record exact membership information in 
new metadata, which we will call cohort sets to distinguish 
them from was-available sets. A cohort set for any replica 
represents the set of replicas that participated in the last 
write that involved that replica. For example, if there are 
three replicas, A, B and C,  and CA, CB and Cc are the 
corresponding cohort sets, Table 1 can be used to illustrate 
what happens when replicas fail and recover. Suppose that 
the system starts with a full complement of replicas. At 
some time in the future, replica C fails, and a write operation 
occurs. The state of the system is reflected in the second row 
of the table, where CA = CB = {A ,  B} ,  which indicates 
that replicas A and B were the only participants in the last 
write operation. At some point further on, suppose that 
replica B also fails, followed by a write operation. This is 
reflected in the third row, where only replica A is current. 
Suppose now that the other two replicas rccover, then the 
state of the system is reflected in the fourth row. The only 
replica to be current is replica A because CA = {A} .  

Thus the rule is that, when k of the original n replicas 
have identical cohort sets all containing exactly these same 
k replicas and no others, we can assert that these k replicas 
are all current and all other replicas are stale. Hence version 
numbers are redundant. 

In general, we can also expect site failures to be much 
less frequent events than write operations. In this situation, 
cohort sets will almost always have been updated between 
consecutive site failures. Thus, after a failure of all sites 
holding replicas, the k current replicas, will also be the k 
last replicas that failed last. We can even expect k to be 
equal to one unless the last sites that failed did it so closely 
together that no write access took place during that time. 
The worst case is of course a simultaneous failure of all 
sites holding replicas. All replicas will be current but to 
establish this fact beyond any doubt we will need all sites 
holding to recover first. In this case, the new protocol will 
perform no better (and no worse) than the NAC protocol, 
which requires version numbers. 

In the following section, we considcr cohort sets a little 
more formally. 
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3.1. Cohort sets 

A cohort set is the set of all replicas which have par- 
ticipated in the last write operation. The cohort sets are 
similar to the was-available sets used for the available copy 
protocol, except by managing them differently, we avoid the 
need to compute the closure. This results in a substantial 
simplification in the recovery procedure. 

Definition 1 A cohort set for a replica represents the set of 
replicas that were current during the last write that included 
this replica. 

It should be clear that the last replica or replicas to fail 
must be represented by this set, since if any of the replicas 
had participated in subsequent write operation, then its co- 
hort set wouldnot contain the replicas that didnot participate 
in this operation. 

It can be shown that the current set of replicas must 
have equal and complete cohort sets. By equal, we mean 
that the cohort sets for the replicas in question must have 
the same membership. By complete, we mean that every 
replica in question must be represented in the cohort sets, 
and every replica in the cohort sets must be present and 
under consideration. 

Theorem 1 The necessary and sufJicient condition for re- 
covery is that a subset of replicas can be found such that 
their cohort sets are equal and complete. 

Instead of presenting a formal proof, which would be 
tedious and not very illustrative, we will demonstrate the 
result in an informal manncr. 

Perhaps the easiest way to understand this result, is to 
view it as a directed graph. Let each copy be represented 
by a node, and the cohort set of each copy represent the 
out-going edges from that node. That is, if copy A has 
CA = {A, B} then node A would have directed edges A> 
and A%. 

where every node has an edge to every other node. In this 
case, it is clear that having complete and equal cohort sets 
is equivalent to having a completely connected graph. 

If we now consider the write Operation, it will write iden- 
tical cohort sets to all live: copies. These cohort sets list all 
of the live copies, and when viewed as a graph they form a 
completely connected subgraph. In our example, suppose 
that copy B fails, and this failure is followed by a write 
operation. Since B has Eailed, the write cannot change its 
cohort set, and so its out-going edges remain unchanged, 
but the edges from A and C to B are deletcd, and nodes A 
and C now form a completely connected subgraph. Node B 
is now a disconnected coimponent. Since no edges outside 
the completely connected subgraph are added, the subgraph 
remains unique. If we take the example one step further, 
suppose now that node C fails. Its edge to node A will 
remain, but there will be no edge back from node A and so 
node C is also in a disconnected component. Since node A 
has only the edge A 2  it is the unique completely connected 
subgraph. 

To understand the repair operation, consider Figure 2. 
The recovery operation is the inverse of the wrile operation. 
When a node which was dlisconnected is brought up to date, 
it is given the same cohort set as those nodes in the (unique) 
completely connected subgraph (which now includes the 
recovered node). Since these cohort sets do not include 
any nodes outside of the completely connected subgraph, 
the subgraph remains unique. Suppose now that node B is 
repaired. In this case, Cl, = CB = {A, B}, which, when 
views as a graph means$iat node A has edges A2 and A% 
and node B has edges B B and B I .  When node C recovers, 
it is handled in the exact same manner. 

I- - p 
Figure 2. A sequence of repair events. 

Figure 1. A sequence of failure events. 

If we consider Figure 1, we see that in the initial state, 
the system is represented by a completely connected graph, 

3.2. Reading and writiing 

The cohort sets are the sole mctadata requircd for access- 
ing the replicated data. These sets must be consistent for the 
recovery algorithm to operate correctly. Hence they must 
be completely written to stable storage after the detection 
of a every failure. While extremely rare, it is possible that 
a second failure could oc(:ur while the cohort sets are being 
written. 
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There are several methods for insuring that the cohort 
sets are written to stable storage in a consistent fashion. The 
first is to leverage an existing commit mechanism [8]. The 
second is to employ a reliable multicast protocol [3]. We 
will describe a third method that uses a simple two phase 
write protocol to insure that the cohort sets are written in a 
consistent manner. 

In order to mitigate the effects of this unlikely failure 
scenario, two phases are used 10 write the cohort sets to 
stable storage, In the first phase, so-called tentative cohort 
sets are written. These sets are exactly like the regular cohort 
sets, but exist only briefly until the committed cohort sets 
have been safely written to disk. If this fails, the system 
can fall back to the original committed cohort sets. In the 
second phase, the tentative cohort sets are cleared and the 
committed cohort sets are written. Should this fail, then the 
tentative cohort sets that remain can be used in conjunction 
with the newly committed cohort sets to determine set of 
consistent replicas. 

The cohort sets are modified when a write operation oc- 
curs following a failure. It is assumed that write operations 
are frequent enough to provide sufficiently fine grained fail- 
ure detection. If this is not the case, then cohort sets can be 
modified when read operations occur. If an asynchronous 
failure notification mechanism is available, then this can be 
used to modify the cohort sets. 

3.3. Recovering individual replicas 

In the absence of total failure, a recovering replica will 
find replicas that are available. It is then a simple matter 
to integrate this recovering replica into the st% of current 
replicas. First, the data from one of the current replicas is 
copied to the recovering replica. Second, the cohort set of 
one of the current replicas (recall that they are identical) is 
taken and the identity of the recovered replica is added to 
it. This new cohort set is then written to all current replicas, 
including the one which has just recovered. 

3.4. Recovering from a total failure 

The recovery from total failure is the most intricate op- 
eration in the system. As discussed in the previous section, 
the cohort sets must be carefully maintained. If we employ 
the two phase algorithm described in Section 3.2, then the 
following algorithm can be applied. 

In order to declare a set of replicas current, the cohort sets 
are checked for equality and completeness in the following 
order: 

1. All cohort sets are tentative. This will succeed if 
there was a failure after the tentative cohort sets were 
written, but before the committed cohort sets were 
written. 

2. A mix of tentative and committed cohort sets. This 
will succeed if there was a failure while the committed 
cohort sets were being written. 

3. Only the committed cohort sets. This is the most 
common case, and will succeed if the two phase write 
completed successfully. 

There is one further case, that is, when a failure occurs 
during the initial writing of the cohort sets. In this case, the 
cohort sets can be safely ignored since the committed cohort 
sets represent a consistent view of the system. 

The system considers each recovering replica in turn as 
it becomes active. This replica will compare its cohort set 
to the cohort sets of all other reovering replicas. When it is 
able to contact all replicas in its cohort set, and the cohort 
scts of each of these replicas agree with it ( h e  equal and 
complete property), then this replica and all replicas in its 
cohort set can be declared to be current. 

Replicas which are unable to complete this procedure are 
out-of-date and must repair from one of the current replicas, 
as discussed in Section 3.3. 

4. Availability Analysis 

Availability is the most common measure of fault toler- 
ance for repairable systems that are expected to remain oper- 
ational over a long period of time. It is wadi tionally defined 
as the fraction of time a system is operational. In the case of 
replicated data objects, the availability of a replicated object 
represents the fraction of time that the consistency control 
protocol will allow access to the object. 

The analysis of our new available copy protocol is iden- 
tical to the analysis of the OAC protocol presented in [ 111 
and [ 161. 

The system model consists of a set of sites with indepen- 
dent failure modes connected via a network which does not 
fail. When a site fails, a repair process is irmncdiately initi- 
ated at that site. Should several sites fail, the repair process 
will be performed in parallel on those sites. Site failures 
are assumed to be exponentially distributed with mean A, 
and repairs are aqsumed to be exponentially distributed with 
mean ,U. All access requests are assumed to be characterized 
by a Poisson process with mean K .  The system is assumed to 
exist in statistical equilibrium. Although the assumption of 
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Figure 3. State transition diagram 

an independent failure rate X is reasonable if the sites have 
independent power sources, the assumptions of exponential 
repair times and exponential inter-access times are harder to 
defend on general grounds. However, all three assumptions 
are necessary to represent each system by a Markov process 
with a finite number of states [6].  

Definition2 The availability of a replicated data object 
consisting of n replicas and managed by a replica control 
protocol S, denoted As (n) ,  is the stationary probubility of 
the system being in a state where the replica controlprotocol 
will grant access to tlze data object. 

The states of the Markov model are labeled by the ordered 
triple (i, j ,  k) where i represents the number of current (or 
up-to-date) replicas, j represents the cardinality of the cur- 
rent cohort set, and k represents the number of replicas that 
are out-of-date. When a triple is marked with a bar, for ex- 
ample (1 , 2,0), this indicates that the system is unavailable. 

Figure 3 has the state transition diagram for two replicas 
managed by the new AC protocol. A system of equations 
cm be derived from this state transition diagram, and solved 
either algebraically or using numerical methods. If we let 
p = and C$ = n, then the equations are significantly 
simplified. 

The availability, A A C ( ~ ) ,  of the system is the sum of 
probabilities of being in a state where access is permitted, 
and is given by the expression: 

__ 

P P 

q5p2 + 3p2 + 3 4 p +  4 p +  q5 + 1 
AAC(2) = 

( p  + 1)3(p + 4 + 1) 
If the writes occur with sufficient frequency hat  the cohort 

Figure 4. Availability of two replicas managed 
by the new AC protocol 

sets can be assumed to be up-to-date, then the availability is 
given by the expression: 

The availability of a system with three replicas can be 
derived in a similar manner. In this case, the state diagram 
has sixteen states. The resulting expression is very large, 
and has been omitted for the sake of brevity. If we again 
make the assumption of frequent writes, the then availability 
of system with three disks is given by the expression: 

This analysis can be done for any number of replicas, though 
the equations quickly becolme unmanageable. If the frequent 
write assumption is made, then a closed form solution has 
been derived [ll]. 

Figure 4 and 5 respectively represent the availability of 
two and three replicas managed by the new AC protocol 
for values of p varying between 0 and 0.25. We selected 
these values because a recent study [121 has shown that 
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partitions. A second applies to quorum-based protocols. 

5.1. Protocols detecting data inconsistencies 

1 6 V  20 0.25 

Figure 5. Availability of three 
aged by the new AC protocol 

replicas man- 

the mean time to failure (MTTF) for modem systems is 
approximately 29 days plus or minus 2. The mean time 
to repair (MTTR) is approximately 4 days plus or minus 
one. This results in reasonable values for y falling in the 
interval 0.06 < p < 0.22 for the average host connected 
to the Internet. Dedicated servers are likely to have service 
contracts which will result in a MlTR of one day or less, 
which will significantly lower the reasonable values of p into 
the range of 0.03 < p < 0.04. Professional maintenance 
and conditioned power will also significantly increase the 
MTTF, but these influences are more difficult to quantify. 
As one can see, the impact of the update rate to repair rate 
ratio 4 on the availability becomes insignificant as soon as 
q!~ > 4 or, in other words, K: > 4p. 

Available copy protocols were designed for network 
topologies where network partitions were known to be im- 
possible or extremely unlikely. Other protocols, such as the 
Coda replication control protocol [18, 141, follow the same 
write to aEUreud any philosophy as the available copy proto- 
col but promise to detect ex post fucto data inconsistencies 
that may have resulted from these partitions. 

Detecting data inconsistencies in our protocol will in- 
volve comparing the cohort sets of the replicas searching for 
disjoint subsets of replicas such that every replica in each 
subset has a cohort set describing exactly that subset. If we 
find two or more of these subsets, there are two or more 
different versions of the file pretending to be the current 
version of the file. Otherwise we know that the data object 
has one single current state. 

5.2. Extension to quorum-based protocols 

Unlike available copy protocols, quorum-based protocols 
guarantee the consistency of the replicated data in the pres- 
ence of network partitions. In their simplest form, quorum- 
based protocols assume that the correct state of a replicated 
object is the state of the majority of its replicas. Ascertain- 
ing Uie state of a replicated object requires collecting the 
votes of a quorunz of the replicas. Should this be prevented 
by a sufficient number of site failures, the replicated ob- 
ject is considered to be inaccessible. Protocols that adjusts 
quorums, such as dynamic voting and its variants [4,9], or 
modify the number of votes assigned to each replica [l], 
are known to provide higher data availability than protocol 
using static quorums. 

Cohort sets represent the set of replicas that participated 
in the last write operation. Whenever writes are significantly 
more frequent than site failures, they also provide a good 
approximation of the set of currently available replicas and 
can thus be used to implement dynamic voting protocols 
[131. 

5. Possible Extensions 
6. Conclusions 

There are at least two possible extensions to our new 
protocol that are worth mentioning. The first extension 
concerns protocols that do not guarantee data consistency in 
presence of network partitions but promise to detect ex yosi 
fucto data inconsistencies that may have resulted from these 

Available copy protocols provide the highest data avail- 
ability and data reliability of all replication protocols that 
do not regenerate failed replicas. Unfortunately, all existing 
impleinentations of available copy protocols either rely on 
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complex procedures for ascertaining which replicas are up 
to date after a total failure or have to wait for the recovery 
of all failed sites. 

We have presented a simple technique for efficiently im- 
plementing the available copy protocol. Our protocol does 
not require version numbers and maintains only n + log( n)  
bits of state per replica, that is n bits for storing the current 
set of active replicas (the so-called cohort set and log(n) 
bits for storing the identity of the replica. The recovery pro- 
cedure is also greatly simplified as it suffices now to gather 
all the replicas in any mutually agreed cohort set to find the 
current version of the replicated object. 

We have also shown that our new protocol provides the 
same data availability as the best feasible implementations 
of the available copy protocol. 

More work still needs to be done to extend the applica- 
bility of our technique and to investigate alternative imple- 
mentations of the cohort set update process. One promising 
avenue would be to allow the cohort sets of some replicas to 
continue to include some replicas that failed before the last 
write but after the penultimate operation that recomputed 
the cohort set. 
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