
A Leaner, More E ciemt, Available Copy Protocol

Darrell D. E. Long+
Department of Computer Science

University of California
Santa Cruz, CA 95064

darrell @ cs.ucsc.edu

Abstract

Available copy protocols provide the highest data avail-
ability and data reliability of all replication protocols that
do not regenerate failed replicas. Unfortunately, all existing
implementations of available copy protocols either rely on
complex procedures for ascertaining which replicas are up
to date after a total failure or have to wait for the recovery
of all failed sites.

We present a simple technique for eficiently implement-
ing the available copy protocol. Our protocol does not
require version numbers and maintains only n + log(n) bits
of state per replica. We also show under standard Marko-
vian assumptions that our new protocol provides the same
data availability as the best feasible implementations of the
available copy protocol.

Keywords: distributed $le systems, data replication,
replication control protocols

1. Introduction

Critical data are often replicated either to reduce read
access times or to provide constant data availability in the
presence of failures. This technique is known as data repli-
cation. As can be expected, data replication introduces its
own problems, the most important of which is maintaining
all replicas in a consistent state. This is a complex task
because host failures and network partitions may occasion
incomplete updates that leave some replicas inconsistent.
Special replication control protocols have been devised to
perform this task in a transparent fashion. These protocols
differ in their message overhead, their handling of network
partitions and the data availabilities they provide.

t The work of this author was done while a Visiting Scientisi ai IBM
Almaden Research Center.

0-8186-7683-3/96 $05.00 0 1996 IEEE
400

Jehan-Frangois Piiris
Department of Computer Science

University of Houston
Houston, TX 77204-3475

par is @ cs. u h.edu

A first class of protocols makes the assumption that net-
work partitions are either unlikely or unlikely to occasion
conflicting updates. The best known of them are the avuil-
able copy protocol (AC) [2, 71, the regeneration algorithm
[17] and the Coda replication control protocol [183.

The second class of protocols take the approach that data
consistency is much more important than data availabil-
ity. These protocols rely on quorums to provide mutual
exclusion and prevent conflicting updates. As a result, they
provide lower data availabilities than the other protocols.
The best known quorum-oriented protocols include major-
ity consensus voting (MCV), weighted voting (WV) [5] ,
dynamic voting (DV) 141, dynamic-linear voting (DLV) [9]
and voting with witnesses (VWW) [151.

A common feature of all replication control protocols is
the use of metadata to record the states of the replicas. These
metadata nearly always include a version number, that is an
integer that is incremented each time the replicated data are
modified. Protocols such as optimistic available copy [103
and all dynamic voting protocols also require each replica
to keep track of the identities of the replicas it believes to be
operational. This information is kept in a metadata structure,
variously called a was-available set, a connection vector or
a majority block.

Despite the important role played by these metadata, the
problem of finding the most efficient metadata organization
for a given replication control policy has not received the
attention that it deserves. As we will see, the results of this
neglect have been replication control protocols with bloated
metadata and complex procedures for ascertaining which
replicas are up to date.

We present anew implementation of Bernstein and Good-
man’s available copy protocol [21. Our new protocol main-
tains for each replica a cohort set that is updated any time a
failure is detected or a replica residing on a site that failed

http://cs.ucsc.edu

is repaired. By requiring that all changes in the cohort set
involve all sites in the new cohort set, we guarantee that
all replicas sharing the same cohort set are identical and re-
move the need for maintaining version numbers. As a result,
our protocol requires only n + log(n) bits of metadata per
replica, that is n bits for storing the cohort set and log(n)
bits for storing the identity of the replica The recovery pro-
cedure is also greatly simplified as it suffices now to gather
all the replicas in any mutually agreed cohort set to find the
current version of the replicated object.

The remainder of this paper is organized as follows: Sec-
tion 2 contains a review of existing replication control pro-
tocols and Section 3 introduces our new protocol; Section 4
includes a study of the dependability of our protocol. Pos-
sible extensions are discussed in Section 5 while Section 6
has our conclusions.

2. Available Copy Protocols

Available copy protocols are based on the observation that
if any one site has received all updates to a given data object
it holds the current version of the data object. Since they
discount thepossibilityof networkpartitions, they can allow
access to a replicated data object as long as a single replica
of the data object remains available. As a consequence
of this, they provide the highest data availability and data
reliability of all replication protocols that do not regenerate
failed replicas [161.

There are three parts to an available copy protocol: write,
read and recovery. The rule for writing is extremely simple:
write to all accessible replicas. Since all accessible replicas
receive each write, they are kept in a consistent state: the
replicated data can then be read from any accessible replica.
When a site holding a replica recovers from a failure, this
replica needs to be compared, in some manner, with another
replica that contains the current version of the data object.
If all sites holding replicas of the data object have failed, no
replica can recover until the last site(s) to fail can be found.
This is the most complex part of any available protocol and
the only one to differ significantly from one implementation
to another.

2.1. The original available copy protocol

The original available copy protocol [2, 71 relies on a
complex mechanism to locate that site. Several sets of failure
information are to be maintained in real time, including the
set of sites participating in the replication of the data object
and the sets of sites that had been specifidly included or

excluded. An included site s is one that is known to hold
a current replica of the data object while an excluded site t
is one that has failed and whose failure has been recorded
by an operational site executing an exclude(s) transaction.
When a failed site t repairs following a failure, it attempts
to locate another site s thait is operational. If such a site can
be found, then t will repair from s and request s to execute
the transaction include(t),, In the presence of a total failure,
the sets of included and exxluded sets are used to determine
the site-or set of sites-that failed last and holds a current
replica of the data object.

2.2. The naive availablle copy protocol

The nai've available copy (NAC) protocol [16] avoids
the problem of failure detection by not maintaining any site
failure information. It behaves like the original available
copy protocol except in the event of a total failure, in which
case itmust wait for all sitesparticipating in thereplication to
recover. The only metadata maintained by the NAC protocol
are the version numbers of the replicas.

The price for the simlplicity of the NAC protocol is a
slower recovery after a total failure and a lower overall data
availability. In most cases, total failures will be rather ex-
ceptional events that are much more likely to result from a
catastrophic event affecting all sites holding replicas than
from successive site failures. When this is the case, all
available copy protocols will have to wait for the recovery
of all sites holding replicas.

23. The optimistic available copy protocol

Like the original available copy protocol, the optimistic
available copy (OAC) pnotoCol[101 maintains availability
information about each and every replica but it only updates
this information when the replicated data object is modified
or when a recovery occuirs. The protocol maintains two
pieces of information at each site holding a rcplica: a version
number and a was-available set. The was-available set for
an active replica s, denoted W,, lists those replicas that
s knows to be up to date. This includes all replicas that
received the most recent write and all replicas that have
repaired from s since the last write.

Was-available sets can be maintained inexpensively by
ascertaining which replicas are operational when the repli-
cated data object is first accessed and by sending this in-
formation along with the first write; the second write will
contain the set of replicas which received the first write and
so forth.

40 1

Similarly, when a replica t recovers from a replica s, s
sends to t its new was-available set W, U { t} . Recovering
from a total failure requires finding the last site(s) that failed.
These sites are known to belong to the closure of the was-
available set with respect to the recovering site s, that is

n

C*(WS) = U C"%)
k=O

3. A More Efficient Available Copy Protocol

One of the major objectives of the OAC protocol was
to reduce the costs of updating Ihe was-available sets of
operational sites [113. So it was decided that:

1. was-available set updates should always be piggy
backed on existing read, write and site recovery oper-
ations, and

2. was-available set updates should never involve sites
that were not involved in each read, write or site re-
covery operation.

Hence, site recovery operations only updare the was-
available set of the two sites actually participating in the ac-
tual recovery, namely the recovering site and that of the site
from where the recovering site obtained the correct state of
the replicated data object. As a result, the was-available sets
of the operational sites cease to be identical after a site re-
covery because only two operational sites will have included
the site that recovered in their was-available sets. Updating
the was-available sets of all operational sites would have had
the two advantages of (a) making all available sets current
and (b) removing the need to compute the closure of these
sets every time the system has to recover from a total failure.

As it happened, the OAC protocol was formalized [lo]
well before its data availability was fully analyzed [11, 161.
So the benefits of updating the was-available sets at recovery
time were only understood after the protocol had been fully
specified and this update was done independently of the site
recovery process itself [11, 161.

An even more important simplification could be achieved
if the was-available sets could be always be correctly updated
every time the replicated object is modified. We would know
then that all the sites in the most recent was-available sets
would all have the most recent version of the replicated
object and would not need version nurnbers to distinguish
them.

Table 1. Example of failure and recovery

C A I CB I CC
A,B,C I A,B,C I A,B,C
A,B A,B 1 1 k B 1 A.B.C 1

We propose to record exact membership information in
new metadata, which we will call cohort sets to distinguish
them from was-available sets. A cohort set for any replica
represents the set of replicas that participated in the last
write that involved that replica. For example, if there are
three replicas, A, B and C, and CA, CB and Cc are the
corresponding cohort sets, Table 1 can be used to illustrate
what happens when replicas fail and recover. Suppose that
the system starts with a full complement of replicas. At
some time in the future, replica C fails, and a write operation
occurs. The state of the system is reflected in the second row
of the table, where CA = CB = {A , B} , which indicates
that replicas A and B were the only participants in the last
write operation. At some point further on, suppose that
replica B also fails, followed by a write operation. This is
reflected in the third row, where only replica A is current.
Suppose now that the other two replicas rccover, then the
state of the system is reflected in the fourth row. The only
replica to be current is replica A because CA = {A} .

Thus the rule is that, when k of the original n replicas
have identical cohort sets all containing exactly these same
k replicas and no others, we can assert that these k replicas
are all current and all other replicas are stale. Hence version
numbers are redundant.

In general, we can also expect site failures to be much
less frequent events than write operations. In this situation,
cohort sets will almost always have been updated between
consecutive site failures. Thus, after a failure of all sites
holding replicas, the k current replicas, will also be the k
last replicas that failed last. We can even expect k to be
equal to one unless the last sites that failed did it so closely
together that no write access took place during that time.
The worst case is of course a simultaneous failure of all
sites holding replicas. All replicas will be current but to
establish this fact beyond any doubt we will need all sites
holding to recover first. In this case, the new protocol will
perform no better (and no worse) than the NAC protocol,
which requires version numbers.

In the following section, we considcr cohort sets a little
more formally.

402

3.1. Cohort sets

A cohort set is the set of all replicas which have par-
ticipated in the last write operation. The cohort sets are
similar to the was-available sets used for the available copy
protocol, except by managing them differently, we avoid the
need to compute the closure. This results in a substantial
simplification in the recovery procedure.

Definition 1 A cohort set for a replica represents the set of
replicas that were current during the last write that included
this replica.

It should be clear that the last replica or replicas to fail
must be represented by this set, since if any of the replicas
had participated in subsequent write operation, then its co-
hort set wouldnot contain the replicas that didnot participate
in this operation.

It can be shown that the current set of replicas must
have equal and complete cohort sets. By equal, we mean
that the cohort sets for the replicas in question must have
the same membership. By complete, we mean that every
replica in question must be represented in the cohort sets,
and every replica in the cohort sets must be present and
under consideration.

Theorem 1 The necessary and sufJicient condition for re-
covery is that a subset of replicas can be found such that
their cohort sets are equal and complete.

Instead of presenting a formal proof, which would be
tedious and not very illustrative, we will demonstrate the
result in an informal manncr.

Perhaps the easiest way to understand this result, is to
view it as a directed graph. Let each copy be represented
by a node, and the cohort set of each copy represent the
out-going edges from that node. That is, if copy A has
CA = {A, B} then node A would have directed edges A>
and A%.

where every node has an edge to every other node. In this
case, it is clear that having complete and equal cohort sets
is equivalent to having a completely connected graph.

If we now consider the write Operation, it will write iden-
tical cohort sets to all live: copies. These cohort sets list all
of the live copies, and when viewed as a graph they form a
completely connected subgraph. In our example, suppose
that copy B fails, and this failure is followed by a write
operation. Since B has Eailed, the write cannot change its
cohort set, and so its out-going edges remain unchanged,
but the edges from A and C to B are deletcd, and nodes A
and C now form a completely connected subgraph. Node B
is now a disconnected coimponent. Since no edges outside
the completely connected subgraph are added, the subgraph
remains unique. If we take the example one step further,
suppose now that node C fails. Its edge to node A will
remain, but there will be no edge back from node A and so
node C is also in a disconnected component. Since node A
has only the edge A 2 it is the unique completely connected
subgraph.

To understand the repair operation, consider Figure 2.
The recovery operation is the inverse of the wrile operation.
When a node which was dlisconnected is brought up to date,
it is given the same cohort set as those nodes in the (unique)
completely connected subgraph (which now includes the
recovered node). Since these cohort sets do not include
any nodes outside of the completely connected subgraph,
the subgraph remains unique. Suppose now that node B is
repaired. In this case, Cl, = CB = {A, B}, which, when
views as a graph means$iat node A has edges A2 and A%
and node B has edges B B and B I . When node C recovers,
it is handled in the exact same manner.

I- - p
Figure 2. A sequence of repair events.

Figure 1. A sequence of failure events.

If we consider Figure 1, we see that in the initial state,
the system is represented by a completely connected graph,

3.2. Reading and writiing

The cohort sets are the sole mctadata requircd for access-
ing the replicated data. These sets must be consistent for the
recovery algorithm to operate correctly. Hence they must
be completely written to stable storage after the detection
of a every failure. While extremely rare, it is possible that
a second failure could oc(:ur while the cohort sets are being
written.

403

There are several methods for insuring that the cohort
sets are written to stable storage in a consistent fashion. The
first is to leverage an existing commit mechanism [8]. The
second is to employ a reliable multicast protocol [3]. We
will describe a third method that uses a simple two phase
write protocol to insure that the cohort sets are written in a
consistent manner.

In order to mitigate the effects of this unlikely failure
scenario, two phases are used 10 write the cohort sets to
stable storage, In the first phase, so-called tentative cohort
sets are written. These sets are exactly like the regular cohort
sets, but exist only briefly until the committed cohort sets
have been safely written to disk. If this fails, the system
can fall back to the original committed cohort sets. In the
second phase, the tentative cohort sets are cleared and the
committed cohort sets are written. Should this fail, then the
tentative cohort sets that remain can be used in conjunction
with the newly committed cohort sets to determine set of
consistent replicas.

The cohort sets are modified when a write operation oc-
curs following a failure. It is assumed that write operations
are frequent enough to provide sufficiently fine grained fail-
ure detection. If this is not the case, then cohort sets can be
modified when read operations occur. If an asynchronous
failure notification mechanism is available, then this can be
used to modify the cohort sets.

3.3. Recovering individual replicas

In the absence of total failure, a recovering replica will
find replicas that are available. It is then a simple matter
to integrate this recovering replica into the st% of current
replicas. First, the data from one of the current replicas is
copied to the recovering replica. Second, the cohort set of
one of the current replicas (recall that they are identical) is
taken and the identity of the recovered replica is added to
it. This new cohort set is then written to all current replicas,
including the one which has just recovered.

3.4. Recovering from a total failure

The recovery from total failure is the most intricate op-
eration in the system. As discussed in the previous section,
the cohort sets must be carefully maintained. If we employ
the two phase algorithm described in Section 3.2, then the
following algorithm can be applied.

In order to declare a set of replicas current, the cohort sets
are checked for equality and completeness in the following
order:

1. All cohort sets are tentative. This will succeed if
there was a failure after the tentative cohort sets were
written, but before the committed cohort sets were
written.

2. A mix of tentative and committed cohort sets. This
will succeed if there was a failure while the committed
cohort sets were being written.

3. Only the committed cohort sets. This is the most
common case, and will succeed if the two phase write
completed successfully.

There is one further case, that is, when a failure occurs
during the initial writing of the cohort sets. In this case, the
cohort sets can be safely ignored since the committed cohort
sets represent a consistent view of the system.

The system considers each recovering replica in turn as
it becomes active. This replica will compare its cohort set
to the cohort sets of all other reovering replicas. When it is
able to contact all replicas in its cohort set, and the cohort
scts of each of these replicas agree with it (h e equal and
complete property), then this replica and all replicas in its
cohort set can be declared to be current.

Replicas which are unable to complete this procedure are
out-of-date and must repair from one of the current replicas,
as discussed in Section 3.3.

4. Availability Analysis

Availability is the most common measure of fault toler-
ance for repairable systems that are expected to remain oper-
ational over a long period of time. It is wadi tionally defined
as the fraction of time a system is operational. In the case of
replicated data objects, the availability of a replicated object
represents the fraction of time that the consistency control
protocol will allow access to the object.

The analysis of our new available copy protocol is iden-
tical to the analysis of the OAC protocol presented in [111
and [161.

The system model consists of a set of sites with indepen-
dent failure modes connected via a network which does not
fail. When a site fails, a repair process is irmncdiately initi-
ated at that site. Should several sites fail, the repair process
will be performed in parallel on those sites. Site failures
are assumed to be exponentially distributed with mean A,
and repairs are aqsumed to be exponentially distributed with
mean ,U. All access requests are assumed to be characterized
by a Poisson process with mean K . The system is assumed to
exist in statistical equilibrium. Although the assumption of

404

2h

Figure 3. State transition diagram

an independent failure rate X is reasonable if the sites have
independent power sources, the assumptions of exponential
repair times and exponential inter-access times are harder to
defend on general grounds. However, all three assumptions
are necessary to represent each system by a Markov process
with a finite number of states [6].

Definition2 The availability of a replicated data object
consisting of n replicas and managed by a replica control
protocol S, denoted As (n) , is the stationary probubility of
the system being in a state where the replica controlprotocol
will grant access to tlze data object.

The states of the Markov model are labeled by the ordered
triple (i, j , k) where i represents the number of current (or
up-to-date) replicas, j represents the cardinality of the cur-
rent cohort set, and k represents the number of replicas that
are out-of-date. When a triple is marked with a bar, for ex-
ample (1 , 2,0), this indicates that the system is unavailable.

Figure 3 has the state transition diagram for two replicas
managed by the new AC protocol. A system of equations
cm be derived from this state transition diagram, and solved
either algebraically or using numerical methods. If we let
p = and C$ = n, then the equations are significantly
simplified.

The availability, A A C (~) , of the system is the sum of
probabilities of being in a state where access is permitted,
and is given by the expression:

__

P P

q5p2 + 3p2 + 3 4 p + 4 p + q5 + 1
AAC(2) =

(p + 1)3(p + 4 + 1)
If the writes occur with sufficient frequency hat the cohort

Figure 4. Availability of two replicas managed
by the new AC protocol

sets can be assumed to be up-to-date, then the availability is
given by the expression:

The availability of a system with three replicas can be
derived in a similar manner. In this case, the state diagram
has sixteen states. The resulting expression is very large,
and has been omitted for the sake of brevity. If we again
make the assumption of frequent writes, the then availability
of system with three disks is given by the expression:

This analysis can be done for any number of replicas, though
the equations quickly becolme unmanageable. If the frequent
write assumption is made, then a closed form solution has
been derived [ll].

Figure 4 and 5 respectively represent the availability of
two and three replicas managed by the new AC protocol
for values of p varying between 0 and 0.25. We selected
these values because a recent study [121 has shown that

405

partitions. A second applies to quorum-based protocols.

5.1. Protocols detecting data inconsistencies

1 6 V 20 0.25

Figure 5. Availability of three
aged by the new AC protocol

replicas man-

the mean time to failure (MTTF) for modem systems is
approximately 29 days plus or minus 2. The mean time
to repair (MTTR) is approximately 4 days plus or minus
one. This results in reasonable values for y falling in the
interval 0.06 < p < 0.22 for the average host connected
to the Internet. Dedicated servers are likely to have service
contracts which will result in a MlTR of one day or less,
which will significantly lower the reasonable values of p into
the range of 0.03 < p < 0.04. Professional maintenance
and conditioned power will also significantly increase the
MTTF, but these influences are more difficult to quantify.
As one can see, the impact of the update rate to repair rate
ratio 4 on the availability becomes insignificant as soon as
q!~ > 4 or, in other words, K: > 4p.

Available copy protocols were designed for network
topologies where network partitions were known to be im-
possible or extremely unlikely. Other protocols, such as the
Coda replication control protocol [18, 141, follow the same
write to aEUreud any philosophy as the available copy proto-
col but promise to detect ex post fucto data inconsistencies
that may have resulted from these partitions.

Detecting data inconsistencies in our protocol will in-
volve comparing the cohort sets of the replicas searching for
disjoint subsets of replicas such that every replica in each
subset has a cohort set describing exactly that subset. If we
find two or more of these subsets, there are two or more
different versions of the file pretending to be the current
version of the file. Otherwise we know that the data object
has one single current state.

5.2. Extension to quorum-based protocols

Unlike available copy protocols, quorum-based protocols
guarantee the consistency of the replicated data in the pres-
ence of network partitions. In their simplest form, quorum-
based protocols assume that the correct state of a replicated
object is the state of the majority of its replicas. Ascertain-
ing Uie state of a replicated object requires collecting the
votes of a quorunz of the replicas. Should this be prevented
by a sufficient number of site failures, the replicated ob-
ject is considered to be inaccessible. Protocols that adjusts
quorums, such as dynamic voting and its variants [4,9], or
modify the number of votes assigned to each replica [l],
are known to provide higher data availability than protocol
using static quorums.

Cohort sets represent the set of replicas that participated
in the last write operation. Whenever writes are significantly
more frequent than site failures, they also provide a good
approximation of the set of currently available replicas and
can thus be used to implement dynamic voting protocols
[131.

5. Possible Extensions
6. Conclusions

There are at least two possible extensions to our new
protocol that are worth mentioning. The first extension
concerns protocols that do not guarantee data consistency in
presence of network partitions but promise to detect ex yosi
fucto data inconsistencies that may have resulted from these

Available copy protocols provide the highest data avail-
ability and data reliability of all replication protocols that
do not regenerate failed replicas. Unfortunately, all existing
impleinentations of available copy protocols either rely on

406

complex procedures for ascertaining which replicas are up
to date after a total failure or have to wait for the recovery
of all failed sites.

We have presented a simple technique for efficiently im-
plementing the available copy protocol. Our protocol does
not require version numbers and maintains only n + log(n)
bits of state per replica, that is n bits for storing the current
set of active replicas (the so-called cohort set and log(n)
bits for storing the identity of the replica. The recovery pro-
cedure is also greatly simplified as it suffices now to gather
all the replicas in any mutually agreed cohort set to find the
current version of the replicated object.

We have also shown that our new protocol provides the
same data availability as the best feasible implementations
of the available copy protocol.

More work still needs to be done to extend the applica-
bility of our technique and to investigate alternative imple-
mentations of the cohort set update process. One promising
avenue would be to allow the cohort sets of some replicas to
continue to include some replicas that failed before the last
write but after the penultimate operation that recomputed
the cohort set.

Acknowledgements

We are grateful for the input of our colleagues at the
IBM Almaden Research Center, in particular L. F. Cabrera,
N. Pass, N. Hanami, S. Edelman and A. Lam.

References

[l] D. Barbara, H. Garcia-Molina and A. Spauster, “In-
creasing Availability Under Mutual Exclusion Con-
straints with Dynamic Vote Reassignment,” ACM
Transactions on Computer Systems, Vol. 7, No. 4
(1989), pp. 394-426.

[2] P. A. Bernstein and N. Goodman, “An algorithm for
concurrency control and recovery in replicated dis-
tributed databases,” ACM Transactions on Database
System, Vol. 9, No. 4 (1984), pp. 596-615.

[3] K. Birman and T. Joseph, “Reliable Communication
in the Presence of Failures,” ACM Transactions on
Computer Systems, Vol. 5, No.1 (1987), pp. 47-76.

[4] D. Davkv and W. A. Burkhard, “Consistency and Re-
covery Control for Replicated Files,” Proc. 10th ACM
Symposium on Operating System Principles, (1 985)
pp. 87-96.

[5] D. K. Gifford, “Weighted Voting for Replicated Data,”
Proc. 7th ACM Symposium on Operating System Prin-
ciples, (1979), pp. 150-161.

[61 B. V. Gnedenko, Mathematical Methods in Reliabil-
ity Theory, Moscow, English Translation, New York,
Academic Press, (1968).

[7] N. Goodman, D. Slteen, A. Chan, U. Dayal, R. Fox
and D. Ries, “A Recovery Algorithm for a Distributed
Database System,” Proc. 2nd ACM Symposium on
Principles of Datab,use Systems, (1983), pp. 8-15.

[SI J. Gray and A. Reuter, Transaction Processing: Con-
cepts and Techniques. Morgan Kaufman Publishers,
San Mateo, Calif. (I 993).

[9] S. Jajodia and D. Mutchler, “Dynamic Voting Algo-
rithms for Maintaining the Consistency of a Replicated
Database,” ACM Tfiansactions on Database Systems,
Vol. 15, No. 2 (1990), pp. 230-405.

[101 D. D. E. Long and J.-.F. P%is, “On Improving the Avail-
ability of Replicated Files,” Proc. 6th Symposium on
Reliable Distributea’ Systems, (1987), pp. 77-83.

[111 D. D. E. Long, “The Management of Replication in a
Distributed System,” Ph.D. dissertation, University of
California, San Diego, 1988.

[12] D. D. E. Long, A. IMuir, and R. Golding. “A Longi-
tudinal Study of Internet Host Reliability,” Proc. 14th
Symposium on Reliable Distributed Systems, (1999,

[131 D. D. E. Long and J.-F. Piiris, “Voting without Version
Numbers,” submitteld for publication.

[14] L. B. Mummert, M. R. Ebling and M. Satyanarayanan,
“Exploiting Weak Connectivity for Mobile File Ac-
cess:’ Proc. 15th ACM Symposium on Operating Sys-
tems Principles, (1993, pp. 33-45.

[15] J.-F. Pkis, “Voting with Witnesses: A Consistency
Scheme for Replicated Files,” Proc. 6th Znterna-
tional Conference on Distributed Computing Systems,
(1986), pp. 606-612..

[161 J.-F. P%is and D. D. E. Long, “On the Performance of
Available Copy Protocols,” Peflormance Evaluation,

[17] C. Pu, J. D. Noe and A. Proudfoot, “Regeneration of
Replicated Objects: A Technique and its Edcn Imple-
mentation,” IEEE Transactions on Sojtware Engineer-
ing, Vol. SE-14, No. 7 (1988), pp. 936-945.

[18] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E.
Okasaki, E. H. Siegel, and D. C. Steere, “Coda: A
Highly Available File System for a Workstation En-
vironment,” IEEE Transactions on Computers, Vol.

pp. 2-9.

Vol. 11, (1990) pp. 9-30.

C-39, NO. 4 (1990), pp. 447-459.

407

