
Co-evolving Tracing and Fault Injection with Box of Pain

Daniel Bittman
UC Santa Cruz

dbittman@ucsc.edu

Ethan L. Miller
UC Santa Cruz
elm@ucsc.edu

Peter Alvaro
UC Santa Cruz

palvaro@ucsc.edu

Abstract
Distributed systems are hard to reason about largely be-

cause of uncertainty about what may go wrong in a particular
execution, and about whether the system will mitigate those
faults. Tools that perturb executions can help test whether
a system is robust to faults, while tools that observe execu-
tions can help better understand their system-wide effects. We
present Box of Pain, a tracer and fault injector for unmodified
distributed systems that addresses both concerns by interpos-
ing at the system call level and dynamically reconstructing
the partial order of communication events based on causal re-
lationships. Box of Pain’s lightweight approach to tracing and
focus on simulating the effects of partial failures on commu-
nication rather than the failures themselves sets it apart from
other tracing and fault injection systems. We present evidence
of the promise of Box of Pain and its approach to lightweight
observation and perturbation of distributed systems.

1 Introduction

Distributed systems are all around us and yet are riddled with
bugs. This should make us uneasy even if it comes as no
surprise. The space of possible executions of a distributed
system is exponential in the number of communicating pro-
cesses and in the number of messages, making it difficult to
build confidence that distributed programs of even modest
complexity are free from errors. Tools that require painstaking
instrumentation and fine-grained control of runtime systems,
including both bug finding approaches such as software model
checking [12, 18] and debugging approaches such as deter-
ministic replay [4, 9], have made few inroads into distributed
systems software quality methodologies. Instead, the field is
dominated by incomplete approaches based on testing, which
can be effective at finding bugs but cannot rule them out.

Testing can be extremely effective at finding logic bugs that
can be reproduced via replaying local inputs. However, some
of the most pernicious bugs in distributed programs involve
mistakes in how programs handle partial failure of remote

components. These “time-of-fault” bugs [16] are in general
only triggered by rare events such as machine crashes and
network partitions, and consequently can lie dormant in oth-
erwise well-tested codebases. To address this issue, the test-
ing community has shown increasing interest in lightweight
techniques for observing and perturbing executions during in-
tegration tests, such as call graph tracing [23] and targeted [7]
or random [8] fault injection. These techniques make it possi-
ble to better cover the space of possible executions (e.g., by
driving the system into rare cases triggered by events like ma-
chine crashes and network partitions) and better understand
such events’ system-wide effects. Better still, they impose
only modest overheads, allowing observability and resiliency
to be built up in a pay-as-you-go fashion.

Unfortunately, these ostensibly lightweight techniques of-
ten require instrumentation at the application layer (e.g., prop-
agating annotations to downstream calls or identifying fault
interposition points), a process that must be repeated for each
application. Existing tracing and fault injection techniques
tend to be coarse-grained, leading to low-fidelity signals (e.g.
call graphs whose nodes represent service endpoints) and
high-overhead experiments (e.g. modeling crash faults by
rebooting servers). Moreover, since tracing and fault injec-
tion have evolved separately, there is often an impedance
mismatch between them. For example, a fine-grained fault
injection system is of little use if the granularity of the tracing
system is too coarse to interpret the effects of the experiments.

Our philosophy on tracing and fault-injection is three-fold.
First, faults such as machine crashes and network partitions
will always manifest themselves at remote nodes as the ab-
sence of a message. Hence, all time-of-fault bugs (which by
definition are triggered by these fault events), if they exist,
can be identified by removing communication edges in an
execution graph. Second, we believe (and will provide evi-
dence) that although the space of possible executions of a
distributed system is exponentially large in the number of
events, in practice some executions are significantly more
likely than others; thus, even if an understanding of a system
is based on witnessing schedules of executions, we can bound



the number of schedules we are likely to see. Third, tracing
and fault-injection should co-evolve—tracing is necessary to
inform and perform targeted fault-injection, which can only
perturb events in a language that is defined by the tracing
infrastructure itself; thus, economy of mechanism outweighs
separation of concerns.

We are building a tracing and fault injection system, Box of
Pain, which embodies our philosophy. Box of Pain witnesses
a schedule of a distributed system execution by tracing at the
system-call level and uses those system calls to reconstruct
the inter-machine communication graph of the system. We
argue that this interposition point is not only effective at faith-
fully capturing the communication pattern between threads
(which constitutes an adequate fault surface), but that it also
manages the trade-off between generality, ease of use (as sys-
tems need not be instrumented manually), and understanding
of application-level semantics. We discuss how Box of Pain
is able to effectively trace and inject faults in a distributed
system because, while the space of possible executions is
large, we often need only a small representation of the whole
system to find bugs [14, 25], but also because these possible
different execution schedules will often be consistent with
the same partial order, and so are effectively the “same” ex-
ecution, moving a theoretically intractable problem into the
practical realm.

2 Background

Unlike traditional model checkers that identify bugs in speci-
fications, software model checkers (SMCs) [12, 18] systemat-
ically explore the state space of actual implementations via
fine-grained control of a program’s execution schedule, and
backtracking as necessary. When a bug is identified in such a
concurrent system, it is often challenging to reproduce when
debugging. Deterministic replay systems [4, 9] make this pos-
sible by recording traces that capture non-deterministic inputs
or events and then, much like SMCs, controlling the runtime
schedule during replay to ensure that the same events occur
in the same order. Like these “heavyweight” techniques, we
want to work with arbitrary, unmodified systems by instru-
menting relatively low in the stack. However, fine-grained
scheduling is costly to run and implement, and is overkill for
the tasks of distributed tracing and fault injection.

Lightweight approaches to observing distributed executions
based on call graph tracing [3, 5, 22] have gained a great deal
of popularity in recent years, and a number of businesses are
devoted to the collection and analysis of call graph traces [1,2].
These observability infrastructures, based on Google’s Dap-
per [23] require modifications to application code in order
to propagate trace annotations (unique identifiers and other
adornments) that are attached to incoming service requests to
downstream service calls. This boilerplate, while relatively
straightforward to write, imposes a significant burden on the
application programmer and must be repeated for each ap-

plication. While we wish to provide value without requiring
work on the part of the application programmer, we would
nevertheless like to be able to reconstruct this application-
level signal from instrumentation lower in the stack.

The distributed resiliency community has long advocated
combining testing methodologies with fault injection [8, 11,
13] to increase confidence that ostensibly fault-tolerant pro-
grams operate correctly under the (rare in practice) fault
events that they were designed to mitigate. Although as dis-
cussed fault injection infrastructures are often used in concert
with tracing, they have tended to develop as separate concerns.
A stated goal of Box of Pain is to co-evolve these concerns.

The data management community has used data lin-
eage [10, 15, 17, 20, 24] to explain query answers in much
the same way that the resilience community uses call graph
tracing to explain distributed executions. Lineage-driven fault
injection [5, 6], a bug-finding technique that we will discuss
further in Section 6, directly uses explanations of system out-
comes (formal data lineage or execution traces) to automate
fault injection experiments. Box of Pain was designed to inte-
grate tightly with such a bug finder, providing it with traces
as performing the fault injection experiments that it suggests.

3 A Partial Argument of a Partial Order

Tracing infrastructure often involves a trade-off between
the complexity of kernel-level tracing and the overhead of
application-level instrumentation. We can avoid both by trac-
ing at the system-call level while retaining sufficient signal
for fault injection in systems that use system-calls for inter-
node communication. Our goal is tracing in the service of
fault injection; thus the focus of our tracer needs to be on
reconstructing the communication graph, as the bugs we are
interested in manifest as perturbations in that graph.

One significant consequence of tracing system-calls is that
the tracer will see a schedule of events with little ordering
among them. While each observed event on a per-thread basis
is ordered with respect to other events in that thread, there are
no immediate constraints on event ordering between threads.
Although the tracer sees a sequentially consistent execution
consistent with the true partial order of events, it cannot deter-
mine a richer partial order beyond this independent collection
of total orders from witnessing schedules alone.

To understand the communication structure of a program
as well as to inject faults, however, more than just this weak
schedule is needed. Fortunately, since we know the seman-
tics of the system-calls, we can use their meaning to glean
more information from them than we could if we strictly ob-
served them in a particular schedule. For example, a given
(successful) call to accept cannot return until a paired call to
connect is made, or a (successful) call to read on a socket
cannot return until a causally-paired call to write is made.

The ordering constraints available to us from observing
socket calls is exactly the communication pattern of the



system. We can use that communication pattern to derive
happens-before, which characterizes the constraints between
events of different threads, thus enabling fine-grained, targeted
fault injection that can specify “when” in a distributed execu-
tion to inject faults relative to events and not wall-clock time.
Furthermore, this pattern can be derived during execution
as opposed to afterwards, a requirement of our targeted fault
injection goals. We describe how this is done in Section 4.2.

Reconstructing a causal trace of system execution by ob-
serving system-calls has inherent weaknesses. For one thing,
it is possible to overlook control and data flow transfers that
make no kernel crossings, including asynchronous dispatch
and indirection via shared memory, and hence obtain an in-
complete picture of the happens-before graph. Worse still, due
to inherent timing non-determinism in message delivery and
thread scheduling a distributed execution could in principle
produce a different trace for every run.

We are not concerned about these causal side-channels lead-
ing to “missing edges” in the happens-before graph. Recall
that Box of Pain’s tracing capability is intended to be used
in concert with fault injection in order to identify bugs in
distributed applications. Hence our tracing surface need not
be finer-grained than our fault injection capabilities—after all,
what is the use of a richer signal if we cannot act on it? If con-
trol or data crosses a failure boundary (i.e., a node boundary),
a system-call will witness it; if not, it does not correspond to
a fault injection opportunity.

We are also optimistic that the multiplicity of possible runs
will not be a problem in practice. As we describe in Sec-
tion 4, Box of Pain does not record or follow the total order
of system-calls witnessed in a particular execution, but rather
attempts to infer the happens-before partial order of which
the total order is an extension. Hence many concrete execu-
tions collapse into a single abstract causal graph. Of course,
in principle there may still be exponentially many of these
abstract graphs, each corresponding to different communica-
tion patterns (induced by, e.g., delay). Nevertheless it is our
hypothesis (for which we provide evidence in Section 5) that
far from being equally likely, the frequency of these “truly
different” executions follows a power law distribution. This
makes it possible to cover most of the executions by chopping
off the tail wherever resource or time limitations demand.

While these two concerns may limit the tractability of Box
of Pain as a general purpose tracer, we adopt a pragmatic
approach based on our goal of identifying time-of-fault bugs
in distributed systems. Instead of focusing on the (myriad)
possible causes that could trigger such a bug, we focus on
simulating the (few) observable effects of these faults on
communication between nodes in different failure domains.

4 Box of Pain

Box of Pain has three components: a tracer, a tracker, and
an injector. These components all operate together entirely

in userspace, watching a distributed execution unfold. When
run in a loop, Box of Pain will determine if the execution has
been seen before, allowing it to build a collection of traces
that together characterize the relevant behaviors of the system.
Optionally, Box of Pain can be run with a failure specification
that indicates precisely which events to interrupt or modify
as part of fault injection (which we discuss in Section 4.3).
Box of Pain is designed to run in a testing environment for a
system, not in a production environment.

4.1 Tracing

Box of Pain operates primarily through the use of ptrace,
a system-call that allows a process to perform introspection
on another process [19]. Whenever a traced thread (tracee)
issues a system call, the tracee is stopped and Box of Pain
wakes up. This occurs both for system-call entry and exit,
each referred to as an event, and Box of Pain handles each
event in full before signaling the thread to resume. Each event
that Box of Pain handles is appended to a per-thread “event
log”, and is thus in the order that they occur for that thread.
An entry-to-syscall event is indicated like read↓, and a return-
from-syscall event is indicated like read↑.

The ultimate goal of tracing is to construct a partial or-
der of events out of the schedule that Box of Pain observes.
Given just a per-thread event log, we have a partial order (a
collection of total orders, one for each thread), but this par-
tial order contains no constraints on events among threads.
Since the communication pattern between two threads and
the constraints on ordering are equivalent in our model, we
can leverage the information available in a TCP connection to
provide additional edges in the partial order for a given run.

When a socket is created, it is tracked in a per-process
lookup table (in a way that keeps track of changing file de-
scriptors). During a bind↓ event, Box of Pain reads the pro-
cess’s memory to determine the address and port. After the
subsequent accept↑ event, a new socket is tracked (consis-
tent with the semantics of accept). Since it is also tracing the
connect-ing thread, it will see the resultant connect↓ and
connect↑ events, the first of which provides enough informa-
tion for Box of Pain to decide which socket it is connecting
to, but not necessarily which socket returned by accept the
connect-ing thread is actually associated with.

To get this information, Box of Pain issues system-calls
on behalf of the tracees while handling the connect↑ and
accept↑ events. It does this by overwriting the registers of
the tracee to point to a location known to contain a syscall
instruction (determined during the first event handled per-
process), and setting the registers as required for the requested
system-call. In this case, the system-calls are getsockname
and getpeername, which provide sufficient information to
determine the end-points of the TCP stream. The resulting
partial order is shown in Figure 1.

For data transfer, we can use the tracked sockets to watch



bind↑ accept↓ accept↑

connect↑connect↓

Figure 1: The happens-before relationship of accept and
connect system calls that Box of Pain derives. The colors
indicate different threads. The accept↑ cannot occur before
connect↓ occurs, because the latter causes the former.

as TCP traffic is communicated between end-points. When
handling a write↑, Box of Pain tracks the sequence number
of the stream and records to which system-call a particu-
lar range of data belongs. When handling a read↑, Box of
Pain looks through the recorded write system-calls to decide
which writes contributed to the data returned by the read,
thus deriving an order based on the communication pattern of
data transfer. Note that one read can get data from multiple
writes and one write can contribute to multiple reads, or it
can be a one-to-one relationship.

While many of these system-calls have variants (send in-
stead of write, or accept4 instead of accept), the variants
are similar enough that they need little additional processing.
One exception is the calls sendto and recvfrom, however
these calls are infrequently used for TCP communication.

Finally, while Box of Pain traces a distributed system as a
set of threads in processes on a single node, we see it as merely
an engineering effort to extend the tracing infrastructure to
multiple nodes. A single tracer process can run on each node,
forwarding event information to a single, unified tracker node
that processes schedules and computes partial orders.

4.2 Tracking
The tracing infrastructure builds a trace of a distributed sys-
tem that consists of a per-thread event log, where each event
can have multiple parents (as derived by the communication
pattern). The trace can be serialized and viewed as a PDF,
showing the communication pattern. However, executions
may differ between runs, and if we want to be able to get an
idea of the “true” communication pattern between nodes in a
system, we’ll need to observe many of the possible schedules.

Box of Pain facilitates this by allowing previously collected
traces to be reloaded into memory before tracing a new run.
During execution, Box of Pain tries to track each loaded run
by comparing the event that just occurred in the new trace to
the “next” event in each loaded run. “Next” here means, “for
this thread, what was the next witnessed event”. For example,
if thread T records events e followed by e′, then a run is said
to be “followed” if thread T is witnessed executing those
events in the same order, even if another thread executes some
other event in between e and e′. When a particular run cannot
be followed, Box of Pain stops tracking it. If all loaded runs
are not followed, Box of Pain finishes tracing the execution

and serializes the trace as before. If instead, at the end of the
execution, a run is followed, Box of Pain does not serialize
the current trace since it is equivalent to the followed run.

4.3 Fault Injection
When running Box of Pain on a distributed system, we can
provide a fault specification that describes which events to
perturb via fault injection. Box of Pain directly simulates (pos-
sibly infinite) delay and explicit errors. With the tracing in-
frastructure that Box of Pain provides, and the corresponding
derivation of a partial order that reflects the communication
structure of the system, faults in Box of Pain can be thought
of in terms of specifying a particular event. Bug-finding soft-
ware can then consider faults in terms of “after thread T does
x but before y”, improving how targeted faults can be.

Delay is simulated by simply “pausing” a process and re-
suming it after an amount of time (or delaying it indefinitely).
This kind of fault is the simplest to inject, as all that is re-
quired for the fault specification is an event identification. If
a followed run contains such a specification, Box of Pain will
pause the process when it observes it executing that event.

Explicit error manifests more directly as Box of Pain chang-
ing the return value (or parameters) during a system-call. For
example, interrupting a connection between process A and B
is done by changing the socket argument to connect to −1,
thus ensuring that the connection fails, while changing the re-
turn value to a specified error code (such as -ECONNREFUSED).

We can map “real” events into our simulation space via a
combination of manifesting explicit errors, pausing processes,
or silently dropping communications. A lengthy garbage-
collection pause can be emulated by pausing a process for
some time, while a machine crash can be emulated by either
stopping a process indefinitely, restarting the process, or drop-
ping all messages after a point in the partial order. Network
partitions are similar; we can observe the destinations of mes-
sages and drop them (either silently or via an error) if we
simulate them crossing a network partition. Later, healing the
network partition can manifest as removing those fault rules.

5 Preliminary Experiments

We ran the Redis key/value store [21] under Box of Pain, and
counted how many unique runs were generated varying the
number of commands performed and the number of clients.
We then re-ran our two-client scenario, but simulated network
congestion by randomly forcing writes to act as if there were
full TCP buffers (manually reducing the count argument of
the write system-call to be less than half its requested value).

Figures 2 and 3 show the distribution of runs for execu-
tions varying the parameters as described over 2000 iterations.
The graphs show the runs that make up 99% of the resulting
schedules. Each client executed a simple GET request for all
experiments except the experiment where we increased the



0 20 40 60 80 100
Run

0.5

1.0

Cu
m
ul
at
iv
e
Fr
eq
ue
nc
y

of
O
cc
ur
re
nc
e

1cl
2cl
2cl-mc

Figure 2: Cumulative distribution of runs for one client (1cl),
two clients (2cl), and many commands (2cl-mc).

0 100 200 300
Run

0.0

0.5

1.0

Cu
m
ul
at
iv
e
Fr
eq
ue
nc
y

of
O
cc
ur
re
nc
e

2cl-wt
4cl

Figure 3: Cumulative distribution of runs for two clients with
full-TCP-buffer simulation (2cl-wt) and four clients (4cl).

number of commands executed by each client (2cl-mc), in
which case each client executed four GET and SET commands.
In all cases, the distribution rapidly drops after a high initial
value, indicating that the majority of runs manifests as one
of a few schedules, and while there is a long tail, we can un-
derstand much of the system behavior without an intractable
number of schedules. Increasing the number of commands
issued by each client did not dramatically impact the width
of the distribution, indicating that bugs arising from complex
series of interactions are tractable to find. While the results
in Figure 3 have longer tails, some runs are still more likely
than others and 99% of runs fall within approximately 300
already known schedules after 2000 iterations (which took
well under an hour to generate).

Most of the non-determinism in the many-clients case
comes from clients racing to connect. An optimization we
plan to make is to derive an equivalence between clients in
some cases, thereby collapsing multiple equivalent runs that
differ by client connect order into a single run.

6 The Future for Box of Pain

As excited as we are to introduce Box of Pain and to argue its
potential, we must admit that we have barely begun using it.
In this section we describe what comes next, from first steps
to a (we believe) far-reaching vision.

Box of Pain combines two concerns—tracing and fault
injection—that are typically considered separate. Before tack-
ling our larger ambitions, we plan to demonstrate its efficacy

for both independent tasks. It remains to be shown that it is
possible to extrapolate from our low-level traces something
akin to the application-level signal provided by call graph
tracing. Tracing a large-scale microservice-based application
with Box of Pain and showing that the call graphs (e.g., ob-
tained using Zipkin) could be inferred from our traces would
provide evidence that technologies like Box of Pain could
obviate the need for painstaking application-level instrumen-
tation in some cases. Similarly, we will compare Box of Pain
with the state-of-the-art in distributed fault injection. While
most of these approaches focus on triggering [8] or simu-
lating [7] fault events such as machine crashes, I/O errors,
memory pressure and corruption, system load, and so on, our
approach focuses instead on simulating the observable effects
of such faults from the perspective of other processes with
which they communicate. We expect that this much smaller
fault surface will be sufficient to uncover bugs in fault toler-
ance logic and much more efficient at doing so.

From the beginning our intention has been to use Box of
Pain in a tight loop with a trace-driven bug finder such as
LDFI. To date, LDFI has shown promise in verifying proto-
cols [6] as well as in finding bugs in large-scale, microservice-
based applications [5]. In the former, programs must be speci-
fied in a custom relational logic language (similar to solvers
such as Alloy [14]), limiting applicability to real-world sys-
tems. In the latter, the systems must already be instrumented
to support call graph tracing and fine-grained fault injection.
By addressing both concerns at the system level, Box of Pain
promises to open up the LDFI approach to arbitrary, unin-
strumented systems, including distributed data management
systems, configuration services, and message queues.

7 Conclusion

In our field there are a great many things that are theoreti-
cally possible but hopelessly impractical—so much so that
the idea is a cliche. However, it is a rare day on which we
learn that something which is not possible in theory is not
merely possible, but practical. Box of Pain’s design for trac-
ing and tracking is predicated on the idea that fault injection
naturally fits with tracing; after all, if you want targeted fault
injection, what better place to do it than in the tracer itself?
The coevolution of these technologies will open a wealth of
possibilities that we can make use of to further close the gap
between the bugs we can easily find and the bugs we could
find if only we had sufficient tracing, a bug-finder, and infras-
tructure support—all without the need for tracing forethought
or huge engineering efforts. We have initial evidence that not
only is it possible to trace a distributed system at the system-
call level and recover happens-before such that we can decide
and target faults to inject, but we can do this without the non-
determinism becoming intractable. We are excited to keep
exploring this work, and evaluating more complex systems,
looking for bugs, and further evaluating our hypothesis.



8 Discussion

Box of Pain and the philosophy that underlies it hinge on
three design decisions, all of them potentially controversial.
We want to draw attention to these decisions as well as to
argue that they are all the sort of “hot takes” that make for
productive discussion in workshops such as HotCloud.

First, our shift in focus from modeling the phenomena of
partial failure at faulty nodes to modeling merely the observ-
able effects of these faults at other nodes with which they
communicate makes Box of Pain look very different from
other fault injectors. The advantages are obvious: a much
smaller experiment surface means that we can cover the space
of possible experiments much more efficiently. But it remains
to be rigorously demonstrated that this approach will uncover
all of the bugs that classic fault injection would!

Second, we have presented some compelling evidence sup-
porting our (arguable!) hypothesis that of the combinatori-
ally many possible executions of a distributed system, the
likelihood of executions producing different partial orders of
system-calls fall off steeply. We believe it to be true, and are
excited about the idea of finding more ways to provide empiri-
cal support that the space of abstract Box of Pain traces indeed
follow a power law distribution. If true, it has far-reaching
practical consequences. Searching all executions is never go-
ing to be tractable, but we can cut off the tail wherever our
resource limits require and be secure that nearly all of the
system’s executions have been considered. It is not lost on us
that all of the experiments in this paper simulate a distributed
system on a single node.

Although the number of runs needed does scale with system
complexity, the drop-off in run likelihood combined with our
lightweight approach moves the problem into the potentially
tractable realm. We may also be able to improve our algorithm
for comparing runs, which has the potential to further reduce
runs (we saw this already once before during development).

Finally, some system designers will strongly disagree with
our argument that tracing and fault injection infrastructure
should co-evolve in the first place. Sure, it may seem like a
good idea to couple these concerns now, but later we may
regret not separating them cleanly. We strongly believe—and
are prepared to debate this matter in person—that the re-
quirements of distributed tracing and fault injection are so
dependent on one another that these constraints will never be
problematic. Any evolution of functionality in one that is not
matched in the other is a lost opportunity.

These design decisions could be misguided. We like to
think, however, that the usefulness of Box of Pain as an artifact
does not depend on all of our assumptions being correct.

9 Acknowledgements

We would like to thank Kyle Kingsbury, Ashutosh Raina,
Sabrina Tsui and Heiner Litz for their insightful feedback on

early drafts of this paper, as well as the anonymous reviewers
for their time and helpful comments and criticism. This work
was supported by the NSF grants #1652368, #IIP-1266400,
the industrial partners of the Center for Research in Storage
Systems, and gifts from eBay, Facebook and Huawei.

References

[1] Honeycomb. https://honeycomb.io/, 2016. Ac-
cessed 2019-03-01.

[2] Lightstep. http://lightstep.com/, 2016. Accessed
2019-03-01.

[3] The OpenTracing Project. http://opentracing.io/,
2016. Accessed 2019-03-01.

[4] Gautam Altekar and Ion Stoica. ODR: Output-
deterministic replay for multicore debugging. In Pro-
ceedings of the ACM SIGOPS 22Nd Symposium on Op-
erating Systems Principles (SOSP ’09), pages 193–206.
ACM, 2009.

[5] Peter Alvaro, Kolton Andrus, Ali Basiri, Lorin
Hochstein, Casey Rosenthal, and Chris Sanden. Au-
tomating Failure Testing Research at Internet Scale. In
submission.

[6] Peter Alvaro, Joshua Rosen, and Joseph M Hellerstein.
Lineage-driven fault injection. In Proceedings of the
2015 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’15, pages 331–346. ACM,
2015.

[7] Netflix Technical Blog. FIT : Failure Injection
Testing. http://techblog.netflix.com/2014/10/
fit-failure-injection-testing.html, 2014. Ac-
cessed 2019-03-01.

[8] Netflix Technology Blog. The Netflix Simian
Army. http://techblog.netflix.com/2011/07/
netflix-simian-army.html, July 2011. Accessed
2019-03-01.

[9] Yunji Chen, Shijin Zhang, Qi Guo, Ling Li, Ruiyang
Wu, and Tianshi Chen. Deterministic replay: A survey.
ACM Computing Surveys, 48(2):17:1–17:47, September
2015.

[10] James Cheney, Laura Chiticariu, and Wang-Chiew Tan.
Provenance in Databases: Why, How, and Where. Foun-
dations and Trends in Databases, 1(4):379–474, April
2009.

[11] Scott Dawson, Farnam Jahanian, and Todd Mitton. OR-
CHESTRA: A Fault Injection Environment for Dis-
tributed Systems. In In Proceedings of the International

https://honeycomb.io/
http://lightstep.com/
http://opentracing.io/
http://techblog.netflix.com/2014/10/fit-failure-injection-testing.html
http://techblog.netflix.com/2014/10/fit-failure-injection-testing.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html


Symposium on Fault-Tolerant Computing (FTCS ’96),
1996.

[12] Patrice Godefroid. Model Checking for Programming
Languages Using VeriSoft. In In Proceedings of The
24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’97), 1997.

[13] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Al-
varo, Joseph M. Hellerstein, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, Koushik Sen, and Dhruba
Borthakur. FATE and DESTINI: A framework for cloud
recovery testing. In In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Imple-
mentation (NSDI ’11), pages 238–252. USENIX Asso-
ciation, 2011.

[14] Daniel Jackson. Software Abstractions: Logic, Lan-
guage, and Analysis. The MIT Press, 2006.

[15] Sven Köhler, Bertram Ludäscher, and Daniel Zinn. First-
Order Provenance Games. In In Search of Elegance in
the Theory and Practice of Computation, volume 8000
of LNCS. Springer, 2013.

[16] Haopeng Liu, Xu Wang, Guangpu Li, Shan Lu, Feng
Ye, and Chen Tian. FCatch: Automatically Detecting
Time-of-fault Bugs in Cloud Systems. ASPLOS ’18.

[17] Alexandra Meliou and Dan Suciu. Tiresias: The
Database Oracle for How-to Queries. In Proceedings
of the 2012 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’12, pages 337–348,
2012.

[18] Madanlal Musuvathi, David Y. W. Park, Andy Chou,
Dawson R. Engler, and David L. Dill. CMC: A Prag-
matic Approach to Model Checking Real Code. SIGOPS
Operating Systems Review, 36(SI):75–88, December
2002.

[19] The Linux Man-pages Project. ptrace(2). Linux Pro-
grammers Manual, 2018.

[20] Sean Riddle, Sven Köhler, and Bertram Ludäscher. To-
wards Constraint Provenance Games. In 6th USENIX
Workshop on the Theory and Practice of Provenance
(TaPP ’14).

[21] Salvatore Sanfilippo. Redis. https://redis.io, 2019.
Accessed 2019-03-01.

[22] Yuri Shkuro. Jaeger: Uber’s Distributed Tracing
System. https://uber.github.io/jaeger/, March
2017. Accessed 2019-03-01.

[23] Benjamin H. Sigelman, Luiz André Barroso, Mike
Burrows, Pat Stephenson, Manoj Plakal, Donald
Beaver, Saul Jaspan, and Chandan Shanbhag. Dap-
per, a Large-Scale Distributed Systems Tracing
Infrastructure. Technical report, Google, Inc., 2010.
http://research.google.com/archive/papers/
dapper-2010-1.pdf; Accessed 2019-03-01.

[24] Yang Wu, Andreas Haeberlen, Wenchao Zhou, and
Boon Thau Loo. Answering Why-not Queries in
Software-defined Networks with Negative Provenance.
In Proceedings of the 12th ACM Workshop on Hot Top-
ics in Networks (HotNets ’13), pages 3:1–3:7. ACM,
2013.

[25] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Ro-
drigues, Xu Zhao, Yongle Zhang, Pranay U. Jain, and
Michael Stumm. Simple testing can prevent most crit-
ical failures: An analysis of production failures in dis-
tributed data-intensive systems. In Proceedings of the
11th USENIX Conference on Operating Systems De-
sign and Implementation (OSDI ’14), pages 249–265.

USENIX Association, 2014.

https://redis.io
https://uber.github.io/jaeger/
http://research.google.com/archive/papers/dapper-2010-1.pdf
http://research.google.com/archive/papers/dapper-2010-1.pdf

	Introduction
	Background
	A Partial Argument of a Partial Order
	Box of Pain
	Tracing
	Tracking
	Fault Injection

	Preliminary Experiments
	The Future for Box of Pain
	Conclusion
	Discussion
	Acknowledgements

