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FOR  THIS RESEARCH FOR PRACTICE entry, we asked 
Ram Alagappan, an assistant professor at the 
University of Illinois Urbana Champaign, to survey 
recent research on crash consistency—the guarantee 
that application data will survive system crashes. 
Unlike memory consistency, crash consistency is an 
end-to-end concern, requiring not only that the lower 
levels of the system (for example, the file system) are 
implemented correctly, but also that their interfaces 
are used correctly by applications.

Alagappan has chosen a collection of papers that 
reflects this complexity, traversing the stack from 
applications all the way to hardware. The first paper 
focuses on the file system—upon which applications 
that hope to provide crash consistency must rely—and 
uses bug-finding techniques to witness violations of 

interface-level guarantees. The second 
moves up the stack, rethinking the in-
terfaces that file systems provide to ap-
plication programmers to make it eas-
ier to write crash-consistent programs. 
In the last, the plot thickens with the 
new challenges that persistent memory 
brings to crash consistency. It explores 
how to mitigate those challenges using 
cache-coherent accelerators. I learned 
a lot reading these selections, and I am 
sure that you will too.

—Peter Alvaro

Peter Alvaro is an associate professor of computer 
science at the University of California Santa Cruz, 
where he leads the Disorderly Labs research group 
(disorderlylabs.github.io).

A critical challenge that storage sys-
tems face is how to update persistent 
data correctly despite system crashes 
(caused by a power loss or kernel bugs). 
At a high level, the problem is that the 
system may crash at any time when it 
is in the middle of updating its persis-
tent structures, leaving the data in an 
inconsistent state. A storage system is 
deemed crash-consistent if it can re-
cover the persistent data it stores to a 
meaningful state after crashes.

Crash consistency is of paramount 
importance for two main reasons:

	˲ System crashes are inevitable. 
Even well-managed data centers suf-
fer from occasional power-loss events; 
further, increasing software complex-
ity means more bugs and, thus, crash-
es. As a result, every storage system, 
including local file systems, storage 
applications that run atop them, and 
persistent-memory programs, must 
ensure crash consistency.

	˲ Crash consistency is critical from 
a user and application perspective. A 
storage system that can lose or corrupt 
data upon a crash can be disastrous, 
leading to a loss of trust and millions 
of dollars in revenue.

Achieving crash consistency is chal-
lenging. Storage systems usually execute 
a carefully crafted sequence of modifi-
cations to ensure they can safely move 
from one consistent state to another, 
despite crashes. Doing so correctly, how-
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ever, is full of nuance and challenging 
even for seasoned programmers.

This article discusses three ways the 
systems research community strives 
to improve the state of affairs: Find-
ing and fixing crash-consistency bugs; 
developing new abstractions that ease 
crash consistency; and exploiting new 
hardware to implement crash consis-
tency. I have chosen papers in each 
of these categories. By no means are 
these the only papers or even the gener-
al ways that improve crash consistency, 
but they do provide a good overview of 
the problem and solution space.

Finding and Fixing Crash-Consistency Bugs
J. Mohan, A. Martinez, S. Ponnapalli,  
P. Raju, V. Chidambaram.
Finding crash-consistency bugs with bounded 
black-box crash testing. In Proceedings of the 
13th Unix Symposium on Operating Systems 
Design and Implementation; https://www.
usenix.org/system/files/osdi18-mohan.pdf

Perhaps the most pragmatic way to 
improve crash consistency of storage 
systems is to find bugs in crash-consis-
tency code and fix them. This paper by 
Mohan et al. finds crash-consistency 
bugs in local file systems, the building 
block of many storage systems. A file 

system is crash-consistent if it can safe-
ly recover its internal metadata (such as 
inodes and bitmaps) and user data that 
was explicitly persisted (using fsync or 
similar operations) after a crash.

One challenge in testing file sys-
tems for crash consistency is that 
there are innumerable workloads, and 
crashes can occur at any point during 
the workload. A testing approach that 
exhaustively explores this search space 
is impractical. This paper addresses 
the problem by first studying existing 
crash-consistency bugs in file systems. 
A key observation from the study is that 
workloads with just three or fewer file-
system operations can trigger most 
crash-consistency bugs.

The authors also realize that it is suf-
ficient to inject crashes only after per-
sistent points (that is, operations such 
as fsync that explicitly persist data). 
This choice makes the correctness cri-
terion very clear: While there are no 
guarantees for updates that are not ex-
plicitly persisted, ones that have been 
persisted (via fsync or similar opera-
tions) must be safe. While this strategy 
does not guarantee finding all bugs, it 
offers a practical way to expose serious 
ones, making the approach useful.

The authors devise testing tools 
based on these insights and apply the 
tools to many file systems. One neat as-
pect of these tools is that they work in a 
black-box fashion: No file-system code 
modification is required for testing, so 
they readily apply to many file systems. 
The results show that even popular file 
systems can lose persisted data in the 
event of a crash. For example, Btrfs 
can lose a renamed file after a crash. 
The existence of such severe bugs in 
mature systems shows how building 
crash-consistent systems is a challeng-
ing task. Fortunately, fixing the bugs 
once they are found is often straightfor-
ward. For example, file-system devel-
opers were able to fix some of the bugs 
found by the authors’ testing tools.

Better Abstractions to Ease Crash 
Consistency
T.S. Pillai, R. Alagappan, L. Lu, V. Chidambaram, 
A.C. Arpaci-Dusseau, R.H. Arpaci-Dusseau.
Application crash consistency and performance 
with CCFS. In Proceedings of the 15th Usenix 
Conference on File and Storage Technology; 
https://www.usenix.org/system/files/
conference/fast17/fast17_pillai.pdf

While file systems implement mecha-
nisms to keep their internal metadata 
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tercepts requests for cache lines from 
the CPU. Loads are simply proxied to 
the PM on the device. Stores are more 
interesting because the device needs to 
ensure crash consistency upon stores. 
Upon a store, the device gets a message 
from the host CPU about which cache 
line will be modified. This allows the 
device to perform undo logging; in par-
ticular, the device fetches the old ver-
sion (of the cache line being modified) 
from PM and logs the address and old 
value. If a crash occurs, the undo log 
can be used to roll back to the old (con-
sistent) version. The proposed design 
reduces logging costs using asynchro-
nous log writes and grouping updates.

This approach offers two main ad-
vantages: First, it imposes low over-
head (for example, no traps, tracking 
at cache-line granularity); second, it 
provides a black-box way to transform 
a volatile data structure into its crash-
consistent persistent counterpart with 
no code changes.

Overall, this is a new and exciting di-
rection in realizing crash consistency 
in PM devices. More broadly, this paper 
provides a glimpse into how emerging 
hardware can be exploited to imple-
ment storage functionality.

Conclusion
Keeping data safe in the presence of 
crashes is a fundamental problem in 
storage systems. Although the high-
level ideas for crash consistency are 
relatively well understood, realizing 
them in practice is surprisingly com-
plex and full of challenges. The sys-
tems research community is actively 
working on solving this challenge, and 
the papers examined here offer three 
solutions.

Another promising approach that 
is getting traction in the systems com-
munity is to use software verification to 
prove crash consistency. This approach 
is particularly well suited for new stor-
age systems built from scratch. It 
would be interesting to see which of 
these approaches—or a combination 
of them—would be widely adopted in 
practice.	

Ramnatthan Alagappan is an assistant professor at the 
University of Illinois Urbana Champaign, USA. He was 
previously a postdoctoral researcher at VMware Research.
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crash-safe, they do little to protect ap-
plication data. Applications, thus, do 
so on their own by modifying their data 
via a carefully implemented update 
protocol (a sequence of system calls 
such as writes, fsyncs, and renames). 
Unfortunately, while the high-level 
ideas to construct such protocols (for 
example, write-ahead logging) are well 
understood, implementing them in a 
crash-consistent manner on modern 
file systems is surprisingly difficult.

The problem is that the exact se-
mantics of how the file system will 
persist the issued operations is un-
derspecified. Specifically, file systems 
may reorder operations for efficiency 
reasons; thus, when the system recov-
ers from a crash, a later write may have 
reached the disk before an earlier one. 
As a result, applications must reason 
about all possible reordered on-disk 
states after a crash, an arduous task 
even for experienced programmers.

With just a moderately complex up-
date protocol, developers must manu-
ally reason about a multitude of states. 
One way to avoid reordering would be 
to persist the system calls in the appli-
cation-issued order. However, forcing 
every operation synchronously to the 
storage is prohibitively expensive.

This paper introduces a new ab-
straction called streams to ease the 
construction of crash-consistent up-
date protocols without any perfor-
mance penalty. The key idea is that 
writes within a stream are always per-
sisted in the issued order, obviating 
the need to reason about reordering 
in the recovery protocol. Writes from 
different streams can be reordered, 
however, a fact that file-system imple-
mentations can exploit to realize high-
er performance. Applications can take 
advantage of the stream abstraction 
with little code modification: They just 
need to issue one system call setstream 
at the beginning. All updates issued 
in the established stream will then be 
persisted to storage.

Crash-consistent File System (CCFS) 
implements the stream abstraction. 
It also implements new mechanisms 
to avoid false dependencies across 
streams. Several applications—such 
as Git, LevelDB, and Apache ZooKeep-
er—are crash-consistent on CCFS, but 
they can lose or corrupt data when run 
on ext4, the journaling file system for 

Linux. Further, CCFS approximates the 
performance of the reordering ext4 file 
system. Overall, this paper shows that 
a new file-system abstraction and a 
careful implementation can ease crash 
consistency for applications without 
forgoing performance.

Exploiting Emerging Hardware to 
Implement Crash Consistency
A. Bhardwaj, T. Thornley, V. Pawar,  
R. Achermann, G. Zellweger, R. Stutsman.
Cache-coherent accelerators for persistent 
memory crash consistency. In Proceedings 
of the 14th ACM Workshop on Hot Topics in 
Storage and File Systems; https://dl.acm.org/
doi/pdf/10.1145/3538643.3539752

Persistent memory (PM) offers an in-
terface and performance like that 
of DRAM (dynamic random-access 
memory). It can be accessed via load 
and store instructions, and its per-
formance can approximate DRAM’s 
performance. Unlike DRAM, however, 
PM is nonvolatile: Data stored on PM 
can be recovered after a crash. Thus, 
persistent structures on PM must be 
updated in a crash-consistent manner. 
Emerging accelerators connected over 
a cache-coherent link (for example, 
CXL) can offer a new way to implement 
(black-box) crash consistency for PM.

Most existing PM systems ensure 
crash consistency through WAL (write-
ahead logging). Sometimes the devel-
opers handcraft the WAL protocol; oth-
er times, it is automated via a compiler 
pass or software library such as Intel’s 
PMDK (Persistent Memory Develop-
ment Kit) to log all PM stores. In either 
case, logging imposes overhead be-
cause of the extra log writes and order-
ing constraints (via instructions to use 
the hardware caches). Sometimes such 
update tracking and logging can also 
be done by the hardware (using write 
protection). This approach incurs huge 
trap overheads, however, and updates 
can be tracked only at page granularity.

This paper observes that PM up-
dates can be interposed and logged 
with low overhead using cache-coher-
ent accelerators. It envisions a system 
that works (at a high level) as follows. 
A persistence accelerator device (PAX) 
with persistent memory is attached via 
a cache-coherent interconnect to the 
host. A process can map and access this 
memory using regular load and store 
instructions. The device, however, in-




