
52 COMMUNICATIONS OF THE ACM | JANUARY 2023 | VOL. 66 | NO. 1

practice

FOR THIS RESEARCH FOR PRACTICE entry, we asked
Ram Alagappan, an assistant professor at the
University of Illinois Urbana Champaign, to survey
recent research on crash consistency—the guarantee
that application data will survive system crashes.
Unlike memory consistency, crash consistency is an
end-to-end concern, requiring not only that the lower
levels of the system (for example, the file system) are
implemented correctly, but also that their interfaces
are used correctly by applications.

Alagappan has chosen a collection of papers that
reflects this complexity, traversing the stack from
applications all the way to hardware. The first paper
focuses on the file system—upon which applications
that hope to provide crash consistency must rely—and
uses bug-finding techniques to witness violations of

interface-level guarantees. The second
moves up the stack, rethinking the in-
terfaces that file systems provide to ap-
plication programmers to make it eas-
ier to write crash-consistent programs.
In the last, the plot thickens with the
new challenges that persistent memory
brings to crash consistency. It explores
how to mitigate those challenges using
cache-coherent accelerators. I learned
a lot reading these selections, and I am
sure that you will too.

—Peter Alvaro

Peter Alvaro is an associate professor of computer
science at the University of California Santa Cruz,
where he leads the Disorderly Labs research group
(disorderlylabs.github.io).

A critical challenge that storage sys-
tems face is how to update persistent
data correctly despite system crashes
(caused by a power loss or kernel bugs).
At a high level, the problem is that the
system may crash at any time when it
is in the middle of updating its persis-
tent structures, leaving the data in an
inconsistent state. A storage system is
deemed crash-consistent if it can re-
cover the persistent data it stores to a
meaningful state after crashes.

Crash consistency is of paramount
importance for two main reasons:

	˲ System crashes are inevitable.
Even well-managed data centers suf-
fer from occasional power-loss events;
further, increasing software complex-
ity means more bugs and, thus, crash-
es. As a result, every storage system,
including local file systems, storage
applications that run atop them, and
persistent-memory programs, must
ensure crash consistency.

	˲ Crash consistency is critical from
a user and application perspective. A
storage system that can lose or corrupt
data upon a crash can be disastrous,
leading to a loss of trust and millions
of dollars in revenue.

Achieving crash consistency is chal-
lenging. Storage systems usually execute
a carefully crafted sequence of modifi-
cations to ensure they can safely move
from one consistent state to another,
despite crashes. Doing so correctly, how-

Research
for Practice:
Crash
Consistency

DOI:10.1145/3570521

	� Article development led by
queue.acm.org

Keeping data safe in the presence
of crashes is a fundamental problem.

BY RAMNATTHAN ALAGAPPAN

https://dx.doi.org/10.1145/3570521
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3570521&domain=pdf&date_stamp=2022-12-20

JANUARY 2023 | VOL. 66 | NO. 1 | COMMUNICATIONS OF THE ACM 53

I
M

A
G

E
 B

Y
 C

H
U

M
A

K
O

V
 O

L
E

G

ever, is full of nuance and challenging
even for seasoned programmers.

This article discusses three ways the
systems research community strives
to improve the state of affairs: Find-
ing and fixing crash-consistency bugs;
developing new abstractions that ease
crash consistency; and exploiting new
hardware to implement crash consis-
tency. I have chosen papers in each
of these categories. By no means are
these the only papers or even the gener-
al ways that improve crash consistency,
but they do provide a good overview of
the problem and solution space.

Finding and Fixing Crash-Consistency Bugs
J. Mohan, A. Martinez, S. Ponnapalli,
P. Raju, V. Chidambaram.
Finding crash-consistency bugs with bounded
black-box crash testing. In Proceedings of the
13th Unix Symposium on Operating Systems
Design and Implementation; https://www.
usenix.org/system/files/osdi18-mohan.pdf

Perhaps the most pragmatic way to
improve crash consistency of storage
systems is to find bugs in crash-consis-
tency code and fix them. This paper by
Mohan et al. finds crash-consistency
bugs in local file systems, the building
block of many storage systems. A file

system is crash-consistent if it can safe-
ly recover its internal metadata (such as
inodes and bitmaps) and user data that
was explicitly persisted (using fsync or
similar operations) after a crash.

One challenge in testing file sys-
tems for crash consistency is that
there are innumerable workloads, and
crashes can occur at any point during
the workload. A testing approach that
exhaustively explores this search space
is impractical. This paper addresses
the problem by first studying existing
crash-consistency bugs in file systems.
A key observation from the study is that
workloads with just three or fewer file-
system operations can trigger most
crash-consistency bugs.

The authors also realize that it is suf-
ficient to inject crashes only after per-
sistent points (that is, operations such
as fsync that explicitly persist data).
This choice makes the correctness cri-
terion very clear: While there are no
guarantees for updates that are not ex-
plicitly persisted, ones that have been
persisted (via fsync or similar opera-
tions) must be safe. While this strategy
does not guarantee finding all bugs, it
offers a practical way to expose serious
ones, making the approach useful.

The authors devise testing tools
based on these insights and apply the
tools to many file systems. One neat as-
pect of these tools is that they work in a
black-box fashion: No file-system code
modification is required for testing, so
they readily apply to many file systems.
The results show that even popular file
systems can lose persisted data in the
event of a crash. For example, Btrfs
can lose a renamed file after a crash.
The existence of such severe bugs in
mature systems shows how building
crash-consistent systems is a challeng-
ing task. Fortunately, fixing the bugs
once they are found is often straightfor-
ward. For example, file-system devel-
opers were able to fix some of the bugs
found by the authors’ testing tools.

Better Abstractions to Ease Crash
Consistency
T.S. Pillai, R. Alagappan, L. Lu, V. Chidambaram,
A.C. Arpaci-Dusseau, R.H. Arpaci-Dusseau.
Application crash consistency and performance
with CCFS. In Proceedings of the 15th Usenix
Conference on File and Storage Technology;
https://www.usenix.org/system/files/
conference/fast17/fast17_pillai.pdf

While file systems implement mecha-
nisms to keep their internal metadata

54 COMMUNICATIONS OF THE ACM | JANUARY 2023 | VOL. 66 | NO. 1

practice

tercepts requests for cache lines from
the CPU. Loads are simply proxied to
the PM on the device. Stores are more
interesting because the device needs to
ensure crash consistency upon stores.
Upon a store, the device gets a message
from the host CPU about which cache
line will be modified. This allows the
device to perform undo logging; in par-
ticular, the device fetches the old ver-
sion (of the cache line being modified)
from PM and logs the address and old
value. If a crash occurs, the undo log
can be used to roll back to the old (con-
sistent) version. The proposed design
reduces logging costs using asynchro-
nous log writes and grouping updates.

This approach offers two main ad-
vantages: First, it imposes low over-
head (for example, no traps, tracking
at cache-line granularity); second, it
provides a black-box way to transform
a volatile data structure into its crash-
consistent persistent counterpart with
no code changes.

Overall, this is a new and exciting di-
rection in realizing crash consistency
in PM devices. More broadly, this paper
provides a glimpse into how emerging
hardware can be exploited to imple-
ment storage functionality.

Conclusion
Keeping data safe in the presence of
crashes is a fundamental problem in
storage systems. Although the high-
level ideas for crash consistency are
relatively well understood, realizing
them in practice is surprisingly com-
plex and full of challenges. The sys-
tems research community is actively
working on solving this challenge, and
the papers examined here offer three
solutions.

Another promising approach that
is getting traction in the systems com-
munity is to use software verification to
prove crash consistency. This approach
is particularly well suited for new stor-
age systems built from scratch. It
would be interesting to see which of
these approaches—or a combination
of them—would be widely adopted in
practice.	

Ramnatthan Alagappan is an assistant professor at the
University of Illinois Urbana Champaign, USA. He was
previously a postdoctoral researcher at VMware Research.

Copyright held by owner/author.
Publication rights licensed to ACM.

crash-safe, they do little to protect ap-
plication data. Applications, thus, do
so on their own by modifying their data
via a carefully implemented update
protocol (a sequence of system calls
such as writes, fsyncs, and renames).
Unfortunately, while the high-level
ideas to construct such protocols (for
example, write-ahead logging) are well
understood, implementing them in a
crash-consistent manner on modern
file systems is surprisingly difficult.

The problem is that the exact se-
mantics of how the file system will
persist the issued operations is un-
derspecified. Specifically, file systems
may reorder operations for efficiency
reasons; thus, when the system recov-
ers from a crash, a later write may have
reached the disk before an earlier one.
As a result, applications must reason
about all possible reordered on-disk
states after a crash, an arduous task
even for experienced programmers.

With just a moderately complex up-
date protocol, developers must manu-
ally reason about a multitude of states.
One way to avoid reordering would be
to persist the system calls in the appli-
cation-issued order. However, forcing
every operation synchronously to the
storage is prohibitively expensive.

This paper introduces a new ab-
straction called streams to ease the
construction of crash-consistent up-
date protocols without any perfor-
mance penalty. The key idea is that
writes within a stream are always per-
sisted in the issued order, obviating
the need to reason about reordering
in the recovery protocol. Writes from
different streams can be reordered,
however, a fact that file-system imple-
mentations can exploit to realize high-
er performance. Applications can take
advantage of the stream abstraction
with little code modification: They just
need to issue one system call setstream
at the beginning. All updates issued
in the established stream will then be
persisted to storage.

Crash-consistent File System (CCFS)
implements the stream abstraction.
It also implements new mechanisms
to avoid false dependencies across
streams. Several applications—such
as Git, LevelDB, and Apache ZooKeep-
er—are crash-consistent on CCFS, but
they can lose or corrupt data when run
on ext4, the journaling file system for

Linux. Further, CCFS approximates the
performance of the reordering ext4 file
system. Overall, this paper shows that
a new file-system abstraction and a
careful implementation can ease crash
consistency for applications without
forgoing performance.

Exploiting Emerging Hardware to
Implement Crash Consistency
A. Bhardwaj, T. Thornley, V. Pawar,
R. Achermann, G. Zellweger, R. Stutsman.
Cache-coherent accelerators for persistent
memory crash consistency. In Proceedings
of the 14th ACM Workshop on Hot Topics in
Storage and File Systems; https://dl.acm.org/
doi/pdf/10.1145/3538643.3539752

Persistent memory (PM) offers an in-
terface and performance like that
of DRAM (dynamic random-access
memory). It can be accessed via load
and store instructions, and its per-
formance can approximate DRAM’s
performance. Unlike DRAM, however,
PM is nonvolatile: Data stored on PM
can be recovered after a crash. Thus,
persistent structures on PM must be
updated in a crash-consistent manner.
Emerging accelerators connected over
a cache-coherent link (for example,
CXL) can offer a new way to implement
(black-box) crash consistency for PM.

Most existing PM systems ensure
crash consistency through WAL (write-
ahead logging). Sometimes the devel-
opers handcraft the WAL protocol; oth-
er times, it is automated via a compiler
pass or software library such as Intel’s
PMDK (Persistent Memory Develop-
ment Kit) to log all PM stores. In either
case, logging imposes overhead be-
cause of the extra log writes and order-
ing constraints (via instructions to use
the hardware caches). Sometimes such
update tracking and logging can also
be done by the hardware (using write
protection). This approach incurs huge
trap overheads, however, and updates
can be tracked only at page granularity.

This paper observes that PM up-
dates can be interposed and logged
with low overhead using cache-coher-
ent accelerators. It envisions a system
that works (at a high level) as follows.
A persistence accelerator device (PAX)
with persistent memory is attached via
a cache-coherent interconnect to the
host. A process can map and access this
memory using regular load and store
instructions. The device, however, in-

