
A Realistic Evaluation of Optimistic Dynamic Voting

Darrell D. E. Long
Jehan-François Pâris

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, San Diego
La Jolla, California 92093

Proceedings of the Seventh Symposium on Reliable Distributed Systems, Columbus, OH, 1988, pp. 129–137.

Abstract

When data is replicated, an access protocol must be chosen to insure the presentation of a consistent view
of the data. Protocols based on quorum consensus provide good availability with the added benefit of mutual
exclusion. Of the protocols based on quorum consensus, the dynamic voting protocols provide the highest known
availability.

We describe a dynamic voting protocol that does not need the instantaneous state information required by the
same performance as the original dynamic voting in the asymptotic case, and quickly converges to it for realistic
access rates. Our protocol does this at a cost in network similar to that of statistic majority consensus voting.

The first realistic analysis of the availability afforded by dynamic voting protocols is presented, taking the ac-
cess frequency into account. The analysis confirms our hypothesis that delaying state information does not ap-
preciably affect availability. Discrete event simulation is used to confirm and to extend the results we obtain using
analytic models.

Keywords– file consistency, fault-tolerant systems, replicated files, majority consensus voting.

1 Introduction

In a distributed system, data are often replicated for protection against site failures and network partitions. Through
the use of replication, increased availability and reliability can be obtained. The availability of a data object is the
probability that the system is in a state where an access request for that data object will be granted. The reliability
of a data object is the probability that a time t there has been no sequence of failures such that access requests
would be denied at any time during the interval beginning at the initial configuration.

When data is replicated at several sites an access policy must be chosen to insure a consistent view of the data
so that it appears as though there were only a single replica of the data. The view presented to the user must remain
consistent even in the presence of site failures and network partitions. Sites recovering from a failure must present
the data stored at that site in such a way that it is consistent with the global view of the data.

Consensus bases protocols provide consistency in the presence of site failures and network partitions. They
also provide the added benefit of mutual partitions. The simplest consensus protocol is static majority consensus
voting [1, 2, 3, 4, 5]. Static majority consensus voting provides consistency control and mutual exclusion, but does
not provide the highest possible availability since it requires that a majority of the sites be accessible for an access
request to be granted.

Authors’ present addresses: D.Long, CIS Board of studies, University of California, Santa Cruz, Ca 956064; J,-F Pâris, Department of Com-
puter Science, University of Houston, Houston, TX 77004. This work was supported in part by a grant from the NCR Corporation and the
University of California MICRO program

1

An attempt to remedy the short-comings of static majority consensus voting, known as Dynamic Voting, was
introduced by Davcev and Burkhard [6]. Their protocol improves the performance by allowing quorums to be
adjusted automatically during system operation. It is an idealized protocol based on instantaneous state informa-
tion. Such information cannot be maintained, nor can it even be realistically approximated because of the load
it imposes on the system. In this paper, we describe a protocol that provides the same performance as dynamic
voting in the asymptotic case, at a cost in message traffic similar to static majority consensus voting.

Our protocol, called Optimistic Dynamic Voting, operates on possible out-to-date information, hoping for the
best. The protocol provides mutual exclusion and data consistency is preserved. Our protocol improves upon
similar work by Jajodia and Mutchler, [7, 8] on dynamic voting and Jajodia’s work on linear ordering [9]. There are
many benefits to our protocol, including efficiency and ease of implementation. We believe that our protocol is
superior due to its flexibility allowing it to easily accommodate linear orderings [9], topological information [10],
witness copies [11] and regeneration strategies.

This paper is organized into six sections. Section two describes earlier work in the area of consensus protocols;
Section three describes our protocol in detail, discussing the various algorithms involved; Section four contains
a stochastic analysis of the availability of the data afforded by our protocol; Section five presents our simulation
results. Our conclusions appear in section six.

2 Previous Work

Consensus protocols insure the consistency of replicated data by honoring tread and write requests only when an
appropriate quorum of the sites holding replicas of the data can be accessed. In their simplest form, consensus
protocols assume that the correct state of replicated data is the state of the majority of the replicas. Ascertaining
the state of replicated data requires collecting a quorum of the replicas. Should this be prevented by one or more
site failures, the data is considered to be unavailable. We call this protocol static majority consensus voting.

This protocol can be refined by introducing different quorums for read and write operations or by allocating
different weights, including none, to each replica [3]. Consistency is guaranteed so long as the write quorum is
high enough to disallow simultaneous writes on two disjoint subsets of the replicas, and the read quorum is high
enough to disallow simultaneous reads and writes on two disjoint subsets of the replicas. A simple extension to
static majority consensus voting is the introduction of witness copies which do not hold a replica of the data but
can attest to its state [11]

The weakness of the static protocols is that the quorum is fixed; it cannot change once the system has begun
operation. Because of this, a few failures can render the data inaccessible. Davcev and Burkhard [6] proposed
a solution to this problem, known as Dynamic Voting. Their policy adjusts the necessary quorum of physical
replicas required for an access operation without manual intervention. Quorum adjustments are accomplished by
modifying the set of replicas that are allowed to participate in the election. This set is called the majority partition.
To ensure consistency, any new majority partition is required to contain a majority of the replicas in the previous
majority partition.

The basis of dynamic voting is the connection vector. The connection vector instantaneously records the state
of the network with respect to each site. Each physical replica of the replicated data object has an associated
ensemble of state information consisting of a version number and a partition vector. The version number of a
physical replica represents the number of successful write operations to the physical replica. The partition vector
at a site records the version number of all sites with respect to the site. In its original form, dynamic voting allows
accesses to proceed so long as a strict majority of the current physical replicas are accessible.

In situations where the number of current physical replicas within a group of mutually communicating sites
is equal to the number of current replicas not in communication, dynamic voting cannot proceed and declares
the replicated file to be inaccessible. An extension proposed by Jajodia [9], known as Dynamic-linear enhances
dynamic voting by resolving ties by applying a total ordering to the sites. This simple extension greatly enhances
the availability.

This instantaneous dynamic-linear protocol accommodates the situation by using an arbitrary, but fixed, tie
breaking rule. The sites holding replicas of the data are given a static linear ordering. Then, when a tie occurs, if
the group of communicating sites contains exactly one-half the current physical replicas and that group contains

2

the maximum element among the group of current physical replicas, then that group is declared to be the majority
partition.

Our experiments have shown that the connection vector is an impossible object to implement. Attempts to
approximate it consume nearly all the available machine cycles on a moderate sized site [12]. Because dynamic
voting provides very high availability, but is not practical in its original form, we began to look for alternative
implementations.

We had previously developed an efficient protocol implementing the available copy protocol using was-available
sets [13, 14]. The was-available sets were stored at each site and contained the identity of the sites that participated
in the last operation. By maintaining the was-available sets only at access time, we were able to implement the
available copy protocol at a low cost. We decided to extend this approach to develop a similar solution for dy-
namic voting. Section three discusses our dynamic voting protocol, which we first presented in [10].

There has been recent work in the area of dynamic voting protocols by Jajodia and Mutchler [7, 8]. They have
developed a protocol based on the number of sites that participate in a write operation. Their original protocol did
not accommodate lexicographic ordering [7], but was added in a later paper [8] by requiring more state informa-
tion to be kept.

Another approach to dynamic consensus protocols was pioneered by Garcia-Molina et al. [15, 16, 17, 18].
Their protocols are complementary to ours in that they operate by assigning increasing numbers of votes to the
surviving sites following a site failure. These protocols fall into two categories: synchronous policies, known as
group consensus, and asynchronous policies. The asynchronous policies again fall into two categories: alliance,
where the surviving sites join together to supplants the failed sites, and overthrow, where a single site supplants the
failed site. When a site recovers following a failure it must rejoin the majority partition either by playing catch-up
and increasing its votes, or by causing the other sites to decrease the number of votes that they hold.

3 Optimistic Consensus Protocols

We have found that correctness does not depend on instantaneous state information and that dynamic voting
protocols exists that operate correctly using possibly out-of-date information. Using information that is out-of-
date does not affect the consistency of the data, but does sacrifice some availability. Since our protocol propagates
system state information when an access is successfully made, the amount of availability that is lost is related to
the rate at which the data is accessed.

There are three sets of information that must be maintained at each site: the partition set, Pi , which represents
the set of sites which participated in the last successful operation, an operation number, oi , and a version number,
vi . This information is stored at each site and is modified when an access occurs.

The operation numbers are introduced to speed the recovery of a site, supplementing the information pro-
vided by the version numbers. There is a trade-off between the extra maintenance of the operation number and
increased recovery time. If the version number is incremented on each read operation, then recovery will be forced
to occur when it is unnecessary. If version numbers alone were used, and were not incremented for each read op-
eration, then there would be cases where multiple majority partitions could exist. This is because a read operation
does not change the state of the data, and so it should not change the version number of the data. Instead, we
chose to implement the partition set as a replicated data object with loose consistency constraint.

The basis of our method is the protocol for detecting whether the access request originates within the major-
ity partition. Since there can be only one majority partition, mutual exclusion is guaranteed and consistency is
preserved.

Protocol 1. Protocol for deciding whether the current partition is the majority partition

1. Find the set of all sites communicating with the requesting site, call it R.

2. Requests from each site i ∈ R its partition set Pi , its operation number oi , and its version number vi .

3. Let Q ⊂ R be the set of all sites with operation numbers that match that of the site with the highest operation
number.

3

4. Let Pm be the partition set of any site in Q.

5. If the cardinality of Q is greater than one half the cardinality of Pm , or is the exactly one half and contains the
maximum element of Pm then the current partition is the majority partition.

The algorithm for performing a read operation is simple. It first ascertains whether the current partition is the
majority partition. This is done in the same way for all of the algorithms presented. A message is broadcast to all
sites requesting their partition set, operation number and version number; those that send replies are considered
to be in a current partition. The set of current sites is found by computing the maximum operation number of all
of the sites. It is this set of sites that will participate in the operation. The set of sites holding up-to-date replicas is
called the quorum set. If the quorum set represents a majority of the previous quorum, represented by Pi , then the
access request is granted. If there is a tie, that is exactly one half of the previous quorum, then a total ordering on
the set of sites is used to decide if access will be granted.

Once it has been ascertained that the current partition is the majority partition, then access can continue.
The read operation is performed and the operation number is incremented and sent along with the set of current
sites to each of the current sites to serve as their new partition sets. This last action serves to modify the quorum
required for access requests to be granted in the future.

procedure READ
begin

let U be the set of all sites participating in the replication
〈R,o,v,P〉←START(U)
Q← {r∈R : or = maxs∈R {oS } }
S← {r∈R : vr = maxs∈R {vS } }
choose any m∈Q
if (|Q| > |Pm |

2)∨(|Q|= Pm
2 ∧max(Pm) ∈Q) then

perform the read
COMMIT(S,om+1,vm ,S)

else
ABORT(R)

fl
end READ

Figure 1: Read Algorithm

There are several items in the algorithm for reading that require explanation. The START operation begins the
operation and returns R which is the set of reachable sites and three arrays; o, v and P which are the operation
numbers, version numbers, and partition sets respectively. The COMMIT operation completes the operation and
transmits the new consistency control information to all up-to-date replicas.

The algorithm for writing is similar to the algorithm for reading. Again, it is ascertained if the current partition is
the majority partition. If this is successful, proceed as in the protocol for reading. The write operation is performed.
The operation number and the version number are incremented and sent along with the set of current sites to all
of the current sites to serve as their new partition sets.

4

procedure WRITE
begin

let U be the set of all sites participating in the replication
〈R,o,v,P〉←START(U)
Q← {r∈R : or = maxs∈R {oS } }
S← {r∈R : vr = maxs∈R {vS } }
choose any m∈Q
if (|Q| > |Pm |

2)∨(|Q|= Pm
2 ∧max(Pm) ∈Q) then

perform the write
COMMIT(S,om+1,vm+1,S)

else
ABORT(R)

fl
end WRITE

Figure 2: Write Algorithm

The recovery algorithm begins as do the other algorithms, ascertaining whether the current partition is the
majority partition. If the recovering site is able to communicate with the majority partition, then it determines
whether the replica at that site is up-to-date. If it is not, then it must be copied from one of the sites in the quorum
set. The recovering site then sends the union of the set of current sites and itself to all of the current sites, including
itself, to serve as their new partition sets.

The advantage of our protocol is that it is nearly as efficient as static majority consensus in terms of the number
of messages sent, and that its implementation is simple. There are no assumptions made about the state of the
network other than that of which can be found by examining the partition sets and version numbers. We have
an advantage over the protocol proposed by Jajodia in that we can easily incorporate linear ordering, topological
information, witness copies and regeneration strategies into the decision process.

We believe that our protocol is superior to the dynamic-linear protocol [7, 8] since it can easily accommodate
linear orderings [9], topological information [10], witness copies [11] and regeneration strategies. The partition set
can be easily implemented as a bit vector, resulting an efficient implementation. We feel that due to its flexibil-
ity, low cost and simple implementation, our policy is the protocol of choice for replicated data consistency and
mutual exclusion.

4 Stochastic Analysis

In this section, we present an analysis of availability provided by our protocol. The previous work on estimating the
availability of replicated data managed by dynamic voting protocols [7, 8, 19] had assumed idealized consistency
control protocols that possessed instantaneous information about the system state. Such policies are unrealistic
since instantaneous information is an unachievable goal in a distributed system and in attempting to approximate
it a crippling load can be imposed on the sites [12].

The protocols that we present are realistic since they do not rely on information that is impossible to obtain.
They are efficient in the sense that the message traffic incurred by them is similar to that incurred by static majority
consensus voting. The performance of or protocol is characterized by the rate at which access requests occur.
When the access requests are more frequent, the site availability information is closer to the true state of the system
and availability improves. This is reflected in the analysis where access rates are explicitly considered.

Our model consists of a set of sites with independent failure modes connected via a network which does not
fail. When a site fails, a repair process is immediately initiated at the site. Should several sites fall, the repair
process will be performed in parallel on those failed sites. We assume that failures are exponentially distributed
with mean λ, that repairs are exponentially distributed with mean µ and that access requests are characterized by

5

procedure RECOVER
begin

repeat
let I be the recovering site
let U be the set of all sites participating in the replication
〈R,o,v,P〉←START(U)
Q← {r∈R : or = maxs∈R {oS } }
S← {r∈R : vr = maxs∈R {vS } }
choose any m∈Q
if (|Q| > |Pm |

2)∨(|Q|= Pm
2 ∧max(Pm) ∈Q) then

if vi < vm then
copy the file from the site m

fl
COMMIT(S∪{I },om+1,vm ,S∪{I })

else
ABORT(R)

fl
until successful

end RECOVERY

Figure 3: Recovery Algorithm

a Poisson process with mean κ. The system is assumed to exist in statistical equilibrium and to be characterized
by a discrete-state Markov process.

The assumptions that we have made are required for a steady-state analysis to be tractable [20]. The assump-
tions about failure, repair and access distributions are required to preserve the Markov property and thus keep the
number of states finite. If the network is allowed to partition, then the number of topologies that must be analyzed
is greater than exponential. Thus, this analysis gives an optimistic view of the three protocols under consideration.
For this reason, discrete event simulation is used to confirm our analytic results. In section five, we will study some
topologies using discrete event simulation to model networks where partitions and distinct or non-exponential
failure modes are possible

Definition 4.1 The availability of a replicated data object consisting of n replicas and managed by a consistency
protocol S, denoted AS (n), is the stationary probability of the system being in a state permitting access.

The state transition diagram for three replicas is shown in figure 4. The states represented by unmarked states
where an access requested would be granted, and are called active states. The states marked with a bar repre-
sent states where an access request would be denied, and are called comatose states. The states are labeled by
tuples. The first coordinate represents the number of sites which are believed to be active, the second coordinate
represents the actual number of active site. The transition between states fall into several categories.

1. Failure transitions. The failure transition represents the event of a site failure. There is no exchange of site
availability information. The state transition 〈3,3〉→〈3,2〉, with rate 3λ, is an example of such a transition.

2. Recovery transitions. The recovery transition represents the event of sire being activated following a repair.
The information concerning site availability is exchanged at this time. The state transition 〈2,2〉→〈3,3〉, with
the rate µ, is an example of such a transition.

3. Access transitions. An access transition occurs when an access request is made and is granted. The informa-
tion concerning site availability is exchanged at this time. The state transition 〈3,2〉→〈2,2〉, with a rate κ, is
an example of such a transition

6

Figure 4: State Transition Diagram for Three Sites

The probability of the system being in an active state 〈i , j 〉 where access is permitted is represented by pi , j .

The probability of being in a comatose state 〈i , j 〉 where access would be denied, is represented by qi , j . The state
diagram, along with the boundary condition

∑
i , j pi , j +∑

i , j qi , j = 1, yields a set of equations that is solved using
standard techniques. Symbolic manipulation software is essential because, although the process is simple, it is
tedious and error-prone.

The availability is given by the sum of the probabilities of being in a state where access is permitted and for
three replicas is given by:

AO(3) =∑
i , j

pi , j

= 2ρ4 +φρ3 +6ρ3 +3φρ2 +11ρ2 +4φρ+6ρ+φ+1

(ρ+1)4(2ρ+φ+1)

Where ρ =λ/µ and φ= κ/µ.
The availability expression for four replicas is not presented due to its size. Due to the complexity of the ex-

pressions, a closed-form solution for AO(n) is difficult to obtain. Neither does it seem fruitful to search for it since
the number of replicas will in practice be unlikely to exceed five or six because of the storage costs and because of
the availability that these protocols provide.

The availability provided by optimistic dynamic voting is related to the availability provided by dynamic-linear
by the rate at which access requests occur. As the access rate increases, the information available to our protocol
regarding the system state becomes closer to the true state of the system and the availability increases. So long as
the access rate is greater that the failure rate, the performance of our protocol is very good; regardless of the access
rate it is always superior to static majority consensus voting.

Theorem 4.1 The availability provided by Optimistic Dynamic Voting, AO(n), approaches the availability pro-
vided by instantaneous Dynamic-linear, AL(n), as the access rate approaches infinity.

This can be shown by direct manipulation for small numbers of replicas, as it is below for three.

lim
φ→∞

AO(3) = ρ3 +3ρ2 +4ρ+1

(ρ+1)4 = AL(3)

7

If we consider a state 〈i,j〉, i>j then an access transition will place the system in state 〈j,j〉. As the access rate
approaches infinity, the time spent in state 〈i,j〉 goes to zero. State 〈j,j〉 effectively replaces state 〈i,j〉, resulting in
exactly the state diagram for instantaneous dynamic-linear [19].

We can now compare the availability provided by our protocol with that of other policies. For comparison, we
have chosen instantaneous dynamic-linear and static majority consensus voting because they provide an upper
bound and a lower bound, respectively, on the availability afforded by our protocol. The availability provided by
static majority consensus voting [19]

AV (n) =
dn/2e∑
j=n

(n
n− j

)
ρn− j

(1+ρ)n

For an odd number of replicas, and by dynamic-linear for three and four replicas [19]

AL(3) = ρ3 +3ρ2 +4ρ+1

(ρ+1)4

AL(4) = 6ρ6 +35ρ5 +102ρ4 +152ρ3 +113ρ2 +39ρ+6

(ρ+1)4(6ρ3 +17ρ2 +15ρ+6)

are given for reference.
The graph in figure 5 shows the compared availabilities for three replicas managed by instantaneous dynamic-

linear, static majority consensus voting and optimistic dynamic voting with a representative access rate φ. The
improvement in availability provided by instantaneous dynamic-linear over static majority consensus voting for
three copies is not great. As predicted, the availability of data provided optimistic dynamic voting is related to the
access rate and lies between the two other policies.

When four replicas are considered, the improvement in the availability provided by instantaneous dynamic-
linear over static majority consensus voting is easily seen. The graph in figure 6 shows the compared availabilities
for four replicas managed by the same set of policies, for several access rate φ. The performance of optimistic
dynamic voting quickly converges to that of instantaneous dynamic-linear. Even for modest access rates, the ad-
vantage of using optimistic dynamic voting over using static majority consensus voting can clearly be seen. The
availability provided by optimistic dynamic voting is an improvement over static majority consensus voting even
when site availability information is exchanged only at recovery time. The availability of the data managed by
optimistic dynamic voting rapidly approaches that of dynamic-linear even for low access rates.

0.00 0.05 0.10 0.15 0.20

Failure to repair ratio

0.92

0.94

0.96

0.98

1.00

A
(3

)

D-L(3)
ODV(3,5)
MCV(3)

Figure 5: Compared Availabilities for Three Copies

8

0.00 0.05 0.10 0.15 0.20

Failure to repair ratio

0.92

0.94

0.96

0.98

1.00

A
(4

)

D-L(4)
ODV(4,10)
ODV(4,5)
ODV(4,1)
ODV(4,0)
MCV(4)

Figure 6: Compared Availabilities for Four Copies

We expected that the introduction of witness sites will be a very useful enhancement to this protocol. A witness
site is one which holds site availability information and version numbers, but does not hold a replica of the date
[11]. A principal advantage of witness copies is that they may be regenerated quickly and at a low cost. Again, the
flexibility of our protocol easily accommodates the addition of witness copies. We hope to investigate this in the
future.

4.1 Protocol Cost

The number of messages sent by optimistic dynamic voting is the same as the number of messages sent by static
majority consensus voting when all sites are active. Each protocol must send a message to each participating
site requesting a vote. The number of sites that will respond to this request is the same for both protocols. If we
consider the number of messages sent by optimistic dynamic voting over a long period of time, more messages will
be sent since optimistic dynamic voting ceases to grant access. The only cost increase in using optimistic dynamic
voting over static majority consensus voting is the cost of sending the partition sets and version numbers. This
increased cost is minimal, especially since the greatest cost is in generating the message, not the message size.

5 Simulation Analysis

Many difficulties prevent relying solely upon stochastic process modeling: an exponential distribution on repair
times is unrealistic, but using other distributions result in intractable problems in most cases; and the problem of
modeling network partitions and site failures simultaneously is intractable for all but the most basic cases [20].

We chose to use discrete event simulation to confirm and to extend the results that we obtained using analytic
models. By using simulation, we are able to model realistic configuration scenarios involving observed site and
network characteristics.

9

Figure 7: Network Topology

Site failure and repair data are summarized in Table 1. Individual values for mean time to failure, percentage
of hardware faults, repair times for hardware and software failures, and preventative maintenance schedules were
chosen to reflect as accurately as possible the true behaviors of the sites modeled. Exponential failure distributions
were chosen for all eight sites. Hardware failures normally result in a human intervention and often require a
service call, and so hardware repair times were modeled by a constant term representing the minimum service
time plus an exponentially distributed term representing the actual repair process. Since software failures only
require a system restart, constant recovery times are assumed.

An existing network consisting of eight sites and three carrier-sense segments linked by gateways is used as a
model. The three subnets are assumed not to fail, this is a realistic assumption for passive media such as carrier-
sense segments. The gateway sites may fail resulting in network partitions. Message delivery is guaranteed to all
active sites in the current partition when a file access request is made.

Five sites, csvax, Beowulf, Grendel, Wizard and Amos, are connected on the main subnet. Wizard is the gateway
to the graphics laboratory subnet, to which Gremlin is connected; Amos is the gateway to the linguistics subnet,
to which Rip and Mangle are connected. These sites were chosen as a representative sample of our machines at
UCSD. Our main machine, csvax, is a VAX-11/780. Due to the heavy load that it carries, it tends to fail often due
to software problems. When a hardware failure occurs, repair is rapid since we have spares on site. Grendel and
Amos are VAX-11/750s and do not fail often. When they do fail, it tends to be a hardware failure. Hardware repair
characteristics are the same for csvax. All of the VAX machines down for service for three hours every ninety days.

Beowulf is a Pyramid 90x, which tends to fail often due to software failure. When a hardware failure occurs,
repair takes longer since spares are not kept on site, but must be brought from out of town. Wizard, Gremlin, Rip
and Mangle are SUNs. Their distinguishing characteristics is that a hardware failure results in at least one week of
down time. This is due to our agreement with SUN that requires us to mail the defective part.

Access to the replicated file is modeled as a single user that can access any of the eight sites. The access re-
quests are granted or refused based solely on the current state of the sites containing copies and the protocol’s
capability to guarantee file consistency. Batch-means analysis was used to compute 95% confidence intervals for
all performance indices. All sites were operating at the start of the simulation; the time-to-steady-state interval
was taken to be 360 days. A more detailed description of our simulation model can be found in [21].

We considered eight configurations in our study, covering a variety of replica replacement strategies. The first
four configurations consist of three replicas; configuration A allows for no partitions, configuration B has a single
partition point at Wizard, configuration C has partition points at both Wizard and Amos, and again in configuration
D either Wizard or Amos can cause a partition. The next four configurations consist of four replicas: configuration
E allows for no partitions, configuration F has a single partition point at Wizard, configuration G has partition
points at both Wizard and Amos, and configuration H has a single partition point at Amos.

Table 3 summarizes the unavailabilities of replicated files for all eight configurations and all five consistency
policies. Unavailabilities are measured and displayed since they indicate more clearly the differences among the
policies.

The performance of Optimistic Dynamic Voting (ODV) was measured assuming no access, one file access per
week, one file access per day and one file access per hour. We found that these values span the range of reasonable

10

inter-access times. The measured unavailabilities were expected to fall between those of static Majority Consen-
sus Voting (MCV), which never modifies quorums, and those of instantaneous Dynamic-linear (D-L), where the
quorums instantaneously reflect any change in the network status.

When optimistic dynamic voting is employed, even when no accesses occur, the performance is always su-
perior to static majority consensus voting, often performing nearly twice as well. The reason for this is that even
though no accesses occur, information about the state of the system is exchanged when a site recovers following
a failure allowing some adjustment of quorums. As the access frequency increases, the information available to
optimistic dynamic voting becomes more accurate and the availability voting sometimes performs better than its
instantaneous counterpart. The reason is that some of the sires such as csvax, fail often but repair quickly. Since
optimistic dynamic voting only modifies quorum composition when an access occurs, these failures often go un-
noticed. This has a buffering effect that prevents optimistic dynamic voting from making a poor choice, which
instantaneous dynamic-linear does, such as adjusting the quorum composition include less reliable sites such as
the SUNs.

Table 1: Site Characteristics

Site Mean Time
to Fall
(days)

Hardware
Failures

(%)

Restart
Time

(min.)

Hardware Repair Time

Constant Part Random Part
(hours) (hours)

csvax 36.5 10 20.0 0.0 2
Beowulf 10 10 15 4 24
Grendel 365 90 10 0 2
Wizard 50 50 15 168 168
Amos 365 90 10 0 2

Gremlin 50 50 15 168 168
Rip 50 50 15 168 168

Mangle 50 50 15 168 168

Table 2: Configuration

csvax Beowulf Grendel Wizard Amos Gremlin Rip Mangle

A • • •
B • • •
C • • •
D • • •
E • • • •
F • • • •
G • • • •
H • • • •

11

Table 3: Replicated File Unavailabilities

Sites Consistency Policy

MCV D-L ODV

No Access Weekly Daily Hourly

A 0.002130 0.000668 0.001162 0.001012 0.000849 0.000643
B 0.003871 0.001214 0.001872 0.001866 0.001432 0.001161
C 0.031127 0.001707 0.013511 0.010195 0.003492 0.001827
D 0.069342 0.053592 0.064478 0.056692 0.053357 0.051671
E 0.000608 0.000012 0.000269 0.000185 0.000084 0.000017
F 0.002761 0.002154 0.001445 0.001217 0.000947 0.002012
G 0.002027 0.000151 0.000937 0.000608 0.000339 0.000192
H 0.001408 0.000171 0.000764 0.000431 0.000218 0.000101

6 Conclusions

In this paper, we have described our Optimistic Dynamic Voting protocol, and compared it with static majority
consensus voting and instantaneous dynamic-linear. Our analysis, augmented by the results of discrete event
simulation, has given us interesting results concerning these protocols.

We have found that dynamic voting protocols provide availability that is superior to static majority consensus
voting. Our protocol provides this superior performance at the same cost as static majority consensus voting.
Our protocol provides the same performance as instantaneous dynamic-linear in the asymptotic case, and quickly
converges to it for realistic access rates. Our protocol achieves this at a cost in network traffic similar to that of
static majority consensus voting.

We have also found that delaying state information can be of benefit in a real system. Instantaneous dynamic
voting protocols can make poor choices, such as shifting the quorum into a less reliable portion of the network,
if decisions are made too quickly. Our protocol is more resilient to transient failures; its natural buffering effect
occurs because system state information is only propagated when an access occurs.

By using discrete event simulation, we were able to model configuration that we could not model using analyt-
ical techniques. The results obtained from our simulation study confirm our predictions made from the Markov
analysis. The one surprise was that under certain conditions, optimistic protocols perform better than their in-
stantaneous counterparts. This is due to the buffering effect of maintaining state information only at access time.

Acknowledgments

The authors are grateful to Professor Walter Burkhard and all of the members of the Computer Systems Research
Group for their support and encouragement. The first author is especially indebted to Ernestine McKinney and
Mary Long for their support.

This work has been done with the aid of Macsyma, a symbolic manipulation program developed at the Mas-
sachusetts Institute of Technology. Macsyma is a trademark of Symbolics Incorporated.

References

[1] E. A. Clarence, “Consistency and Correctness of Duplicate Database Systems,” ACM SIGOPS Operating Sys-
tems Review, vol. 11, no. 5, pp. 67–84, 1977.

[2] C. S. Ellis and R. A. Floyd, “The Roe File System,” in Proceedings of the Third Symposium on Reliability in
Distributed Software and Database Systems, 1983.

12

[3] D. K. Gifford, “Weighted Voting for Replicated Data,” in Proceedings of the Seventh ACM Symposium on Oper-
ating Systems Principles (SOSP ’79), pp. 150–162, ACM, 1979.

[4] D. Skeen, “A Quorum-Based Commit Protocol,” in Proceedings of the Sixth Berkeley Workshop on Distributed
Data Management and Computer Networks, pp. 69–80, Feb. 1982.

[5] R. H. Thomas, “A Majority Consensus Approach to Concurrency Control for Multiple Copy Databases,” ACM
Transactions on Database Systems (TODS), vol. 4, no. 2, pp. 180–209, 1979.

[6] D. Davçev and W. A. Burkhard, “Consistency and Recovery Control for Replicated Files,” in Proceedings of the
10th ACM Symposium on Operating Systems Principles (SOSP ’85), pp. 87–96, 1985.

[7] S. Jajodia and D. Mutchler, “Dynamic Voting,” in Proceedings of the 1987 ACM SIGMOD International Confer-
ence on Management of Data, pp. 227–238, ACM Press, 1987.

[8] S. Jajodia and D. Mutchler, “Enhancements to the Voting Algorithm,” in Proceedings of the 13th Conference on
Very Large Databases (VLDB), vol. 87, pp. 399–406, 1987.

[9] S. Jajodia, “Managing Replicated Files in Partitioned Distributed Database Systems,” in Proceedings of the
Seventh International Conference on Distributed Computing Systems (ICDCS ’87), pp. 412–418, IEEE, 1987.

[10] J.-F. Pâris and D. D. E. Long, “Efficient Dynamic Voting Algorithms,” in Proceedings of the Fourth International
Conference on Data Engineering, pp. 268–275, IEEE, 1988.

[11] J.-F. Pâris, “Voting with Witnesses: A Constistency Scheme for Replicated Files,” in Proceedings of the Sixth
International Conference on Distributed Computing Systems (ICDCS ’86), pp. 606–612, 1986.

[12] W. A. Burkhard, B. E. Martin, and J.-F. Pâris, “The Gemini replicated file system test-bed,” in Proceedings of the
Third IEEE International Conference on Data Engineering, pp. 441–448, IEEE, 1987.

[13] J. L. Carroll, D. D. E. Long, and J.-F. Pâris, “Block-Level Consistency of Replicated Files,” in Proceedings of the
Seventh International Conference on Distributed Computing Systems (ICDCS ’87), pp. 146–153, 1987.

[14] D. D. E. Long and J. F. Pâris, “On Improving the Availability of Replicated Files,” in Proceedings of the Sixth
Symposium on Reliability in Distributed Software and Database Systems, pp. 77–83, 1987.

[15] D. Barbará, H. Garcia-Molina, and A. Spauster, “Policies for Dynamic Vote Reassignment,” in Proceedings of
the Sixth International Conference on Distributed Computing Systems (ICDCS ’86), pp. 37–44, 1986.

[16] H. Garcia-Molina, “Elections in a distributed computing system,” IEEE Transactions on Computers, vol. 100,
no. 1, pp. 48–59, 1982.

[17] H. Garcia-Molina and D. Barbara, “Optimizing the Reliability Provided by Voting Mechanisms,” in Proceedings
of the Fourth International Conference on Distributed Computing Systems (ICDCS ’84), pp. 340–346, 1984.

[18] H. Garcia-Molina and D. Barbara, “How to assign votes in a distributed system,” Journal of the ACM (JACM),
vol. 32, no. 4, pp. 841–860, 1985.

[19] J. F. Pâris and W. A. Burkhard, “On the Availability of Dynamic Voting Schemes,” University of California San
Diego Department of Computer Science and Engineering Computer Science, 1986. Technical Report 86-090.

[20] K. S. Trivedi, Probability & Statistics with Reliability, Queuing, and Computer Science Applications. Englewood
Cliffs, New Jersey: Prentice-Hall, 1982.

[21] J.-F. Pâris, D. D. E. Long, and A. Glockner, “A Realistic Evaluation of Consistency Algorithms for Replicated
Files,” in Proceedings of the 21th Annual Simulation Symposium (SS ’88), pp. 121–130, IEEE Computer Society
Press, 1988.

13

