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Abstract
Modern, large-scale scientific computing runs on complex ex-

ascale storage systems that support even more complex data

workloads. Understanding the data access and movement

patterns is vital for informing the design of future iterations

of existing systems and next-generation systems. Yet we

are lacking in publicly available traces and tools to help us

understand even one system in depth, let alone correlate

long-term cross-system trends.

In this work, we investigate the workload characteristics

of the CERN EOS filesystem, analyzing over 2.49 billion

events containing over 300 PB in reads and 150 PB in writes

across 11months.We contrast our findingwith analyses from

other scientific storage systems, allowing us to observe larger

trends that appear over the years and revisit and question

conventional wisdom such as “write once, read maybe” and

the influence of user actions on system-wide data movement.

By studying trace capture mechanisms across these systems,

we motivate a standardized trace collection and analysis

toolset, so that future researchers can more easily study

existing systems to aid in system design.

CCS Concepts • Information systems → Storage ar-
chitectures; Magnetic tapes; Tape libraries; Magnetic disks;
• Applied computing→ Physics.

Keywords Workload Characterization, Trace Analysis, File 
Systems, Scientific Archives, Archival Storage, Large Scale 
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1 Introduction
Modern scientific and archival storage systems capture, store,

and process large amounts of data. They often have custom

designs build to navigate a wide variety of media characteris-

tics such as cost, throughput, latency, and density. However,

the decisions systems designers make around these char-

acteristics is best informed by the future use of the system

in a real data processing environment. While this naturally

results in a system that grows and evolves over time, the

ability to both improve existing systems and design next-

generation systems is predicated on our ability to capture

and analyze the traces of access patterns and data movement

in the scientific storage and data processing systems of today.

The complexity of these systems, however, makes trac-

ing and analysis quite difficult, especially when paired with

the dependency of performance and cost on exact work-

flow and data processing models. These systems are often

multi-tiered [2, 14], providing various performance and den-

sity characteristics for different tiers, thus navigating the

cost/performance/density trade-off space by amplifying data

movement through the network, and at the cost of com-

plexity and coherence. Optimizations like de-duplication,

prefetching, and caching are vital to avoid slowdowns, im-

prove media lifetime, and reduce data movement, but with-

out live tracing and deeper understanding of the emergent

behavior of the system driven by real-world data access,

bottlenecks are inevitable.

Unfortunately, we are sorely lacking in detailed analyses

of these large-scale systems. In the last decade, only two such

systems [2, 9] have been analyzed, since without internal ac-

cess to research laboratories, few workloads are available for

study. Further, it is difficult to draw generalized conclusions

from the analyses of different systems, as each are custom

built and use different data processing workflows. To address

this, we propose creating a public repository of scientific stor-

age traces and analysis tools that will enable researchers to

extract, organize, and analyze different traces from various

systems, and more importanly, correlate common patterns

and trends between them. We kick off this work by adding

another system to the analysis pile, the CERN EOS storage

system. In particular, this paper looks at:

• CERN EOS File System Workload: Our observa-

tions about the workload span 11 months of oper-

ation the CERN EOS system. We observe that data
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movement still dominates read-write activity and the

continued existence of the “Write Once, Read Maybe”

paradigm.

• Trends in Large-scale Scientific Archives: We ob-

serve the evolution of scientific archives, analyzing

the change in workloads, as well as storage media.

• Motivating Open Trace Archives: We discuss the

limitations of varied trace formats and the lack of avail-

ability of traces, and propose public trace repositories

in a standardized format to enable better analysis and

system design.

2 Related Work
In the last decade, there have been relatively few studies

on trace analysis of scientific storage archives. Adams et

al. [2–4] presented an analysis on NCAR MSS traces from

2008–2010, looking at the file size distribution, directory

structure, and user characteristics. More recently, in 2015,

Grawinkel et al. [9] presented an analysis on the ECMWF

storage system, characterizing the workload of the storage

archive, and analyzed caching techniques for such work-

loads. It is useful to compare how the CERN EOS workload

that we study differs from the findings in these systems. We

observe the change in magnitude of data over the years and

evolution in system design. Further, we look at the trace

capture formats across these systems and discuss the ad-

vantages and limitations of each technique and suggest best

practices based on our observations. Our analysis, looking

over 2.49 billion events, 188 million files, and observed reads

and writes over 300 PB and 150 PB respectively is the largest

dataset analyzed for a scientific archive.

We discuss the paradigm of “Write Once, Read Maybe”

in Section 5, where most files are rarely updated after the

initial write and rarely read. Grawinkel et al. [10] describe the

Lonestar system that does aggressive power optimizations

assuming such a pattern of reads and writes. Colarelli et

al. [8] demonstrated the Massive Array of Idle Disks (MAID)

framework to reduce power consumption in a write once,

read maybe model. Pergamum [17] was an optimization over

MAID suggested by Storer et al., which added NVRAM at

each of the idle disks to provide high performance. These

inspired the design of Internet Archive [11] by Jaffe et al.

Our analysis looks at the analysis pool, a subset of the larger

system, and yet we observe a similar workload, and these

optimizations would help the CERN EOS system.

Jensen and Reed [12] looked at file archive activity at the

National Center of Supercomputing Applications in 1993. In

the same year Miller and Katz [15] performed an analysis

on file migration in the NCAR environment. These studies

establish file access patterns and observe that the writes

remain relatively stable while reads fluctuate, as user actions

cause most reads while writes are automated. Despite the

differences between these systems in terms of time, scale,

storage media, and application use, we observe similar read

patterns. With our system, being in the analysis tier, we see

that writes follow a similar fluctuating pattern as well, while

writes to the system remain steady.

There have been several studies on analyzing storage

changes over long periods. Agrawal et al. [5] looked at chang-

ing file system metadata. Breslau et al. [7] looked at web

caching logs and presented a perspective on how Zipf’s law

applies to storage. This hypothesis is observed in our find-

ings, and we observe the Zipfian distribution of reads and

writes. A small set of users performs most reads and writes,

and similarly, a small set of files see the majority of reads

and writes. We observe the Zipfian distribution throughout

the workload, from file sizes to the amount of file accesses.

3 Background
The European Organization for Nuclear Research (CERN)

was established in 1954 as a joint research initiative between

member states in particle physics. CERN captures scientific

data from a range of particle accelerators, the most popular

being the Large Hadron Collider. As of 2017, CERN had 230

PB of permanent storage on magnetic tape, 70 PB of which

were captured in the same year [1]. To process and store this

data, CERN uses a custom file system, known as the CERN

EOS file system [16].

Four experiments share the EOS file system at CERN,

namely Atlas, Alice, CMS, and LHCB [13]. From our col-

laboration with CERN, we acquired traces from the Compact

Muon Solenoid (CMS) experiment. The traces document all

system activity over 326 days, ranging from 13
th
October

2016 – 3
rd
September 2017. The total size of the trace files is

133 GB compressed. These traces capture the state of a file

after an operation occurs on it. While we can often infer the

type of operation, it is not explicitly recorded.

3.1 The CERN storage system
CERN uses a three tiered storage system (see Figure 1), pro-

viding data storage with various characteristics.

POSIX-like
Access

Data Movement

Analysis Pool (Disk)

Archive Pool (Disk) Tape Pool (Tape)

Users

Sequential Read, Write Once Sequential Read, Write Once

Figure 1. The multi-tiered CERN EOS storage system [16]
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Analysis Pool: The Analysis pool is the storage that users
directly access and can be up to a petabyte of spinning hard

disks. Analysis pool is where data is fetched from the other

pools to be processed. Updates to data are only possible in

the analysis pool. This access uses POSIX-like file system

semantics. Our traces are from the Analysis pool.

Archive Pool and Tape Pool: The Archive pool is interme-

diate disk storage, which only allows sequential read and

write-once semantics. This pool is not open to direct user

access and provides medium latency access to files, which

can be a few milliseconds to a second. The Tape pool is high-

density magnetic tape storage that puts batches of files into

containers and supports sequential read, write-once access.

Fetching data from the tape pool has a latency of 10
1
–10

3

seconds—the tape pool stores cold data which is not in active

use. Users do not have direct access to the tape pool. While

the disk pool can go up to a few petabytes, limited by cost,

the tape pools can go all the way up an exabyte. Data actively

being processed is pulled into the analysis pool, and users

get direct random read/write access to this data.

4 Workload Characterization
In this section, we will look at file size characteristics, read-

write activity, and per-application statistics of system uses.

We compare these with the trace analysis from NCAR and

ECMWF.

CERN – Our Work NCAR ECMWF

Timespan 2016–17 2008–2010 2012–2014

11 months 3 years 2
1

3
years

Events 2.49 Billion 188 Million 127.4 Million

Unique Files 188.7 Million 69 Million 137.5 Million

Storage Size 95 PB 11.7 PB 14.8 PB

Users 1977 1600 1190

Read Volume 300 PB NA 7.24 PB

Write Volume 150 PB NA 11.83 PB

Cache NO
1

YES YES

Table 1. Comparison with ECMWF [9] and NCAR [2].

4.1 File Characteristics
The unique file identifier (fid) recorded in the traces allows

us to track files. As the traces capture change in metadata of

each fid, we can infer the nature of the operation (create,

read, update, delete) of these files. However, files that did not

see any operation are not recorded in these traces.

We can observe from Fig. 2, 90% of files are below 1 giga-

byte in size but use only about 15% of the storage. When we

consider the volume of storage, the Cumulative Distribution

Function (CDF) curve gets steeper, with files between 1 giga-

byte and 32 gigabytes making up about 63% of the volume,

1
Data is processed in the analysis pool, there is no dedicated caching for

this pool; however, this pool acts as a cache for other pools.
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Figure 2. The Cumulative Distribution Function (CDF) for

file size, by count and by volume, and the file size distribution

histogram in CERN EOS system.

with twelve 256 terabyte files making up the rest (22%). These

files are snapshots of virtual machines and would benefit

from having a dedicated caching strategy.

Compared to similar analysis on NCAR [2] we observe

that though the overall trend is similar, larger files occupy

more volume in CERN as opposed to NCAR. Some of this

can be attributed to the fact that these sets are years apart,

and CERN files about collision data tend to be a couple of

orders of magnitude larger than atmospheric data captured

by NCAR. In the ECMWF analysis [9], files between 1MB and

48MB make up the overwhelming majority of the volume.

Observation: In CERN EOS workload, larger files form amore
significant share of total volume, with files below 64MBmaking
up less than 5% of data volume, even though they are more
than 75% of all observed files.

4.2 User Read / Write Activity
In our traces, we observe the existence of 188 million files,

of which we observe the creation of 139 million files. While

CERN does not specify the type of action, we specify cre-

ations as a fid starting at size (osize) 0 and the operation

performing a write (written bytes wb) that is positive.

• We observe the creation (first write) of 139 million files,

out of which 0.22% or 314,000 are written to twice.

• Less than 0.09% files see further updates.

• The most actively written file saw 81,000 updates.

• We see 85 million read actions, and 42% of files are

read at least two times.

• 12.5% of those files see three or more reads

Observation: Updates to files are rare, with 0.22% files being
updated once, and only 0.09% files updated more than once.
The workload of this system is Write Once, Read Maybe.

4.2.1 Reads
We observe that the total amount of data read over the 326

days is 300 petabytes. Almost all users perform reads. At

least half the users read more than four terabytes of data and

3
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Figure 3. The Complementary Cumulative Distribution

Function (CCDF) and histogram for the amount of data read

by users (CERN).

as seen in Fig. 3, more than 80% of all users read at least 16

gigabytes of data.

Users Top 1 Top 5 Top 5%

Data Read 42% 62% 89%

Data Written 27% 95% 99%

Table 2. Amount of data Read/Written by Users.

As seen in Table 2, the top reader read 43 petabytes of data,

accounting for 42% of data read by volume. The top 5% of

users by read volume make up about 89% of all read observed

in the system. With writes, this unbalanced nature of a small

set of users performing a large chunk of actions is even

sharper. These top accounts are system users performing

tasks such as replication, fetch, or dispatch of data.

Observation: Most users perform relatively large reads on
files within EOS with more than half the users reading at least
8 TB of data. The top reader, while being responsible for 42% of
all data read, is a system user responsible for balancing, data
movement, and replication.

4.2.2 Writes
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Figure 4. The Complementary Cumulative Distribution

Function (CCDF) and histogram for the amount of data writ-

ten by users (CERN).

We see significant differences between User Read Statis-

tics: Fig. 3, and User Write Statistics: Fig. 4. As many as 782

users, which make up almost 40% of all users, perform no

writes to the system. Of the users who write data to the sys-

tem, at least half write more than 16 gigabytes. The writes

associated per user are much smaller than the reads. This

is not surprising for a scientific data archive, where most

captured data is refined and aggregated to produce results.

Observation: 40% (782) of users do not perform any writes,
while we see relatively large writes by a small set of users. 95%
(142 PB) of observed writes by volume are performed by five
users, which includes system users responsible for replication,
as well as applications like FTP.

Our observations are in contrast to the ECMWF analysis,

which sees a 2:1 write to read ratio. This is caused by the

nature of the analysis pool, where data of interest is fetched

and processed. While writes will outnumber reads at the

system level, in the analysis pool this is reveresed as only

the data to be processed is fetched. We cannot observe data

directly stored on the tape archives, and if the users request

a particular set of data, it is likely to see reads. Further, op-

erations such as replication and third-party-copy read data

but write it to a remote location, causing larger reads than

writes in the system under consideration.

A small subset of users perform most writes, as seen in

Table 2. The top writer wrote 42 petabytes of data and was

responsible for 27% of all data written. The top 5 writers

wrote 95% of all the write volume, and the top 5% made up

almost all writes in the system. Most of the users that write

large amounts of data are system users that handle data

movement and copying. We make this inference using the

User ID field associated with each action. UID 0 is the root,

and system users have UIDs below 100. It is crucial to break

this usage down into a user and system-user comparison.

Observation: As EOS analysis pool contains user-requested
data, we observe that reads outnumber writes at least 2:1 by
volume in our traces, in contrast to related work. A relatively
small number of users perform most reads and writes, and
updates to files are rare (<0.09% files receive updates).

4.3 User Workloads

Actions Written Read Affected Files

System 204.75 Million 26.03 PB 26.05 PB 38.60 Million

User 2214.87 Million 131.40 PB 285.20 PB 119.92 Million

Table 3. Reads and writes between user and system actions.

When we break down the tasks by the user accounts (uid)
performing the task, we see that system accounts perform

about 9% of all actions. They read about 26 petabytes of data

and write roughly the same amount of data. Since system
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tasks are mainly load balancing, replication, and data move-

ment, these numbers are very similar. We can further break

down system tasks as seen in Table 4.

4.3.1 SystemWorkloads

Application Actions Written Read Affected Files

Archive 4 0 B 70.56 GB 2

Converter 500 0 B 0 B 241

Balancing 154.38 Million 20.24 PB 20.24 PB 38.60 Million

Draining 50.23 Million 5.74 PB 5.74 PB 22.72 Million

Replication 129,581 60.87 TB 72.83 TB 27,132

Table 4. System tasks.

System user accounts perform maintenance tasks such as

balancing and replication. The system writes, on average,

are significantly larger in granularity than user writes as

they involve copying sets of data. While system tasks cause

a lot of data movement, most read and write requests come

from individual user accounts.

4.3.2 User Applications

Application Actions Written Read Affected Files

GridFTP 92.13 M 33.5 PB 45.75 PB 46.28 M

EOScopy 12.61 M 376.38 TB 270.3 TB 3.82 M

Filecopy 174 0 B 0 B 89

FUSE 200.57 M 0.49 PB 2.88 PB 19.79 M

Other 1894.60 M 85.24 PB 229 PB 119.92 M

Point5 5.43 M 7.4 PB 0 2.78 M

Restore 13,122 15.65 GB 0 6,304

TPC 9.50 M 4.32 PB 7.24 PB 6.68 M

Table 5. User applications.
Several user applications on EOS are used to fetch data

EOSCopy, Filecopy are used to move data within the filesys-

tem, GridFTP is the file transfer protocol mount used for

getting and putting data using FTP and performs a signif-

icant amount of writes (more than all system tasks) and

reads. FUSE is a popular userspace file system interface. Here,

Point5 refers to all the tasks related to the Point5 endpoint

of the Large Hadron Collider. TPC is the third-party copy tool
used by researchers outside of CERN to access CERN data.

Most user reads and writes are not tagged by a particular

application type.

Observation: While datamovement between the various pools
is the cause for a majority of reads and writes in the system,
most of the data movement happens on user requests rather
than system actions. This is evident from the read and write
statistics of various internal and external copy utilities.

5 Discussion
Trace analysis is a common technique used in several stud-

ies of large-scale systems. In this section, we compare con-

ventional wisdom to observations from the CERN data and

include similar analyses such as NCAR [2], and ECMWF [9].

Analyze System Components in Isolation: Analysis from
earlier systems observed that writes were much larger than

reads, however, in the CERN EOS system, when we focus

on the analysis pool where data is fetched on-demand, we

see twice the reads by volume as compared to writes. Any

design considerations for the analysis pool should make it

read-optimized, as more than half the users read more than

4 TB of data while writing up to 16 GB of data.

Filesystem Metadata can Inform File Activity: Filesys-
tems can provide information about the type of file, whether

it is immutable, expected size, alongwith expected read-write

activity. Since a small set of users perform most actions, the

users associated with a file can inform us about the poten-

tial reads and writes to the file. These metadata fields in the

filesystem can help us make placement decisions, picking the

right storage media, as we upgrade these systems with flash

and non-volatile memories. Bel et. al [6] looked at utilizing

trace features to train deep neural networks for optimal data

placement across heterogeneous media. This analysis used

the features represented in the data, and could be expanded

to inferred features, like the path in the filesystem, or users

associated with activity on a file.

Write Once, Read Maybe Depends on your View: “Write

Once, Read Maybe” is a common assumption in archival sys-

tems. Most archival data is written once, rarely updated, and

may not be read at all. As seen in Fig. 5, we observe semantics

similar to write-once. Only 0.22% of files see updates, going

down to 0.09% of all files for more than one update. On the

other hand, the read graph shows that while most files are

read once, many files are read a second and a third time in a

Zipfian heavy-tailed distribution.
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Figure 5. CERN : Likelihood of reads and writes to a file

Migrations make up most of the activity, but can be
user-triggered: In NCAR MSS traces, it was observed that

system actions made up 66% of all actions observed in the

traces. Most of these were automated migrations. In CERN

traces, while most actions are related to the migration of

data, almost all of these actions are user-initiated. CERN

archive also differs from traditional archives, as it is an ac-

tive processing system, and the traces we analyzed are from
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the disk cache where data is fetched and processed. As we

saw in Table 3 only 9% actions in the CERN system are

automated, while 91% are user-driven. Hence, system op-

timizations should not make any assumptions about data

movement being the sole domain of the system.

Reflection on Trace formats: CERN traces record the state

of each file that was accessed, noting the timestamps, users,

written and read bytes, and a variety of information about the

file. We need to infer the rest of the data from these records.

The CERN format helps observe how files change over time

but does not capture actions. ECMWF traces include a system

snapshot and a description of the event; they further include

metadata snapshots from tape archives, which describe the

files, users, and other information. NCAR traces, on the other

hand, recorded actions. So the trace records actions like CRE-

ATE and MIGRATE, and the associated metadata, including

the user performing the action and its effects. Getting uni-

form and consistent analysis across these formats can be

difficult, or in some cases impossible, as they may capture

different aspects of an action.

Tracing in the Future: Part of the trouble with such cross-

system correlation, is managing the different trace formats.

The problem goes beyond simple encoding and representa-

tion, but permeates through the choices the designers make

on which fields to record and which operations are meaning-

ful, all the way to minor semantic differences between fields

in different traces. Thus, any effort into future cross-system

correlation of trends using an understanding of workflow

will require some heavy lifting on part of researchers be-

fore they can begin an analysis. Future systems built should

include a plan for tracing from the start, and should use

lessons learned by previous trace analysis to inform the de-

sign of trace capture, ideally in a well-defined format to make

integration with other tracing systems possible.

While just studying individual systems provides valuable

insights into that system and its operation, this field is held

back by a lack of cross-system correlation of performance

and cost characteristics with (a) what a scientific computing

platform is built for — primarily data collection, or active data

processing — and (b) the technology and system architecture

wisdom of the time. Live tracing gives us insights, but the

lack of publicly available traces and tooling considerably

limits system designers. We plan to formalize this project

into a larger more modular framework for trace analysis.

The tools we built to understand the CERN EOS system

are, of course, purpose built for that system, but we plan

to continue studying trace formats so that we can better

generalize our work into a uniform tracing format that we

can argue makes for easier system analysis and cross-system

comparisons. Such a system will enable researches to more

easily study and build future systems by being able to learn

from many systems architectures, their live traces and usage

characteristics, and how those traces are correlated with the

type of computing done.

We will continue studying the CERN EOS system and

comparing to other system traces. While the studies we per-

formed in this paper are a good start, there is still much to

understand. For example, since our analysis was focused on

comparison to other tracing work, we ignored some features

present in the CERN EOS traces, including information about

how data was distributed across physical devices. This will

allow us to study hardware failures as part of the system

analysis and the performance of disks over time and how

that affects user-perceived performance.

6 Conclusion
This work presented workload characterization of the CERN

EOS filesystem and compared it with other large-scale sci-

entific archives. Even with changes in data volume, storage

media, and storage techniques over decades, the CERN EOS

workload follows the fundamental trends in large-scale stor-

age, such as a Zipfian distribution for access, Write Once

(rare updates to data), and Read Maybe (most data is never

read). But as we look at the CERN EOS analysis pool in iso-

lation, our view differs from other large-scale systems. Data

movement in the CERN system is user-triggered, and we see

twice the volume of reads compared to writes. Since only the

data of interest is fetched to this tier, the reads outnumber

writes both in number and volume. We observe that it is

essential to look at individual components of a larger system

in isolation to suggest optimizations.

With limited data points for such analysis, it is difficult

for academic systems researchers to understand and analyze

large-scale archives without direct access to large research

institutions. Cross-system analysis is vital, however, to avoid

becoming stuck with wisdom derived from a limited under-

standing of few systems. Since these systems often differ both

architecturally and in the intent of their usage, observing

similarities and differences across many diverse systems will

lead to a better, generalized understanding of how to build

them for the future. Looking forward, we must not only put

forth real effort into making tooling and data sets publicly

available, but also commit to updating our understanding as

these systems and their use cases evolve, by continuing the

perform analysis and comparisons between systems. With

this “call to arms” we hope that we can develop future tooling

for uniform trace collection and analysis, making it easier

to study long term trends across many diverse large-scale

scientific computing systems.
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