
Building Flexible, Fault-Tolerant Flash-based Storage Systems

Kevin M. Greenan† Darrell D.E. Long† Ethan L. Miller†

Thomas J. E. Schwarz, S.J.‡ Avani Wildani †

Univ. of California, Santa Cruz† Santa Clara University‡

Abstract
Adding flash memory to the storage hierarchy has re-
cently gained a great deal of attention in both industry
and academia. Decreasing cost, low power utilization and
improved performance has sparked this interest. Flash re-
liability is a weakness that must be overcome in order for
the storage industry to fully adopt flash for persistent stor-
age in mission-critical systems such as high-end storage
controllers and low-power storage systems.

We consider the unique reliability properties of NAND
flash and present a high-level architecture for a reliable
NAND flash memory storage system. The architecture
manages erasure-coded stripes to increase reliability and
operational lifetime of a flash memory-based storage sys-
tem, while providing excellent write performance. Our
analysis details the tradeoffs such a system can make, en-
abling the construction of highly reliable flash-based stor-
age systems.

1 Introduction
Recent advances in the performance and density of
NAND flash memory devices offer the promise of great
performance and low energy consumption. NAND flash
is being used to replace DRAM-based disk caches [7],
store metadata [5], replace disks in laptops, and even re-
place high-performance disk arrays [8]. Unfortunately,
NAND flash memory has limitations. First, write perfor-
mance depends on the underlying architecture and does
not rival its excellent read performance. For good write
performance, each device must have multiple banks of
NAND flash to be accessed in parallel [1]. Second, the
known limited endurance of NAND flash generally re-
quires wear-leveling algorithms and page-level ECC [2,
6, 7]. Finally, the raw bit error rate (RBER) of NAND

†Supported in part by the Petascale Data Storage Institute under
Dept. of Energy award FC02-06ER25768 and by the industrial sponsors
of the Storage Systems Research Center.

‡Supported in part by a research grant from the Stiles Family Foun-
dation.

flash increases with use [4]. Page-level ECC—which
is typically used to provide reliability in NAND flash
systems— does not provide protection from whole-page
failures, chip failures, or whole-device failures. These
types of failures are typically handled using inter-device
redundancy, similar to RAID. With the exception of the
RAMSAN-500 [8], we are unaware of any RAID-based
solutions for fault tolerance across flash devices.

The contributions of this work are as follows. We
briefly cover the important reliability and performance
characteristics of NAND flash memory. Next, we provide
an architecture for flash-based storage systems that uses
erasure codes to tolerate failures at various levels from
bit-flip to device failure. The level and scope of protec-
tion may be changed on-the-fly to adjust gracefully to the
degenerative effects of aging. We conduct a preliminary
reliability and performance analysis of this architecture.
We find that our techniques provide a higher level of pro-
tection than existing approaches while maintaining good
write performance.

2 Flash Background

Figure 1 shows an example NAND flash chip with 4 banks
of flash that may be accessed in parallel. Each bank con-
tains a single page register and 64 blocks. All accesses
to a bank areserializedat the page register: data to be
read or written to/from a bank must be first loaded into
the page register. A block contains a total of 64 pages and
each page has a 4KB data section and a 128B spare area.
The spare area is used to store checksums, ECC bits and
page-specific metadata. Individual data bits are stored in
cells within the data section of a flash page. There are two
primary technologies for storing bits in flash: single-level
cell (SLC) and multi-level cell (MLC). SLC technologies
store exactly one bit per cell, while MLC technologies
store two or more bits per cell.

NAND flash memory has a unique access model. An
entire block must be erased (all bits changed to 1) be-
fore any data can be programmed (written) into the pages

D I M MB a n k 0 B a n k 1 B a n k 2 B a n k 3B l o c k 0P a g e 0P a g e 1P a g e 6 3. . .B l o c k 6 3P a g e 0P a g e 1P a g e 6 3.
P a g e R e g . B l o c k 0P a g e 0P a g e 1P a g e 6 3. . .B l o c k 6 3P a g e 0P a g e 1P a g e 6 3.

P a g e R e g . B l o c k 0P a g e 0P a g e 1P a g e 6 3. . .B l o c k 6 3P a g e 0P a g e 1P a g e 6 3.
P a g e R e g . B l o c k 0P a g e 0P a g e 1P a g e 6 3. . .B l o c k 6 3P a g e 0P a g e 1P a g e 6 3.

P a g e R e g .

Figure 1: A 4 bank NAND flash chip.
within the block; thus, the act of writing to a block is
generally called theprogram-erase cycle. Manufactur-
ers rate theenduranceof a block based on the underly-
ing NAND architecture. Single-level cell (SLC) NAND
flash blocks are generally rated at 105 program-erase cy-
cles, while multi-level cell (MLC) blocks have a much
lower endurance. Current two-level cell technologies are
typically rated at 104 program-erase cycles. In addition to
decreasing reliability, block erasures are slow; each block
erase takes roughly 1.2 to 2 ms, which is an order of mag-
nitude longer than a program operation.

Flash devices have unique reliability concerns. The
most important of these concerns areread disturband
program disturb [4]. Read disturb errors occur as a
side-effect of reading a page, which may induce multi-
ple, permanent bit-flips in the corresponding block. Pro-
gram disturb causes a program operation on one page to
change the value of a bit on another page in the same
block. These errors contribute to the raw bit-error rate
(RBER), which is typically between 10−6 and 10−9, de-
pending on the number of bits per cell. A recent study
has shown that program-erase cycles have a significant ef-
fect on RBER [4]. In some cases, the RBER increases by
more than an order of magnitude as a block’s program-
erase count approaches its rated endurance. Given these
observations, we expectpage errorsto be the primary fail-
ure pattern in flash-based systems.

We focus on three notable properties of NAND flash
devices when building a flash-based storage system:
program-erase cycling, request serializationat each bank
and theraw-bit error rate.

3 System Design
Reflecting the needs of an industrial sponsor, we concen-
trate on a very large flash based design for storage servers
where a single host or controller is connected to multiple
PCI cards containing flash. We write to the flash devices
in a log-structured manner, so that we do not need explicit

wear leveling. Our design easily extends to a SSD (or
USB) flash device as long as the host / controller has direct
access to the pages on the flash device. While other reli-
able flash-based systems focus on bit-errors and extending
flash lifetime using page-based ECCs, our design consid-
ers the proper application of erasure codes (or RAID) to a
set of flash devices. In particular, we organize the pages
into reliability stripes with additional parity pages, similar
to what is being done in disk arrays. Because we write in
a log-structured manner, the parity pages do not need to
be maintained using the read-modify-write operation that
is very expensive when used in flash.

There is a subtle difference between our approach and
simply applying RAID algorithms to a set of flash de-
vices. An out-of-the-box RAID approach would lead to
hotspots on the flash devices and increased contention at
each bank due to the traditional read-modify-write opera-
tion. We control the way data/parity is written to a set of
flash devices to achieve the following goals:

(1) Tolerate more than bit errors. Most solutions rely
on page-level ECC for reliability. In reality, the system
must also tolerate burst, device, and chip-level errors. Our
design achieves this goal by adding parity pages.

(2) Uniform writes across all devices.The reliability
and performance consequences of program-erase cycles
necessitates distributing the life-time number of writes
uniformly. We manage writes in a log-structured man-
ner that automatically stripes writes across all devices (or
chips) and avoids read-modify-write.

(3) Graceful degradation.As a system ages, the prob-
ability of burst, device, and chip-level error as well as the
bit error rate increases [4]. Our design has the ability to
increase the fault tolerance for older systems at the cost of
slightly lower capacity by changing the parameters of the
page-level reliability stripes.

In achieving these goals, we essentially move the flash
translation layer (FTL) off of the individual devices and
onto the host. In an array of SSDs, this would be equiv-
alent to moving the FTL into the array controller. By
moving the FTL out of the individual devices, the host (or
RAID controller) can optimize writes in a way that maxi-
mizes write performance, while writing uniformly across
all of the devices.

3.1 System Architecture

Figure 2 illustrates the basic architecture of the flash-
based storage system we are analyzing. The system is
composed of PCI cards that contain flash memory chips.
We assume a single host will contain multiple PCI buses,
allowing the host to address flash on multiple cards. Com-
munication between the host and the card uses a DMA
channel. The host has a set of DMA rings, each of which

D r i v e r I n t e r f a c eI n t e r f a c e B a n k sB a n k sB a n k sB a n k s
D I M M SD M A E n g i n e sD M A R i n g s P C IB u sH o s t C a r d

P a r i t y a n dR e b u i l d C a c h e
Figure 2: NAND flash architecture.

is associated with at most one DMA engine on a card—
the pair forms a channel. All commands are issued by a
driver at the host, which are queued on one of the host
DMA rings. Each DMA ring can only service a single re-
quest at a time. Each DMA engine has the ability to send
requests to any of the interfaces on the card. Each inter-
face in turn is connected to one or more DIMMs. Each
DIMM is connected to one or more banks of flash. The
flash banks store the data and are the destination of the re-
quest stream. While requests may be parallelized at each
interface, the page register requires requests to be seri-
alized at each bank. Each flash bank contains multiple
blocks, which can be accessed at page granularity.

The purpose of the driver is to allow a higher level pro-
cess, such as a file system, to access data pages on the
flash devices. The driver maintains the logical to physi-
cal page mappings (similar to the flash translation layer),
block status and the parity relationship between pages on
the devices. The driver exports two functions: read and
write. The read function takes the logical page addresses
as arguments and returns the requested data. The write
function takes a page aligned buffer and length as argu-
ments and returns the logical page addresses.

Each host also contains a cache that is used by the
driver to stage parity updates and page rebuild requests.
To prevent data loss during power or host failure, we as-
sume the cache may contain non-volatile RAM, such as
battery-backed DRAM, MRAM, PRAM or FeRAM. We
currently store this cache in DRAM.

Throughout our design, we assume that the system con-
tainsC identical cards, each of which containB banks.
Each bank will containb blocks that have 64 pages of 4K
each.

3.2 Erasure Coding Across Devices

An erasure code is made up of codewords that haven
symbols. Storage systems typically use systematic era-
sure codes, where each codeword containsk data sym-
bols andm = n− k parity (redundant) symbols. A code
symbol generally refers to a sector or set of sectors on a

P a g e S t r i p e 6 3 : (2 , 1) I M D S (c a r d)
B l o c k G r o u p : (2 , 1) I M D S (c a r d)
B a n k E n c o d i n g : (2 , 1) I M D S (c a r d)D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 P 8 P 9 P 1 0 P 1 1D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 P 8 P 9 P 1 0 P 1 1 B a n kB l o c k...D 0P a g eD a t aS p a r e P a g eD a t aS p a r e P a g eD a t aS p a r e P a g eD a t aS p a r e P a g eD a t aS p a r e P a g eD a t aS p a r e P a g eD a t aS p a r e P a g eD a t aS p a r e P a g eD a t aS p a r e P a g eD a t aS p a r e P a g eD a t aS p a r e P a g eD a t aS p a r eD 1 D 2 D 3 D 4 D 5 D 6 D 7 P 8 P 9 P 1 0 P 1 1

P a g e 0 :P a g e 6 2 :P a g e 6 3 :...
Figure 3: Example block group.

single storage device. Storage systems often use a lin-
ear, Maximum Distance Separable (MDS) code, denoted
(k,m)-MDS, which hasm parity symbols,k data symbols,
and can correctm erasures, the maximum possible with
this many parity symbols. In this sense, an (k,m)-MDS

provides optimal storage efficiency. A (k,1)-MDS is usu-
ally an XOR parity code, where the one parity symbol is
the bitwise XOR of the contents of the data symbols. The
main advantage of linear codes in disk-based systems is
the ability to calculate new parity symbols when only one
data symbol has changed without accessing the other data
symbols. Such an update reflects the read-modify-write
property of parity-based RAID systems, which is not well
suited for similar flash-based systems.

For erasure coding across flash devices, we form areli-
ability stripeout ofn pages located in different chips (and
a fortiori on different blocks). Since write requests to and
from a bank are serialized, writing to all pages in a relia-
bility stripe maximizes parallelism. The number of chips,
banks per chip, and pages per chips imposes restrictions
on the parameters of the erasure correcting code. In gen-
eral, we want allC·B·P pages be in exactly one reliability
group, (unless we contemplate the use of “spare pages”
to replace failed pages.) This placement becomes very
simple whenC dividesk+ m. Defining reliability stripes
in our setting is a similar problem to that of laying out a
declustered disk array. For example, we want to have an
equal proportion of parity and user data on each chip and
block in order to balance read load. However, because of
the different performance characteristics of disks and flash
blocks, these conditions do not need to be stringently en-
forced.

We show a very simple example encoding in Figure 3.
In this example, we have three cards, each with four banks
of flash for a total of 12 flash blocks. We use an (2,1)-
MDS (similar to 3 disk RAID Level 4), which has relia-

bility stripes consisting of blocks on three different cards.
We use the first two cards to store user data and the third
to store parity data. In this example, we define reliabil-
ity stripes for all pages in a block simultaneously. We
compute the parities asP8 = D0 ⊕ D4, P9 = D1 ⊕ D5,
P10 = D2 ⊕D6 and P11 = D3 ⊕D7. This code protects
against a single card failure. It involves writing a sin-
gle parity page with each data page written. As we will
describe in more detail below, we use caching in stable
memory to minimize actual writes to parity pages.

A bad disk sector in a RAID Level 5 disk array might
be discovered during recovery from a failed disk. Since
the sector is necessary for reconstructing the contents of
the failed disk, the RAID has lost data. In our system,
we can protect against the analogous problem by either
using an erasure correcting code with two parity symbols
corresponding to RAID Level 6, or we can protect against
individual page failure by using an erasure code within
each block. For instance, we can organize the 64 pages
in a block as a 63+ 1 reliability stripe. The analogous
solution for disks (intra-disk parity) is much less attractive
since the disk capacity is much larger than the write cache
(so that we have to update parity sectors immediately) and
because rotational latency will add to the cost of writing
the parity.

In what follows, we restrict ourselves to considering
only inter-card codes that place complete blocks into reli-
ability stripes and we consider only the 63+1 intra-bank
code.

3.3 Organizing Pages and Blocks

We use an abstraction for inter-chip reliability stripes,
called ablock group. Figure 3 gives an example block
group based on the (2,1)-MDS (card) encoding. If the sys-
tem containsC ·B banks and a bank containsb blocks,
then the system hasb block groups of sizeC ·B. If each
bank relatively addresses its blocks as[0,b−1], then the
i-th block group is defined as all of the blocks with relative
addressi from each of theC ·B banks.

Each block group has an associatederasure code in-
stance. The instance includes aparity map, which de-
scribes how data is encoded within the block group. Upon
initialization, all of the block groups are placed into a
queue, where the block group at the head of the queue is
called thecurrent block group. Similar to a log-structured
file system, all writes go to the current block group. Once
all of the pages within the current write group have been
programmed, the block group is dequeued. While we are
writing user data to the current block group, we main-
tain the parity data in cache. We only write parity data
when we dequeue the block. After we dequeue the cur-
rent block group, the head of the queue becomes the new

current block group. We erase the blocks in it before the
first write is applied to the group. Thus, the system will
only incur the cost of an erase everyk

n · (C ·B ·64) page
writes. Obviously, as the block group queue empties, a
cleaner must be invoked to free active block groups. We
plan to draw on existing work in log cleaners and leave
the design of a block group cleaner to future work.

Block groups are further organized intopage stripes.
Since there are 64 pages in a block, there are 64 page
stripes in a block group. As with block groups, thei-th
page stripe is defined as all of the pages with a relative ad-
dress ofi in the corresponding block. Writes are applied
to page stripes in order from 0 to 63.

Stripe policies determine the order at which data is writ-
ten to the data pages in an individual page stripe. Cur-
rently, the policy is set using a single parameter:stride.
Thei-th write to a page stripe goes to pagei ·stride%(D−

1), whereD is the number of data pages in the page stripe.
A stride of 1 will simply write to the pages in order.

3.4 Changing Encoding On-the-Fly

This organization allows the system to effectively change
the level of fault tolerance on a block group basis. For
example, if an administrator wishes to perform a system-
wide increase in fault tolerance, a new encoding may be
chosen for all future block group allocations. Every block
group with the old encoding may then be given priority
for cleaning, resulting in a slow change in system-wide
fault tolerance. Policies for choosing which block groups
to clean is an open problem. In practice, changes in the
level of fault tolerance would be triggered autonomously
based on failure statistics collected similarly to SMART
data in current disk drives.

3.5 Updating Parity

All parity updates for a page stripe are staged in the par-
ity cache until all of the dependent data has been writ-
ten in flash. As an example, assume a page stride of 1
is chosen for the page stripe shown in Figure 3. Each
data page within a page stripe is written in order (e.g.
D0,D1, . . . ,D7) and each page write has an associated
parity update (e.g.P8 = P8 ⊕ D0, P9 = P9 ⊕ D1, etc.).
In this case,P8 will be staged in cache until the 5-th
write to the page stripe has been applied, sinceP8 de-
pends onD0 and D4. To minimize the time a parity
page is staged in cache, the stride may be set to 4. In
this case, data page writes are applied in the following
order:D0,D4,D1,D5,D2,D6,D3,D7, allowing the associ-
ated parity pages to be hastily flushed from the cache.

Inter-block parity pages are also maintained in the par-
ity cache until all dependent data pages have been added
into the parity and written. If a (63,1)-MDS (block) encod-

ing is chosen for each block in Figure 3, then the single
parity page in a given block will be flushed from the cache
after at most(62·8)+1= 435 data page writes.

3.6 Limitations: Bad Blocks and Scaling

While the block group and page stripe abstractions sim-
plify some of the issues that arise when applying erasure
codes to flash, we find these data structures make bad
block management and scaling a bit more complicated.
One simple solution to the bad block problem is to treat all
bad blocks as all-zero data blocks and adjust parity rela-
tionships within its parent block group accordingly. Once
too many blocks in a single block group have gone bad,
the entire block group will be marked as bad. A similar
problem arises when incorporating more devices into an
existing array. The solution to both of these problems re-
mains open.

4 Evaluation
We evaluate the efficacy of our mechanisms by running
microbenchmarks on a flash simulator and estimating the
page-error rate under a variety of configurations. Very lit-
tle is known about the failure rates of whole flash devices
or chips, so we leave a device-level reliability estimate
to future work. The goal here is to compare the page-
error reliability, performance, and space tradeoffs when
using our mechanisms in an array of flash devices. While,
the results are not intended to entirely prove the effective-
ness of these mechanisms in a real system, we believe that
these initial results justify further analysis into the relia-
bility mechanisms proposed for arrays of flash devices.

4.1 Setup

All of our measurements were taken on a host computer
that is connected to 8 simulated flash cards. Each flash
card is simulated using NetApp’s Libra card simulator.
Each card contains 4 DMA channels and 8 banks of flash.
Each bank contains 64 blocks. The access latencies are as
follows: 0.2 ms to program, 0.025 ms to read and 1.2 ms
to erase. The host is equipped with two 2.74 GHz Pentium
4 processors and 2 GB of RAM. We run microbenchmarks
to estimate write and rebuild latency with and without the
use of erasure codes. Table 1 lists the erasure code config-
urations used in our evaluation. The stride in every con-
figuration is set to the number of banks per card so each
successive page write is sent to a different card, maximiz-
ing parallelism on writes.

4.2 Reliability

We derive the estimated uncorrectable page error rate
(UPER) using the cumulative Binomial distribution:
F(k;n, p) = ∑k

i=0

(n
i

)

pi(1 − p)n−i . The UPER of a
page that is encoded with aT bit tolerant ECC is

Code Config Space Eff.
(7,1)-MDS (card) 87.5%
(6,2)-MDS (card) 75%

(7,1)-MDS (card)+ (63,1)-MDS (block) 85.9%
Table 1: Erasure codes used in our analysis.

10
-9

10
-8

10
-7

10
-6

Raw BER

10
-41

10
-38

10
-35

10
-32

10
-29

10
-26

10
-23

10
-20

10
-17

10
-14

10
-11

10
-8

10
-5

U
n
co

rr
e
ct

a
b
le

 P
a
g
e
 E

rr
o
r

R
a
te

Uncorrectable Page Error Rate with 4K Pages

1-FT ECC
1-FT ECC, 7+1 (card)
1-FT ECC, 6+2 (card)
1-FT ECC, 7+1 (card), 63+1 (block)
4-FT ECC

Figure 4: Estimated Uncorrectable Page Error Rate

UPERECC(T) = 1−F(T;P,RBER), whereP is the page
size in bits and RBER is the raw bit-error rate. Further-
more, given a (k,m)-MDS code, the UPER is computed as
1−F(m;k+m,UPERECC(T))/(k+m). Finally, as long
as the corresponding erasure codes only compute a single
parity element, the UPER of a two-level encoding withM
symbols in the first encoding andN symbols in the second
encoding is†

MN
∑

i=4
β (M,N, i) · (UPERECC(T))i

· (1−UPERECC(T))MN−i

MN

Figure 4 illustrates the reliability tradeoffs when using
1 and 4-bit fault tolerant, page-level ECC and 1-bit fault
tolerant ECC with the erasure code configurations given
in Figure 1. It is important to note that the erasure code
configurations not only have the ability to tolerate high
level failures (e.g. cards, chips, etc.), they also drastically
decrease the UPER. We find that using a 1-bit fault toler-
ant ECC per page with the (7,1)-MDS (card)+ (63,1)-MDS

(block) configuration leads to the lowest UPER across the
RBER spectrum, because a block group can tolerate the
loss of at least 3 pages. The (6,2)-MDS (card) configura-
tion can tolerate many but not all 3 page errors in a block
group. Note that if we considered device failures, (6,2)-
MDS (card) would have the best reliability.

†We calculateβ(m,n, i) as
(mn

i

)

−Vi, whereVi is an estimate of the
number of recoverable erasure patterns of sizei [3].

1 2 3 4 5 6
Write Size (in pages)

240

250

260

270

280

290

300

310

320

330
La

te
n
cy

 (

|s)
Write Latency with 4 KB Pages

nothing
7+1 (card)
6+2 (card)
7+1 (card), 63+1 (block)

Figure 5: Write Performance
4.3 Performance

Figure 5 compares the write latency of no reliability
mechanisms and the configurations given in Table 1. To
show the effect of parallelism when writing across cards,
we varied the size of writes from 1 to 6 pages. We chose
the cutoff of 6 because of the contention introduced under
this write policy when writing to a new page stripe un-
der the (6,2)-MDS (card) configuration. As expected, the
amount of parity written per page determines the perfor-
mance of each scheme: (7,1)-MDS (card) write 1 parity
per page, (6,2)-MDS (card) writes 2 parity per data page
and (7,1)-MDS (card)+ (63,1)-MDS (block) writes 4 par-
ity per data page.

Another important performance measurement is the
page rebuild performance. The time to read a single page
is roughly 66.72 µs. Recovering a page under (7,1)-MDS

(card) and (6,2)-MDS (card) takes, on average, 100.90 µs
and 96.01 µs, respectively. If we try to recover a page
from the block parity in the (7,1)-MDS (card)+ (63,1)-
MDS (block) configuration, a recovery operation takes ap-
proximately 4511.12 µs. This type of recovery performs
poorly because each page involved in intra-block page re-
covery must be loaded by the same page register, resulting
in 63 serialized reads.

5 Discussion and Open Issues
In this paper, we argue for specific mechanisms that may
be used when building highly reliable flash-based storage
systems. We also briefly analyzed a few tradeoffs a sys-
tem designer can make when building such a system: re-
liability, performance and space efficiency. We found that
each choice of erasure code configuration affects all three
axes in the tradeoff space. Additionally, as the RBER in-
creases, a reasonable level of reliability can be maintained
by adjusting block group encodings on-the-fly.

This work only scratches the surface of flash-based
storage system design. In addition to fleshing out how our
mechanisms for erasure coding will fit into flash-based
systems, there exist many open problems in this area. We
must decide how to clean block groups and determine
proper cleaning policies when changing erasure code on-
the-fly. Additionally, we must figure out how to restruc-
ture block groups as new devices are added.

Acknowledgments
We would like to thank our colleagues in the Storage Sys-
tems Research Center (SSRC), Kaladhar Voruganti and
Garth Goodson, who provided valuable feedback on the
ideas in this paper. This research was supported by the
Petascale Data Storage Institute, UCSC/LANL Institute
for Scalable Scientific Data Management and by SSRC
sponsors including Los Alamos National Lab, Livermore
National Lab, Sandia National Lab, Digisense, Hewlett-
Packard Laboratories, IBM Research, Intel, LSI Logic,
Microsoft Research, NetApp, Seagate, Symantec, and Ya-
hoo.

References
[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Man-

asse, and R. Panigrahy. Design tradeoffs for ssd perfor-
mance. InUSENIX Annual Technical Conference, 2008.

[2] K. R. Fei Sun and T. Zhang. On the use of strong bch codes
for improving multilevel nand flash memory storage capac-
ity. Technical report, Rensselaer Polytechnic Institute,2006.

[3] M. A. Kousa. A novel approach for evlauating the perfor-
mance of spc product codes under erasure decoding. In
IEEE Transactions on Communications, 2002.

[4] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal,
E. Schares, and F. Trivedi. Bit error rate in nand flash mem-
ories. InIEEE International Reliability Physics Symposium,
2008.

[5] M. W. Storer, K. M. Greenan, E. L. Miller, and K. Voru-
ganti. Pergamum: Replacing tape with energy efficient, re-
liable, disk-based archival storage. InProceedings of the
6th USENIX Conference on File and Storage Technologies
(FAST), Feb. 2008.

[6] F. Sun, S. Devarajan, K. Rose, and T. Zhang. Design
of on-chip error correction systems for multilevel nor and
nand flash memories.Circuits, Devices & Systems, IET,
1(3):241–249, June 2007.

[7] T. M. Taeho Kgil, David Roberts. Improving nand flash
based disk caches. InInternational Symposium on Com-
puter Architecture, 2008.

[8] Texas Memory Systems.An In-depth Look at the RamSan-
500 Cached Flash Solid State Disk.

