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Abstract flash increases with use [4]. Page-level ECC—which

Adding flash memory to the storage hierarchy has |j§- typically used to provi_de reliabili_ty in NAND flash
cently gained a great deal of attention in both indust] _stems— gloes_ not provide protect|_on frqm whole-page
ures, chip failures, or whole-device failures. These

and academia. Decreasing cost, low power utilization a £ tail woically handled using inter-devi
improved performance has sparked this interest. Flash @es ot failures are typically handied using inter-device

liability is a weakness that must be overcome in order f (?grﬂr‘sdzﬁcgbgin;”ar to RAID. With th? exceREJ::)Dn gf thg
the storage industry to fully adopt flash for persistent-st 3 [8], we are unaware of any -base

age in mission-critical systems such as high-end stora?é)éunons for_fau!t toleranc_e across flash devices.
controllers and low-power storage systems. The contributions of this work are as follows. We
We consider the unique reliability properties of NANCYTIEflY cover the important reliability and performance
flash and present a high-level architecture for a relialﬁgaraCt?”St'Cs of NAND flash memory. Next, we provide
NAND flash memory storage system. The architectu®® architecture for flash-based storage systems that uses

manages erasure-coded stripes to increase reliability sh@sure code_s to 'Folerate failures at various levels from
Lﬁ{[_—ﬂlp to device failure. The level and scope of protec-

operational lifetime of a flash memory-based storage sy )
tem, while providing excellent write performance. OU{on May be changed on-the-fly to adjust gracefully to the

analysis details the tradeoffs such a system can make, &¢fenerative effects of aging. We conduct a preliminary

abling the construction of highly reliable fIash-based-stJrel'api"ty and perform.ance analysis of _this architecture
age systems. We find that our techniques provide a higher level of pro-

tection than existing approaches while maintaining good
1 Introduction write performance.

Recent advances in thg performance anq density of Flash Background

NAND flash memory devices offer the promise of great

performance and low energy consumption. NAND fladrigure 1 shows an example NAND flash chip with 4 banks
is being used to replace DRAM-based disk caches [?f,flash that may be accessed in parallel. Each bank con-
store metadata [5], replace disks in laptops, and event@ins a single page register and 64 blocks. All accesses
place high-performance disk arrays [8]. Unfortunateltp @ bank areserializedat the page register: data to be
NAND flash memory has limitations. First, write perforfead or written to/from a bank must be first loaded into
mance depends on the underlying architecture and dgpage register. A block contains a total of 64 pages and
not rival its excellent read performance. For good wrich page has a 4KB data section and a 128B spare area.
performance, each device must have multiple banks 'dte spare area is used to store checksums, ECC bits and
NAND flash to be accessed in parallel [1]. Second, ti@ge-specific metadata. Individual data bits are stored in
known limited endurance of NAND flash generally recells within the data section of a flash page. There are two
quires wear-leveling algorithms and page-level ECC [fimary technologies for storing bits in flash: single-leve

6, 7]. Finally, the raw bit error rate (RBER) of NANDCell (SLC) and multi-level cell (MLC). SLC technologies
store exactly one bit per cell, while MLC technologies
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(oo \ wear leveling. Our design easily extends to a SSD (or
(Bank 0 \ (Bank 1 \ (Gank 2 \ (Bank3 ) USB) flash device as long as the host/ controller has direct
[Feseres] Feseree] Feeren] access to the pages on the flash device. While other reli-
- N | o N | o N | able flash-based systems focus on bit-errors and extending
Block 0 Block 0 Block 0 Block 0 . . . R .
Page 0 Page 0 Page 0 flash lifetime using page-based ECCs, our design consid-
ers the proper application of erasure codes (or RAID) to a
\ J| ||| peces3] J | | ( LRagee3] J| || LPage63] | set of flash devices. In particular, we organize the pages
- | —_— — | — into reliability stripes with additional parity pages, sian
B Block 63 Block 63 Block 63 to what is being done in disk arrays. Because we write in
Page 0 Page 0 Page 0 Page 0 s
a log-structured manner, the parity pages do not need to
[(Fagesi] [(Fasesa] [(Fasesa] be maintained using the read-modify-write operation that
= - - ) C —J] is very expensive when used in flash.
] ] There is a subtle difference between our approach and
Figure 1: A4 bank NAND flash chip. simply applying RAID algorithms to a set of flash de-

within the block; thus, the act of writing to a block isjices. An out-of-the-box RAID approach would lead to
generally called theprogram-erase cycle Manufactur- hotspots on the flash devices and increased contention at
ers rate theenduranceof a block based on the underlyeach bank due to the traditional read-modify-write opera-
ing NAND architecture. Single-level cell (SLC) NANDtion. We control the way data/parity is written to a set of
flash blocks are generally rated at®Jfrogram-erase cy-flash devices to achieve the following goals:
cles, while multi-level cell (MLC) blocks have a much (1) Tolerate more than bit errors. Most solutions rely
lower endurance. Current two-level cell technologies as@ page-level ECC for reliability. In reality, the system
typically rated at 16 program-erase cycles. In addition tenust also tolerate burst, device, and chip-level errors. Ou
decreasing reliability, block erasures are slow; eachkblogesign achieves this goal by adding parity pages.
erase takes roughly2to 2 ms, which is an order of mag-  (2) Uniform writes across all devices.The reliability
nitude longer than a program operation. and performance consequences of program-erase cycles
Flash devices have unique reliability concerns. Thgcessitates distributing the life-time number of writes
most important of these concerns aead disturband uniformly. We manage writes in a log-structured man-
program disturb [4]. Read disturb errors occur as aer that automatically stripes writes across all devices (o
side-effect of reading a page, which may induce mulghips) and avoids read-modify-write.
ple, permanent bit-flips in the corresponding block. Pro-(3) Graceful degradation. As a system ages, the prob-
gram disturb causes a program operation on one pag@#fity of burst, device, and chip-level error as well as the
change the value of a bit on another page in the sagigerror rate increases [4]. Our design has the ability to
block. These errors contribute to the raw bit-error rafgcrease the fault tolerance for older systems at the cost of
(RBER), which is typically between 16 and 10, de- slightly lower capacity by changing the parameters of the
pending on the number of bits per cell. A recent stughage-level reliability stripes.
has shown that program-erase cycles have a significant efn achieving these goals, we essentially move the flash
fect on RBER [4]. In some cases, the RBER increasestynslation layer (FTL) off of the individual devices and
more than an order of magnitude as a block’s prograghto the host. In an array of SSDs, this would be equiv-
erase count approaches its rated endurance. Given th@sgt to moving the FTL into the array controller. By
observations, we expegage errordo be the primary fail- moving the FTL out of the individual devices, the host (or
ure pattern in flash-based systems. RAID controller) can optimize writes in a way that maxi-

We focus on three notable properties of NAND flasfhizes write performance, while writing uniformly across
devices when building a flash-based storage systeq:of the devices.
program-erase cyclingequest serializatioat each bank .
and theraw-bit error rate 3.1 System Architecture
. Figure 2 illustrates the basic architecture of the flash-
3 System Design based storage system we are analyzing. The system is
Reflecting the needs of an industrial sponsor, we conceomposed of PCI cards that contain flash memory chips.
trate on a very large flash based design for storage serWesassume a single host will contain multiple PCI buses,
where a single host or controller is connected to multipddlowing the host to address flash on multiple cards. Com-
PCI cards containing flash. We write to the flash devicesunication between the host and the card uses a DMA

in a log-structured manner, so that we do not need explicitannel. The host has a set of DMA rings, each of which
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is associated with at most one DMA engine on a card : l
the pair forms a channel. All commands are issued by |\ &= & S ) ) e ey ey (o) ey () 9]
driver at the host, which are queued on one of the host . )
DMA rings. Each DMA ring can only service a single re- Figure 3 Example block group. .
quest at a time. Each DMA engine has the ability to sefithdle storage device. Storage systems often use a lin-
requests to any of the interfaces on the card. Each infe®, Maximum Distance Separable (MDS) code, denoted
face in turn is connected to one or more DIMMs. Eadi:M)-MDS, which hasm parity symbolsk data symbols,
DIMM is connected to one or more banks of flash. THéNd can correan erasures, the maximum possible with
flash banks store the data and are the destination of thepé many parity symbols. In this sense, aqm)-mps
quest stream. While requests may be parallelized at eREfvides optimal storage efficiency. &,{)-mMps is usu-
interface, the page register requires requests to be sai @n XOR parity code, where the one parity symbol is
alized at each bank. Each flash bank contains multipi¢ Pitwise XOR of the contents of the data symbols. The
blocks, which can be accessed at page granularity. ~ Main a}qvantage of linear codgs in disk-based systems is
The purpose of the driver is to allow a higher level prdhe ability to calculate new parity symbols.when only one
cess, such as a file system, to access data pages ofl@ta symbol has changed without accessing the o_therd_ata
flash devices. The driver maintains the logical to physiymbols. Such an update reflects the read-modify-write
cal page mappings (similar to the flash translation layePyOPerty of parity-based RAID systems, which is not well
block status and the parity relationship between pagesfiied for similar flash-based systems. _
the devices. The driver exports two functions: read andFOr érasure coding across flash devices, we foretia
write. The read function takes the logical page addres@®dlity stripeout ofn pages located in different chips (and
as arguments and returns the requested data. The vitartiori on different blocks). Since write requests to and
function takes a page aligned buffer and length as ardim & bank are serialized, writing to all pages in a relia-
ments and returns the logical page addresses. ility stripe maximizes parallellsm._Thg number of chps,
Each host also contains a cache that is used by Bfks per chip, and pages per chips imposes restrictions
driver to stage parity updates and page rebuild reque§i the parameters of the erasure correcting code. In gen-
To prevent data loss during power or host failure, we #&@l, we wantalC-B-P pages be in exactly one reliability
sume the cache may contain non-volatile RAM, such SE0UP, (unless we contemplate the use of “spare pages”
battery-backed DRAM, MRAM, PRAM or FERAM. Wet(? replace fa|qu pages.) This plgcemgnt .b.ecomes very
currently store this cache in DRAM. simple wherC dividesk + m. Defining reliability stripes

Throughout our design, we assume that the system cBhOUr setting is a similar problem to that of laying out a
tainsC identical cards, each of which contabanks. declustered disk array. For example, we want to have an

Each bank will contaitb blocks that have 64 pages of 4k€qual proportion of parity and user data on each chip and
each. block in order to balance read load. However, because of

the different performance characteristics of disks anthflas
blocks, these conditions do not need to be stringently en-
An erasure code is made up of codewords that havdorced.

symbols. Storage systems typically use systematic erawe show a very simple example encoding in Figure 3.
sure codes, where each codeword cont&imgta sym- Inthis example, we have three cards, each with four banks
bols andm = n— k parity (redundant) symbols. A codeof flash for a total of 12 flash blocks. We use an (2,1)-
symbol generally refers to a sector or set of sectors omas (similar to 3 disk RAID Level 4), which has relia-

Host
—— DIMMS

3.2 Erasure Coding Across Devices



bility stripes consisting of blocks on three different cardcurrent block group. We erase the blocks in it before the
We use the first two cards to store user data and the tHirdt write is applied to the group. Thus, the system wiill
to store parity data. In this example, we define reliabibnly incur the cost of an erase eve%y (C-B-64) page
ity stripes for all pages in a block simultaneously. Werites. Obviously, as the block group queue empties, a
compute the parities aB; = Do @ D4, Py = D1 @ Ds, cleaner must be invoked to free active block groups. We
Pio = D, @ Dg andPy; = D3 @ D7. This code protects plan to draw on existing work in log cleaners and leave
against a single card failure. It involves writing a sirthe design of a block group cleaner to future work.
gle parity page with each data page written. As we will Block groups are further organized inpage stripes
describe in more detail below, we use caching in stat8énce there are 64 pages in a block, there are 64 page
memory to minimize actual writes to parity pages. stripes in a block group. As with block groups, thth

A bad disk sector in a RAID Level 5 disk array mighpage stripe is defined as all of the pages with a relative ad-
be discovered during recovery from a failed disk. Sinakess ofi in the corresponding block. Writes are applied
the sector is necessary for reconstructing the contentsmpage stripes in order from 0 to 63.
the failed disk, the RAID has lost data. In our system, Stripe policies determine the order at which data is writ-
we can protect against the analogous problem by eitlen to the data pages in an individual page stripe. Cur-
using an erasure correcting code with two parity symbatently, the policy is set using a single parametgride
corresponding to RAID Level 6, or we can protect again$hei-th write to a page stripe goes to pagstride%4D —
individual page failure by using an erasure code withit), whereD is the number of data pages in the page stripe.
each block. For instance, we can organize the 64 pagestride of 1 will simply write to the pages in order.
in a block as a 63-1 reliability stripe. The analogous
solution for disks (intra-disk parity) is much less attreet
since the disk capacity is much larger than the write cachieis organization allows the system to effectively change
(so that we have to update parity sectors immediately) athe level of fault tolerance on a block group basis. For
because rotational latency will add to the cost of writingkample, if an administrator wishes to perform a system-
the parity. wide increase in fault tolerance, a new encoding may be

In what follows, we restrict ourselves to consideringhosen for all future block group allocations. Every block
only inter-card codes that place complete blocks into regroup with the old encoding may then be given priority
ability stripes and we consider only the 63 intra-bank for cleaning, resulting in a slow change in system-wide
code. fault tolerance. Policies for choosing which block groups
to clean is an open problem. In practice, changes in the
level of fault tolerance would be triggered autonomously
We use an abstraction for inter-chip reliability stripegased on failure statistics collected similarly to SMART
called ablock group Figure 3 gives an example blockjata in current disk drives.
group based on the (2,3)ps (card) encoding. If the sys- . .
tem contain<C - B banks and a bank contaitsblocks, 3.5 Updating Parity
then the system hdsblock groups of siz€ - B. If each All parity updates for a page stripe are staged in the par-
bank relatively addresses its blocks[@d — 1], then the ity cache until all of the dependent data has been writ-
i-th block group is defined as all of the blocks with relativien in flash. As an example, assume a page stride of 1
address from each of theC - B banks. is chosen for the page stripe shown in Figure 3. Each

Each block group has an associatrdsure code in- data page within a page stripe is written in order (e.g.
stance The instance includes parity map which de- Dg,Dj,...,D7) and each page write has an associated
scribes how data is encoded within the block group. Upparity update (e.9.Ps = Ps @ Do, Pg = Py ® D3, etc.).
initialization, all of the block groups are placed into & this case,Ps will be staged in cache until the 5-th
queue, where the block group at the head of the queuaviite to the page stripe has been applied, siRgele-
called thecurrent block group Similar to a log-structured pends onDg and D4.  To minimize the time a parity
file system, all writes go to the current block group. Ongeage is staged in cache, the stride may be set to 4. In
all of the pages within the current write group have bednis case, data page writes are applied in the following
programmed, the block group is dequeued. While we areler:Dg, D4, D1,Ds, D2, Dg, D3, D7, allowing the associ-
writing user data to the current block group, we maimted parity pages to be hastily flushed from the cache.
tain the parity data in cache. We only write parity data Inter-block parity pages are also maintained in the par-
when we dequeue the block. After we dequeue the city- cache until all dependent data pages have been added
rent block group, the head of the queue becomes the riete the parity and written. If a (63,INtDs (block) encod-

3.4 Changing Encoding On-the-Fly

3.3 Organizing Pages and Blocks



ing is chosen for each block in Figure 3, then the sing|e Code Config Space Eff.
parity page in a given block will be flushed from the cache (7,1)MDs (card) 87.5%
after at mos{62- 8) + 1= 435 data page writes. (6,2)-MDs (card) 75%
3.6 Limitations: Bad Blocks and Scaling (7,1)mDs (card)+ (63,1)mDs (block) 85.9%

While the block group and page stripe abstractions sim-  1able 1: Erasure codes used in our analysis.

plify some of the issues that arise when applying erastire
codes to flash, we find these data structures make | Uncorrectable Page Error Rate with 4K Pages
block management and scaling a bit more complicate ;4° ‘ ‘ ‘
One simple solution to the bad block problemisto treat , 10®
bad blocks as all-zero data blocks and adjust parity re& 10"
tionships within its parent block group accordingly. Onc g 10::
too many blocks in a single block group have gone beL!élor20
the entire block group will be marked as bad. A simileg 10

o 1023

problem arises when incorporating more devices into 5

. . . ©
existing array. The solution to both of these problems rg 107
mains open. S 10 —TFECE
. £ s +~— 1-FT ECC, 7+1 (card)
4 Evaluation p LT ECC, 741 (card), 63+1 (block
10' — 1- , 7+1 (card), + oc
We evaluate the efficacy of our mechanisms by runni 14 k& TR =
microbenchmarks on a flash simulator and estimating 1 10 10 I, 10

page-error rate under a variety of configurations. Very lit-
tle is known about the failure rates of whole flash deV'CeSFigure 4: Estimated Uncorrectable Page Error Rate

o e, 50 we leave & ovicelve ety SSUTeoe o) — 1 (1P RBER, whereP s e page
L Size in bits and RBER is the raw bit-error rate. Further-
error reliability, performance, and space tradeoffs Wh?ﬁbre, given a (k,mMps code, the UPER is computed as
using our mechanisms in an array of flash devices. While. £y k + m, UPER=cc(T))/ (k+m). Finally, as long
the results are not intended to entirely prove the effeetivgs the corresponding erasure codes only compute a single
ness of these mechanisms in a real system, we believe flaity element, the UPER of a two-level encoding with
these initial results justify further analysis into theiael symbols in the first encoding amdsymbols in the second
bility mechanisms proposed for arrays of flash devices.encoding is'

4.1 Setup MN : :
> B(M,N,i)- (UPERecc(T))' - (1~ UPERec(T)) VN

All of our measurements were taken on a host computei&4

that is connected to 8 simulated flash cards. Each flash MN

card is simulated using NetApp’s Libra card simulator.

Each card contains 4 DMA channels and 8 banks of flashFigure 4 illustrates the reliability tradeoffs when using
Each bank contains 64 blocks. The access latencies are¢ agd 4-bit fault tolerant, page-level ECC and 1-bit fault
follows: 0.2 ms to program, @25 ms to read and2 ms  tolerant ECC with the erasure code configurations given
to erase. The hostis equipped with two 2.74 GHz PentidmFigure 1. It is important to note that the erasure code
4 processors and 2 GB of RAM. We run microbenchmarkgnfigurations not only have the ability to tolerate high
to estimate write and rebuild latency with and without thevel failures (e.g. cards, chips, etc.), they also drabic
use of erasure codes. Table 1 lists the erasure code corfigbrease the UPER. We find that using a 1-bit fault toler-
urations used in our evaluation. The stride in every cofint ECC per page with the (7,4)ps (card)+ (63,1)MDS
figuration is set to the number of banks per card so eg@lock) configuration leads to the lowest UPER across the
successive page write is sent to a different card, maximRBER spectrum, because a block group can tolerate the
ing parallelism on writes. loss of at least 3 pages. The (6)2ps (card) configura-
4.2 Reliability tion can tolerate many but not all 3 page errors in a block
%{oup. Note that if we considered device failures, (6,2)-

We derive the estimated uncorrectable page error r e (card) would have the best reliability,

(UPER) using the cumulative Binomial distribution.
F(kn,p) = zik:o (?) p'(1—p"'. The UPER of a fwe calculateB(mn,i) as (™™ — Vi, whereV; is an estimate of the
page that is encoded with @ bit tolerant ECC is number of recoverable erasure patterns of s5[2&




This work only scratches the surface of flash-based
storage system design. In addition to fleshing out how our

Write Latency with 4 KB Pages

-—-nothi‘ng . . . .

320f|— f73+§ Ecarg; mechanisms for erasure coding will fit into flash-based
— 6+ . . .

210l L 741 (card). 63+1 (block) systems, there exist many open problems in this area. We

must decide how to clean block groups and determine
proper cleaning policies when changing erasure code on-
the-fly. Additionally, we must figure out how to restruc-
ture block groups as new devices are added.
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