Analysis and Construction of Galois Fields for
Efficient Storage Reliability

Technical Report UCSC-SSRC-07-09

Kevin M. Greenan (kmgreen@cs.ucsc.edu)

Ethan L. Miller (elm@cs.ucsc.edu)
Thomas J. E. Schwarz, S.J .T(tjschwarz@scu.edu)

Storage Systems Research Center ~ "Department of Computer Engineering
Jack Baskin School of Engineering Santa Clara University
Computer Science Department Santa Clara, CA 95053
University of California, Santa Cruz
Santa Cruz, CA 95064
http://ssrc.cse.ucsc.edu/
August 21, 2007

Abstract

Software-based Galois field implementations are used in the reliability and security components of many storage
systems. Unfortunately, multiplication and division operations over Galois fields are expensive, compared to the
addition. To accelerate multiplication and division, most software Galois field implementations use pre-computed
look-up tables, accepting the memory overhead associated with optimizing these operations. However, the amount of
available memory constrains the size of a Galois field and leads to inconsistent performance across architectures. This
is especially problematic in environments with limited memory, such as sensor networks.

In this paper, we first analyze existing table-based implementation and optimization techniques for GF(2!) multi-
plication and division. Next, we propose the use of techniques that perform multiplication and division in an extension
of GF(2'), where the actual multiplications and divisions are performed in a smaller field and combined. This approach
allows different applications to share Galois field multiplication tables, regardless of the field size, while drastically
lowering memory consumption. We evaluated multiple such approaches in terms of basic operation performance and
memory consumption. We then evaluated different approaches for their suitability in common Galois field applica-
tions. Our experiments showed that the relative performance of each approach varies with processor architecture, and
that CPU, memory limitations and field size must be considered when selecting an appropriate Galois field implemen-
tation. In particular, the use of extension fields is often faster and less memory-intensive than comparable approaches
using standard algorithms for GF(2).

1 Introduction

The use of Galois fields of the form GF(2!), called binary extension fields, is ubiquitous in a variety of areas ranging
from cryptography to storage system reliability. These algebraic structures are used to compute codewords in linear
erasure codes, evaluate and interpolate polynomials in Shamir’s secret sharing algorithm [17], compute algebraic sig-
natures over variable-length strings of symbols [16] and encrypt blocks of data in Rijndael’s cipher. These applications
typically perform computation in either GF(2%) or GF(2'9).

Multiplication in GF(2%) and GF(2'9) is typically done using pre-computed look-up tables, while addition of two
elements in GF(2') is usually, but not always, carried out using an inexpensive bitwise-XOR of the elements. As a
result, overall algorithm speed is more affected by multiplication because, while it is more expensive than addition,
most algorithms use it just as often. Thus, optimizing the multiplication operation will, in turn, lead to much more
efficient applications of Galois fields.

The byte-based nature of computer memory motivates the use of GF(2%)—each element represents one byte of
storage. However, the small number of distinct elements in GF(2%) poses an advantage and a disadvantage. Multi-
plication in GF(2%) is typically carried out using a complete 64 KB multiplication table, which should fit into the L2
cache of most processors. Unfortunately, there are only 256 distinct field elements in GF(2®), restricting the order of
any single element to at most 255. Thus, codewords in a Reed-Solomon code defined over GF(28) are restricted to no
more than 257 or 258 symbols [9].

The smallest feasible field larger than GF(2%) is GF(2'%), which allows Reed-Solomon to have 65,537-symbol
codewords. Unfortunately, growing to GF(2'®) and beyond has a significant impact on field operations such as mul-
tiplication. A complete lookup table for multiplication in GF(2'®) requires 8 GB—well beyond the memory capacity
of most systems. The standard alternative to a full multiplication table is a logarithm and an antilogarithm table that
requires 256 KB; this may fit in the standard L2 cache, but might be partially evicted from an L1 cache. Moreover,
using table-based multiplication approaches in GF(2*?) and larger is simply impossible given modern memory sizes.

Composite fields are an alternative to table-based methods. Using this technique, elements of a field GF(2")

are represented in terms of elements in a sub-field GF(2'), where n = [x k. The composite field GF((2')k) is a
representation of a k-degree extension of GF(2'), where GF(2) is called the ground field. Compared to traditional
table-based methods, this technique trades additional computation for a significant decrease in storage space. Since the
cost of a cache miss amounts to the execution of a few instructions, trading additional computation for less storage can
significantly increase performance. Additionally, many applications will use Galois fields for different purposes; using
the composite field technique, it might be possible to reuse the the ground Galois field tables for several variable-sized
Galois field extensions.

Distinct Galois field implementation techniques will perform differently on disparate hardware due to the complex
interactions between the various cache levels, speculative execution of instructions, and other factors. The techniques
for Galois field implementation described here are not new, but, to our knowledge, there is no comparative study
of their performance over standard, contemporary computing systems. We were motivated to evaluate the relative
performance of our implementation techniques by the design of large storage systems that will use Galois fields to
provide different functionalities such as integrity checking, erasure protection, and cryptographic protection.

The performance of the Galois field implementation may be a critical factor in overall system performance. The
results presented here show dramatic differences in throughput, though (as expected) yield no overall algorithmic
winner on the various platforms we studied. We conclude that a performance optimizing software suite needs to
tune the Galois field implementations to the hardware. As the industry shifts to multi-core systems with shared
memory, but private L1 caches, we expect a need to redo the performance evaluation. It would also be interesting to
see how our various implementation alternatives perform on low-power systems used to build sensor networks. We
restrict ourselves in this paper to efficient implementation of operations in GF(2*), GF(2%), GF(2'°), and GF(2%),
postponing an evaluation of implementations for larger size fields.

The contributions of this paper are threefold. First, we present and compare popular table-based binary extension
field implementation techniques and their optimizations. Next, we propose the use of software-based composite fields
when implementing GF(2'°) and GF(2%?). Finally, we compare all of the Galois field representations in terms of raw
multiplication and application performance in three distinct environments.

We begin in Section 2 by describing a few well-known applications of Galois fields in computer systems. Section 3
presents some background on Galois fields and shows common multiplication techniques in binary extension fields

and a few optimizations to these techniques. We describe the construction of a composite field in Section 4. Our
implementation is described and evaluated in Section 5. We present related work in Section 6 and we conclude the
paper in Section 7.

2 Applications of Galois fields

The implementation and examination of erasure codes in disk arrays, distributed storage systems and content distri-
bution systems has been a common area of research within the systems community over the past few years. Most
work is concerned with fault tolerant properties of codes, performance implications of codes, or both. Most of the era-
sure codes used in storage systems are XOR-based and generally provide limited levels of fault tolerance; a flood of
special-purpose, XOR-based codes is the result of a performance-oriented push from the systems side [4, 2, 19]. While
these codes perform all encoding and decoding using the XOR operator, they either lack flexibility in the number of
tolerated failures or are not maximum distance separable (MDS) and may require additional program complexity.

Linear erasure codes, such as Reed-Solomon [12], are MDS. As a result, Reed-Solomon codes provide flexibil-
ity and optimal storage efficiency. Unfortunately, Reed-Solomon codes are generally regarded as inefficient because
encoding and decoding require Galois field arithmetic. Some effort has gone into alternative representations of Reed-
Solomon codes. Arithmetic over field elements GF(2!) may be transformed into operations in GF(2), where multi-
plication is the bit-AND operation [3, 14]. While multiplication in a binary extension field is avoided, performance is
heavily dependent on the choice of the code’s generator matrix and the alternative representation results in additional
program code complexity. Furthermore, the benefits of the XOR-based Reed-Solomon codes are generally effective
when encoding large pieces of data. Compared to XOR-based Reed-Solomon and other special-purpose coding tech-
niques, we believe that the use of Galois field arithmetic in linear codes leads to simple, generalized implementations.

Threshold cryptography algorithms, such as Shamir’s secret sharing algorithm [17], also rely on Galois fields for
encoding and decoding. A random k-degree polynomial over a Galois field is chosen, where the zeroth coefficient is a
secret to be shared among n participants. The polynomial is evaluated over n coordinates (shares), distributed among
the participants. Polynomial interpolation is used to reconstruct the zeroth coefficient from any k + 1 unique shares.
The construction, evaluation and interpolation of the polynomial may also be done over Z, for some prime number p.
Unfortunately, when dealing with large fields, the use of a suitable prime number may result in field elements that are
not byte-aligned. Using Galois fields allows all of the field elements to be byte aligned.

Another class of algorithms that use Galois field arithmetic is algebraic signatures [16]. Algebraic signatures are
Rabinesque because of the similarity between signature calculation and the hash function used in the Rabin-Karp
string matching algorithm [5]. The algebraic signature of a string so,s1,...,5,—1 is the sum E;’;OI s;ol, where o and
the elements of the string are members of the same Galois field. Algebraic signatures are typically used across RAID
stripes, where the signature of a parity disk equals the parity of the signatures of the data disks. This property makes
the signatures well-suited for efficient, remote data verification and data integrity in distributed storage systems.

All of these applications make extensive use of Galois field multiplication, which is generally second to disk access
as a performance bottleneck in a storage system that uses Galois fields. We describe methods aimed at improving
general multiplication performance in the next two sections.

3 Construction of GF(2!)

The field GF(2') is defined by a set of 2! unique elements that is closed under both addition and multiplication,
in which every non-zero element has a multiplicative inverse and every element has an additive inverse. Addition
and multiplication in a Galois field are associative, distributive and commutative. The Galois field GF(2) may be
represented by the set of all polynomials of degree at most / — 1, with coefficients from the binary field GF(2)—the
field defined over the set of elements O and 1. Thus, the 4-bit field element a = 0111 has the polynomial representation
a(x) =x*4+x+1.

In contrast to finite fields defined over an integer prime, the field GF(2') is defined over an irreducible polynomial
of degree / with coefficients in GF(2). An irreducible polynomial is analogous to a prime number in that it cannot
be factored into two non-trivial factors. Addition and subtraction in GF(2) is done with the bitwise XOR operator,
and multiplication is the bitwise AND operator. It follows that addition and subtraction in GF(2!) are also carried
out using the bitwise XOR operator, while multiplication turns out to be more complicated. In order to multiply two
elements a(x),b(x) € GF(2!), we perform polynomial multiplication of a(x) - b(x) and reduce the product modulo an

Input : a,b € GF(2') and FLD_SIZE = 2!
ifais 0| bis O then
return 0
end if
sum — logla] + log[b]
if sum > FLD_SIZE — 1 then
sum «— sum — FLD_SIZE — 1
end if
return antilog[sum]

Figure 1: Computing the product of a and b using log and antilog tables

I-degree irreducible polynomial over GF(2). Division among field elements is computed in a similar fashion using
polynomial division.

The order of a non-zero field element ord(at) is the smallest positive i such that o = 1. If the order of an element
o € GF(2') is 2! — 1, then o is primitive. In this case, o generates GF(2!), i. e., all non-zero elements of GF(2') are
powers of a.. For a detailed and rigorous explanation of finite fields, please refer to [8].

The goal of this section is to show several approaches to performing multiplication over the fields GF(24), GF(2%),
and GF(2'®) and to show a few optimizations. All of the methods described here may be used to perform ground field
calculations in the composite field representation.

3.1 Multiplication in a GF(2')

Courses in Algebra often define Galois fields as a set of polynomials over a prime field such as {0,1} modulo a
generator polynomial. While it is possible to calculate in Galois fields performing polynomial multiplication and
reduction modulo the generator polynomial, doing so is rarely efficient. Instead, we can make extensive use of pre-
computed lookup tables. For small Galois fields, it is possible to calculate all possible products between the field
elements and store the result in a (full) look-up table. However, this method consumes large amounts of memory.

Log/antilog tables make up for storage inefficiency by requiring some computation and extra lookups in addition
to the single lookup required for a multiplication table. The method is based on the existence of a primitive element
a. Every non-zero field element p € GF(2') is a power B = o where the logarithm is uniquely determined modulo
2! — 1. We write i = log(f) and p = antilog(i). The product of two non-zero elements a,b € GF (2') can be computed
as a- b = antilog(log(a) +log(h)) mod 2! — 1. The algorithm for computing the product of two field elements using
logarithm and antilogarithm tables is shown in Figure 1.

3.2 Optimization of the Full Multiplication Table

We can shrink the full multiplication table by breaking a multiplier in GF(2') into a left and a right part. We store
the result of multiplication by a left and by a right part in two tables, resulting in a significantly smaller multiplication
table. Multiplication is performed using a lookup into both tables and an addition to calculate the correct product.
Other papers have called this optimization a “double table” [16]; we call it a left-right table. To define it formally,
we represent the elements of GF(2!) as polynomials of degree up to [— 1 over {0,1}. If we wish to multiply field
elements a(x) = aj +axx+---+a;_1x' " and b(x) = by +bpx+---+b;_1x! 7 in GF(2'), the product a(x) - b(x) can

(a1 +-+a_ X1 (by+-+ b X
be arranged into two products and a sum = ((a1+--'+a%71x by + -+ b))
+ ((a%x%+"-—|—al,1xl*1)~(b1+-"+b1,1xl*1)),

1
l
2

By breaking the result into two separate products, we can construct two tables having 22 .2 entries each, assuming
[is even. This approach, which computes the product of two elements using two lookups, a bitwise shift, two bitwise
ANDs and a bitwise XOR, requires that tables be generated as shown in Figure 2. The product a- b, a,b € GF(2) is
the sum of mult tbl_left[a; >>][b] and mult tbl_right[ao][b], where a; are the § most significant bits and ag are the

é least significant bits.

Input : FLD_SIZE == 2!
for i =0 to FLD_SIZE > % do
for j =0to FLD_SIZE do
mult_tbl_left[i)[j] < gf -mult(i < L,)
mult_tbl_right[i|[j] — gf -mult(i, j)
end for
end for

Figure 2: Precomputing products for the left and right multiplication tables

While this multiplication table optimization may seem minor for smaller fields, it is highly effective for GF(28)
and GF(2'%). The standard multiplication table for GF(2%) requires 64 KB, which should fit in the L2 cache, but might
not fit in the data section of an L1 cache. Using the multiplication table optimization, the table for GF(28) is 8 KB and
has a better chance of fitting in the L1 cache. The table for GF(2!) occupies 8 GB and will not fit in main memory
in a majority of systems; however, the optimization shrinks the table from 8 GB to 66 MB, which has a much better
chance of fitting into main memory.

3.3 Optimization of the Logarithm/Antilogarithm Method

While our previous optimization traded an additional calculation for space savings, the optimizations for the log/antilog
go in the opposite direction. As shown in Figure 1, the standard log/antilog multiplication algorithm requires two
checks for zero, three table-lookups and an addition modulo 2/ — 1. We can divide two numbers by taking the antilog-
arithm of the difference between the two logarithms, but this difference has to be taken modulo 2! — 1, too. We can
avoid the cumbersome reduction modulo 2/ — 1 by observing that the logarithm is defined to be a number between
0 and 2! — 2, so the sum of two logarithms can be at most 2 -2/ — 4 and the difference between two logarithms is
larger or equal to —2/ + 1. By extending our antilogarithm table to indices between —2' 4- 1 and 2/ — 2, our log/antilog
multiplication implementation has replaced the addition/subtraction modulo 2/ — 1 with a normal signed integer addi-
tion/subtraction.

If division is a rare operation, we can use an insight by A. Broder [personal communication from Mark Manasse] to
speed up multiplication by avoiding the check for the factors being zero. Although the logarithm of zero is undefined,
if the logarithm of zero is defined to be a negative number small enough that any addition with a true logarithm still
yields a negative number, no explicit zero check is needed. Thus, we set log(0) = —2/ and then define the antilog of
a negative number to be 0. As a result of this redefinition, the antilog table now has to accommodate indices between
—2/+1 and 2!*1 — 2 and has about quintupled in size, but the product of @ and b may now be calculated simply as
a- b = antilog[log|a] + log[b]].

Huang and Xu proposed three improvements to the log/antilog approach [7]. The improvements were compared
to the full multiplication table and the unoptimized logarithm/antilogarithm approaches in GF(2®). The first two
improvements optimize the modular reduction operation out and maintain the conditional check for zero, while the
third improvement is Broder’s scheme. The first improvement replaces the modulus operator by computing the product
of two non-zero field elements as

antilog[(log[a] + log[b])& (2" — 1) + (log[a] + log[b]) >> n]

The second improvement extends the indices of the antilogarithm table to account for the sum of two logarithms
exceeding 2" — 1, where the product of two non-zero field elements is computed the same way it is computed in
Broder’s scheme. Due to the similarity between the second and third improvements in Huang and Xu [7] and Broder’s
scheme, we chose to only use the first improvement (called Huang and Xu) for comparison in our study.

We have covered a variety of techniques and optimizations for multiplication in GF(2'). Figure 3 lists the space
and computation requirements for each multiplication scheme. In the next section, we show that the multiplication

techniques in GF(2!) can be used to efficiently compute products over the field GF ((2’)k).
4 Using Composite Fields

Many hardware implementations of Galois fields use the composite field technique [10, 11], in which multiplication
in a large Galois field is implemented in terms of a smaller, intermediate Galois field. Specializing to field sizes that

Space Complexity

Mult. Table 202! 1 LKU
Lg/Antilg 242! | 3LKU, 2 BR,] MOD
1 ADD
Lg/Antilg Optimized 5.2 3 LKU, 1 ADD

Huang and Xu 242! | 31LKU, 1 BR, 3 ADD
1 SHIFT, 1 AND
LR Mult. Table | 2G0+1 2 LKU, 2 AND

1 XOR, 1 SHFT

Figure 3: Ground field memory requirements and computation complexity of multiplication in GF (21). The operations are ab-
breviated LKU for table lookup, BR for branch and MOD for modulus; the rest refer to addition and the corresponding bitwise
operations.

are a power of 2, we want to implement multiplication and division in GF(2") in terms of GF(2'), where [divides n
and n = [- k. We know from Galois field theory that GF(2") is isomorphic to an extension field of GF(2!) generated
by an irreducible polynomial f(x), (i. e. one without non-trivial dividers) of degree k with coefficients in GF(2').

In this implementation, elements of GF(2"), written GF((2)k), are polynomials of degree up to k — 1 with co-
efficients in GF(2'). In our standard representation, each element of GF ((2’)k) is a bit string of length n, which we
now break into k consecutive strings of length / each. For example, if n = 32 and k = 4, a bit string of length 32 is
broken into four pieces of length 8. If the result is (a3,a2,a1,ao), we identify the GF(232) element with the polyno-
mial a3 - x> + a; - x2 + a; - x + ap, with coefficients as,az,ap,ag € GF (28). This particular representation is denoted
GF((2%)").

The product of two GF ((21)k) elements is obtained by multiplying the corresponding polynomials—let them be
ar_1- X1+ +ay-x*+ay;-x+apand by -x*' + ... +by-x*> + by -x + bg—and reducing the result modulo the
irreducible, defining polynomial f(x). We multiply the two polynomials out to obtain

(3w

=0 V+Hu=i

For i > k— 1 in this expression, we replace x' with x' mod f(x), multiply out, and reorganize according to powers
of x. The result is the product in terms of products of the coefficients of the two factor polynomials multiplied with
coefficients of the defining polynomial f(x). In order to do this efficiently, we must search for irreducible polynomials
f(x) of degree k over GF (2') that have many coefficients equal to zero or to one.

For small field sizes, it is possible to exhaustively search for irreducible polynomials. If k£ < 3, an irreducible
polynomial is one that has no root and irreducibility testing is simple. Otherwise, the Ben-Or algorithm [6] is an
efficient way to find irreducible polynomials.

We have implemented GF((21)2), for/ € {4,8,16} and GF((21)4), for [€ {4,8} using the composite field repre-
sentation. The remainder of this section discusses multiplication and inversion in the composite field representation.

4.1 Multiplication in GF((2!)%)

In general, irreducible polynomials over GF(2") of degree two must have a linear coefficient. We have found irre-
ducible polynomials of the form f(x) = x> +s-x-+ 1 over GF(2*), GF(2%), and GF(2'%) that will do well for our

purpose. We write any element of GF((2')2) as a linear or constant polynomial over GF(2!). Multiplying a; - x + ag
by by - x + bg gives the product

(a1-x4ag) - (b1-x+bo)
= a1b1x2 + (Cllbo + aobl)x—i— aoby.

Since x> = sx+ 1 mod f(x), this becomes

(a1bo + apby +sa1b1)x+ (a1b1 + aobo).

As described above, multiplication in GF ((21)2) is done in terms of five multiplications in GF(2!), of which one
is done with a constant element s. Parenthetically, if we define GF(2%) through the binary polynomial x® 4 x* 4+ x* +
2+ 1, or 0x11D in hexadecimal notation, we can choose s to be 0x3F in hexadecimal notation, resulting in an
irreducible polynomial that is indeed optimal in the number of resulting multiplications. An irreducible, quadratic
polynomial must have three non-zero coefficients since, without a constant coefficient the polynomial has root zero
and a polynomial of form x*> + a always has the square root of a as a root. Since x> 4 x + 1 is not irreducible over
GF(2%), GF(2%) or GF(2'%), we can do no better than x*> 4 s- x4 1. The fields GF((24)2), GF((28)2) and GF((216)2)
were implemented using this representation.

4.2 Multiplication in GF((2)")

We can use the composite field technique in two ways to implement GF((2/)4). First, we can implement GF (2%) and
GF(2'%) as GF ((24)2) and GF ((28)2), respectively, and then implement GF(232) as GF(((2%)?)?). This approach
would require that we find an irreducible polynomial over GF((28)2), but it turns out that there is one of the same

form as in the previous section. Mutatis mutandis, our multiplication formula remains valid and we have implemented
multiplication in GF(23?) in terms of 5 -5 = 25 multiplications in GF(2%). The same approach applies to multiplication

in GF(2'9) over coefficients in GF((24)%).

We can also use a single step in order to implement GF(2°?) in terms of GF(2®), but finding an appropriate
irreducible polynomial of degree 4 in GF(2%) is more involved. After exhaustive searching, we determined that we
can do no better than with x* + x> 4- sx -+, for which the resulting implementation uses only 22 multiplications, 16 of
which result from multiplying all coefficients with each other and the remaining 6 from multiplying s and ¢ by a3b3,
azby + axbs, and by azb; + axbs + a1 b3, reusing some of the results. For instance, we have an addend of a3b3(r + 1)x2
and of azbst, but we can calculate both of them with a single multiplication by ¢. Again, the same formula works for

the GF ((24)4) representation of GF(2'6).
4.3 Multiplicative Inverse in Composite Fields

Division among field elements is required when interpolating a polynomial or solving a system of linear equations.
This makes division essential for decoding in Reed-Solomon and Shamir’s secret sharing. Given a small field GF(2'),
division is efficiently accomplished by determining a multiplicative inverse using logarithm and antilogarithm tables.
Unfortunately, when working in a large field, there is no room for a table that covers all of the field elements so multi-
plicative inverses must be computed on-the-fly. In general, the Extended Euclidean Algorithm [5] is the fastest way to
compute multiplicative inverses in a composite field. We employ the Extended Euclidean Algorithm for extensions of
GF(2') of degree larger than 2. When working in the field GF ((21)2) we take advantage of the ground field log/antilog
tables to compute the multiplicative inverse.

Given two elements a,b € GF((2')2), we know thata-b = 1 <> b= a~!. With respect to an irreducible polynomial
¥ +sx+1€GF((2!)2), we can determine the multiplicative inverse of some a € GF((2/)2) by solving for by and b;

m
(aobl +aibo + (s)albl)x—i- (Clobo +Cllb1) =1 (1)

Solving Equation 1 for by and b1, the inverse of @ = a;x + ap may be computed with 5 multiplications, 3 inversions
and 4 additions in GF(2'). We could perform a similar boot-strapped calculation for 4-degree extensions, but chose to
limit the inversion optimization to 2-degree extensions.

There are three cases for finding the multiplicative inverse b of a. If ap = 0, then by setting by = satf1 and by =a~
we get aja; ' + (ai(sa; ') +sai(a;")o = 1 € GF((2)?), which results in b = sa; ' +ajo. If a; =0, then we set
by = aal andb; =0togetb= aal + 0o Finally, if ap # 0 and a; # 0, we can solve Equation 1 for ¢ € GF(ZZ), where
c=aby and c+ 1 = apby. Since substituting ¢ into apbg + a1b; = 1, we need to solve

1

apby +aibo + (s)a1by =0
& (c)aoa; '+ (c+ Daray ' + (s)(c)ara; ' =0

& (alaal)(alaal—i—aoafl—i—s)’l =c

Processor L1(data)/L2 Memory
2.4GHz AMD Opteron | 64KB/1 MB 1GB
1.33GHz PowerPC G4 | 32KB/512KB | 768 MB
2 GHz Intel Core Duo 32KB/2 MB? 2GB

Figure 4: List of the processors used in our evaluation.

Using this solution, we have by = (¢ + 1)a, ' and by = ca;'. Thus, the inverse of a = ag +ajo is ((c+ 1)ay ') +
(cafl)a and may be computed with 5 multiplications, 3 inversions and 4 additions in GF(2'). We could perform a
similar boot-strapped calculation for 4-degree extensions, but chose to limit the inversion optimization to 2-degree
extensions.

S Experimental Evaluation

We have written a Galois Field library that implements GF(2*), GF(28),GF(2'%) and GF(23?). The core library con-
tains code for finding irreducible polynomials, polynomial operations, and the arithmetic operations over the supported
fields. Instances of Shamir’s secret sharing, Reed-Solomon and algebraic signatures were also created on top of the
library. The entire implementation was written in C and contains roughly 3,000 lines of code (1,000 semi-colons).
This code will be made available prior to publication as a library that implements Galois fields and the aforementioned
applications.

Our experimental evaluation measures the speed of multiplications as well as the throughput of three “higher-level”
applications of Galois fields: Shamir secret sharing, Reed Solomon encoding and algebraic signatures. We took our
measurements on three machines, whose specifications are listed in Figure 5.

Figures 5 ,6 and 7 compare multiplication throughput using the table-based techniques discussed in Section 3
over the fields GF(2%), GF(2®) and GF(2'®). These techniques are the full multiplication table (tbl), left-right table,
(Ir_tbl), Broder’s logarithm/antilogarithm method (lg), the optimization chosen from [7] (huang_lg), and the unopti-
mized version of logarithm/antilogarithm (Ig_orig).

The “uniform” bar in Figures 5, 6 and 7 represent average-case multiplication performance and measures the
throughput of products with factors chosen uniformly from the Galois Field. In the “uniform” workload, the mul-
tiplicand is a monotonically increasing value masked to fit the value of a field element and the multiplier is a value
chosen from a randomly generated 64K element array of field elements. The “square” bar gives the throughput from
calculating squares of elements chosen with uniform probability from the Galois field, while “constant” multiplies a
fixed element with a uniformly chosen random Galois field element.

In general, as expected, the “uniform” data set had lower throughput than the other workloads, for two reasons.
First, the “uniform” data set draws random values from an array, which is competing with the lookup tables for a place
in the cache. Second, the “uniform” workload is computing the product of two distinct elements at each step, which
has a dramatic negative effect when caching large tables. The “constant” and “square” workloads only access a subset
of the tables, reducing the cache competition among the lookup tables and explaining the higher throughput. These
results also show that one must be attentive when measuring table-based multiplication performance. For instance,
if the terms (or even a single term) of the products in a workload represent a small subset of field elements, then the
reported throughput will generally higher and may not reflect the average-case performance if the real workload does
not have the same characteristics as the benchmark workload.

In addition, we found that the left-right table implementation of GF(2%) appears to have the best performance
for the “uniform” workload across all architectures and fields, while the rest of the results are evenly mixed across
technique and architecture. As the table size grows, the performance becomes less dependent on the additional com-
putation, explaining the cases where the throughput under the “square” and “constant” workloads are comparable to
the “uniform” workload in which the extra computation becomes the bottleneck.

The effect of computation overhead is highlighted in the difference between “square” and “constant” across each
method. These workloads only access a small subset of the lookup tables, thus computation overhead becomes ev-
ident. The extra computation is overshadowed by cache-related issues in the “uniform” workload; therefore, extra
computation in addition to table look-up may not have a dramatic effect on average-case performance.

2Each core has a private 32 KB L1 cache. The L2 cache is shared between the cores.

Comparison of Multiplication in Binary Extension Fields

700 - .
B uniform
@ 600 square
o
S 500 I # constant
—
S 4 .
g
o) 300 -
=]
o 200 -
c
— 100 % 3
O_ -
22235 5 88 8 22292209
¥ ®© © § g . 1 6 6 6 8 8 &
2 8 = 5 o = = = | 1 1 3 =3 3=
AN N &8 £ £ ¢ ®w 0o © © D c < <
N N N5 O — d T | | |
N N — 9 9 ~— . .
Nd&z3gac
(aV] —— - @)
. (aV] (V] —
Field.MultMethod N

Figure 5: Throughput using multiplication tables, lg/anilg tables and LR tables over GF(2*), GF(28) and GF(2'®)on AMD.

Figure 8 compares the performance of uniform multiplications in GF(2!®) and GF(2%?). We draw particular
attention to the good results of using the table method in GF(2%) when implementing GF(2'®) and GF(23?). In fact,

the GF ((28)2) implementation either outperforms or performs comparably to GF(2!6) on all architectures, showing
the effect table size and cache size can have on overall multiplication performance. The same observation is made
when comparing the performance of different approaches to operations in GF(23%): with the exception of the Intel

machine, the GF((28)") implementation tends to outperform GF((2'6)%), most likely due to table size.

Overall, there is no clear winner for GF(2'®) or GF(2%?) across architectures or techniques, although, Broder’s
scheme and the full multiplication table technique seem to perform very well in most cases. However, it is important
to note that performance degrades quickly as the size of the extension field grows from 2 to 4 degrees because of the
exponential increase in the number of multiplies and the choice of irreducible polynomial.

Next, we explore the multiplication performance in a few applications: Reed-Solomon encoding, Shamir’s secret
sharing and algebraic signature computation. We present the results for Reed-Solomon encoding with 62 data elements
and 2 parity elements in two scenarios. The first reflects basic codeword encoding, where each symbol in the codeword
is an element of the appropriate Galois field. The second method, called region multiplication, performs codeword
encoding over 16,384 symbols, resulting in 16,384 consecutive multiplications by the same field element. We also
perform a (3,2) Shamir secret split, which evaluates a random 2 degree polynomial over each field for the values
1, 2 and 3. In algebraic signatures, the signature is computed as {sig,o(D), sigqa(D)} and sigg(D) = 3i_od;p’ and
|D| = I. In addition to using the multiplication table technique shown in [16], we hand-picked a for the composite
field implementations. For instance, if we choose a = 0x0101 € GF ((28)2), then multiplication by a results in two
multiplications by 1 in GF(2%), which can be optimized out as two copy operations. Note that o is chosen such that
ord(at) > b, where b is the size of the data blocks. The signatures were calculated over 4,096 symbol blocks. Both
of these optimizations could also be applied to a Reed-Solomon and Shamir implementation; for brevity, we chose to
omit the optimizations.

We report the best performing multiplication method for each implementation in Figure 9. Notice that the raw
multiplication performance does not always reflect the performance across the applications. For instance, as shown in

Comparison of Multiplication in Binary Extension Fields

350 .
B uniform
300
%’ 1 square
S 250 — # constant
- m —
> 200 ;
o ! m
D 150 |
=] : ;
e 100 ii ii i i ii E H
— (N i all (N i i
R | bl el
0 ol A AL A (Rt A A (0 NN
5 O OO 9 6 o o o0 D o209 9 O O
¥ © © T = T T 5 5 5 8 & &
9 o= 3¢ ¥ === 7171 13 3 2
A d 2§ &§ Y © ©o @ 9 9 £ £ <
N N N 5§ S - TS I
NS gL LET Y% o
NS L e
) N & 8
Field.MultMethod N

Figure 6: Throughput using multiplication tables, lg/anilg tables and LR tables over GF(2*), GF(28) and GF(2'®) on PPC.

Figures 5 ,6 and 7, the left-right table results in the highest “uniform” multiplication throughput for GF(2%). This is
not necessarily the case for fields implemented as GF(2%) in Figure 9. Cache effects are also apparent in Figure 9; due
to the relatively small L1 and L2 caches in the PowerPC, the fields implemented over GF(2%) generally outperform
the GF(2'®) implementations with the exception of algebraic signatures.

Overall, performance varies greatly between implementations and architecture. Interactions within the applications
is much more complicated than the raw multiplication experiments and thus application must also be considered when
choosing an appropriate Galois field representation. The applications are performing multiplication on sizeable data
buffers, leading to more frequent cache eviction of the multiplication tables.

6 Related Work

Plank has recently released fast Galois field library [13]. The library is tailored for arithmetic in GF(2%), GF(2'®) and
GF(2%). Multiplication and division in GF(2%) and GF(2!®) are implemented using the full multiplication table and
a log/antilog approach that maintains the check for zero, but optimizes the modulus operation out. Multiplication and
division in GF(2%?) are implemented as either the field-element-to-bit-matrix approach [14] or a split-multiplication
that uses seven full multiplication tables to byte-wise multiplication of two 32-bit words, similar to the left-right table
approach described in Section 3. Our composite field approach for GF(2!®) and GF(23?) requires less space, since we
only require a single multiplication table. In addition, any ground field multiplication technique may be used in the
the composite field representation.

Huang and Xu [7] presented three optimizations for the logarithm/antilogarithm approach in GF(28). The authors
show improvements to the default logarithm/antilogarithm multiplication technique that result in a 67% improvement
in execution time for multiplication and division and a 3 x encoding improvement for Reed-Solomon. In contrast, our
study evaluates a wide range of fields and techniques that may be used for multiplication and division in a variety of
applications.

The emergence of elliptic curve cryptography has motivated the need for efficient field operations in extension
fields [18, 1, 15]. The security of this encryption scheme is dependent on the size of the field; thus the implementations

Comparison of Multiplication in Binary Extension Fields

800
700
600
500
400
300
200

Throughput MB/s

5 O OO 9 6 o o o0 D o209 9 O O
¥ © © T = T T 5 5 5 8 & &
9 o= 3¢ ¥ === 7171 13 3 2
N d 2 £ & « @ ©o @2 @ @ £ £ <
A& N N J B = % = o= 11
NN g P ET Ym0
NNNOOW—

) N & 8
Field.MultMethod N

B uniform
square
constant

Figure 7: Throughput using multiplication tables, lg/anilg tables and LR tables over GF(2*), GF(28) and GF(2'®) on Intel.

GF(21%) GF(2%?)
Architecture | Ground Field Mult. || GF(2'%) | GF((28)%) | GF((2*)") || GF((2'%)%) | GF((2%)")
lg 92.88 109.11 20.02 78.50 40.70
tbl — 103.09 23.35 — 41.54
Intel Tr_tbl 12.69 81.56 13.20 13.16 26.97
Ig_orig 11262 | 43.64 12.61 51.54 25.09
huang_lg 112.36 74.90 13.64 75.70 28.53
Ig 117.64 | 156.25 50.86 70.49 90.20
bl — 13333 64.89 - 112.48
AMD Ir_tbl 12.03 150.60 38.64 10.29 76.77
lg_orig 112.35 71.17 16.12 60.93 28.73
huang_lg 113.38 91.91 19.51 74.65 40.26
Ig 14.23 67.52 14.39 9.44 26.03
tbl — 59.26 16.82 — 30.56
PowerPC Ir_tbl 4.20 57.33 13.32 2.27 24.85
lg_orig 19.96 20.02 6.04 11.71 11.74
huang Ig 2135 33.07 8.86 1513 1582

Figure 8: Performance (in MB/s) among different implementations of GF(2'®) and GF(23?) across different architectures.

focus on large fields (i. e., of size 219%). DeWin, ef al. [18] and Savas et al. [15] focus on GF((2!)"), where ged(l,k) =
1. Baily and Paar [1] propose a scheme, called an Optimal Extension Field, where the field polynomial is an irreducible
binomial and field has prime characteristic other than 2, leading to elements that may not be byte-aligned. In other
work, Paar, et al. describe hardware-based composite field arithmetic [10, 11]. In most cases, research in large Galois
fields is centered around cryptographic applications.

10

GF(2%) GF(2!° GF(2%)
Architecture | Application GF(2%) GF(2'6) GF((2%)%) GF((2'9)%) GF((2%)"))
Shamir 6.40 tbl 11.29 Ig 10.20 | tbl 12.27 Ig 10.07 tbl
Reed-Solomon 63.85 tbl 78.84 | huanglg || 48.47 | tbl 41.61 Ig 25.33 | Ir_tbl
Intel Region Mult. 150.00 | tbl 158.72 | huanglg || 119.85 | tbl ||| 130.28 | lg_orig 46.03 tbl
Algebraic Sigs ||| 188.67 | — 277.78 — 253.16 | — ||| 539.81 — 186.04 | —
Shamir 14.69 tbl 22.74 | huanglg || 23.25 | tbl 24.30 | huanglg || 21.78 tbl
Reed-Solomon 72.18 | lr_tbl 59.76 Ig 87.99 | tbl 58.25 | huanglg || 38.39 tbl
AMD Region Mult. 174.00 | Irtbl ||| 103.52 | lg_orig | 279.89 | tbl ||| 120.00 | lg_orig 132.59 | tbl
Algebraic Sigs ||| 283.33 | — 740.74 — 348.46 | — ||| 833.33 — 645.16 | —
Shamir 2.11 tbl 3.47 | huang_g 3.73 | tbl 4.16 lg_orig 4.81 tbl
Reed-Solomon 27.40 Ig 13.68 | huanglg || 21.81 | Ig 11.98 lg_orig 17.65 tbl
PowerPC Region Mult. 52.35 tbl 19.28 | huanglg || 57.04 | tbl 21.16 lg_orig 32.69 tbl
Algebraic Sigs ||| 158.73 | — 312.94 — 232.55 | — ||| 455.06 — 337.41 —

Figure 9: Performance (in MB/s) among the best performing implementations of GF(2%), GF(2'%) and GF(23?) for Shamir’s
secret sharing algorithm (encoding) , Reed-Solomon (encoding a full codeword at a time and region multiplication) and algebraic
signatures (encoding). Since we are reporting the result with the highest throughput for each implementation, the multiplication
table method is listed (with the exception of algebraic signatures).

7 Conclusions

We have presented and evaluated a variety of ways to perform arithmetic operations in Galois fields, comparing
multiplication, inversion and application performance on three architectures. We found that the composite field rep-
resentation requires less memory and, in many cases, leads to higher throughput than a binary extension field of the
same size. Performance for both raw multiplications and applications shows that both CPU speed and cache size have
a dramatic effect on performance, potentially leading to variation in throughput across architectures, especially for
larger fields such as GF(2'®) and GF(23?). Additionally, our results show that schemes performing well in isolation
(i. e., measuring multiplication throughput) may not perform as well when used in an application or to perform ground
computation in a composite field. Using the approaches and evaluation techniques we have described, implementers
of systems that use Galois fields for erasure code generation, secret splitting, algebraic signatures, or other techniques
can increase overall system performance by selecting the best approach based on the characteristics of the hardware
on which the system will run.

References

[1] D. V. Bailey and C. Paar. Optimal extension fields for fast arithmetic in public-key algorithms. Lecture Notes in Computer
Science, 1462, 1998.

[2] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An efficient scheme for tolerating double disk failures in RAID
architectures. IEEE Transactions on Computers, 44(2):192-202, 1995.

[3] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zuckerman. An xor-based erasure-reilient coding scheme.
Tech Report, 1995.

[4] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar. Row-diagonal parity for double disk failure
correction. In Proceedings of the Third USENIX Conference on File and Storage Technologies (FAST), pages 1-14, 2004.

[5] T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Second Edition. MIT Press, Cambridge,
Massachusetts, 2001.

[6] S.Gao and D. Panario. Tests and constructions of irreducible polynomials over finite fields. In Foundations of Computational
Mathematics, 1997.

[7]1 C.Huang and L. Xu. Fast software implementation of finite field operations. Technical Report - Washington University in St.
Louis, MO, 2003.

[8] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cambridge University Press, New York, NY,
USA, 1986.

[9] F. J. MacWilliams and N. J. Sloane. The Theory of Error Correcting Codes. Elsevier Science B.V., 1983.

[10] C. Paar. A new architecture for a parallel finite field multiplier with low complexity based on composite fields. [EEE
Transactions on Computers, 45, July 1996.
[11] C. Paar, P. Fleischmann, and P. Roelse. Efficient multiplier architectures for galois fields gf (24”). IEEE Transactions on

Computers, 47, Feb 1998.

11

(12]
[13]
(14]
[15]
[16]
(17]
(18]

(19]

J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems. Software— Practice and Experi-
ence (SPE), 27(9):995-1012, Sept. 1997. Correction in James S. Plank and Ying Ding, Technical Report UT-CS-03-504, U
Tennessee, 2003.

J. S. Plank. Fast Galois Field arithmetic library in C/C++, April 2007.

J. S. Plank and L. Xu. Optimizing Cauchy Reed-Solomon codes for fault-tolerant network storage applications. In /EEE
Interantional Symposium on Network Computing and Applications, 2006.

E. Savas and C. K. Koc. Efficient methods for composite field arithmetic. Tech Report, 1999.

T. Schwarz, S.J. and E. L. Miller. Store, forget, and check: Using algebraic signatures to check remotely administered storage.
In Proceedings of the 26th International Conference on Distributed Computing Systems (ICDCS ’06), Lisboa, Portugal, July
2006. IEEE.

A. Shamir. How to share a secret. Communications of the ACM, 22(11):612-613, Nov. 1979.

D. Win, Bosselaers, Vandenberghe, D. Gersem, and Vandewalle. A fast software implementation for arithmetic operations in
GF(2"). In ASIACRYPT: International Conference on the Theory and Application of Cryptology, 1996.

L. Xu and J. Bruck. X-code : MDS array codes with optimal encoding. In IEEE Transactions on Information Theory, 1999.

12

