
Management Policies for Non-Volatile Write Caches
Theodore R. Haining and Darrell D. E. Long

Computer Science Department
Jack Baskin School of Engineering

University of California
Santa Cruz, CA

Abstract
Many computer hardware and software architectures

buffer data in memory to improve system pe l fomnce .
Volatile disk or$le caches are sometimes used to delay
the propagation of writes to disk (called delayed writes).
While delayed writes improve system pe l fomnce , volatile
caches can cause the loss of vital data during sudden fail-
ure. In this study, we investigate managing non-volatile
RAM (WRAM) caches with direrent simple strategies to
delay writes to disk. We evaluate the pelformance of
NVRAM caches using three measures of merit: the num-
ber of stalled writes which wait while the cache is cleaned
before being serviced, the mean service time for U0 re-
quests, and the number of writes generated by cleaning the
cache. Our results show that even small non-volatile write
caches using simple management policies can reduce the
number of writes to disk by at least 70% and as much as
80% in some cases. Our results also show that the number
of stalled writes is high: 30% at best and nearly 100% at
worst, Adding pro-active purging effectively decreases both
stalled writes and disk write activity.

1 Introduction
As processors and main memory become faster and

cheaper, a pressing need arises to improve the write effi-
ciency of U 0 subsystems. Disks in particular are larger,
cheaper, and faster than they were 10 years ago, but their
performance still lags that of other subsystems. The effect
of this disparity is most felt with U0 intensive tasks, espe-
cially write-dominated tasks. Read traffic is affected, but
large main-memory caches are an effective technique for
reducing the number of reads made to disk. This technique
is suitable for writes but less effective because the volatil-
ity of main memory prevents data from being cached for
more than a few seconds. In spite of this limitation, volatile
write caches are part of many different kinds of storage sys-
tems, including on-line transaction processing (OLTP) sys-
tems [5], file systems [131, and disk controllers [151.

One way around this problem is to cache writes in non-
volatile memory and delay writes indefinitely before be-

Supported by the Office of Naval Research under g m t N00014-92-J-
1807.

ing sent to disk. The longer that data is held in memory,
the more likely it will be overwritten or deleted. It is also
more probable that data in the cache can be grouped to-
gether to yield larger, more efficient writes to disk. Non-
volatile memory can also provide guarantees of cache con-
sistency and recovery comparable to a disk after sudden
failure. There has been considerable interest in non-volatile
caches for use in memory based file systems [6], mono-
lithic and distributed disk file systems [1],[3],[4], network
file systems [lo], disk arrays [16], and transaction process-
ing systems [2], [7], [12]. Advances in technology and
manufacturing continue to make the cost of memory and
rechargeable batteries cheaper, ensuring continued interest
in the applications of non-volatile memory.

Despite a large interest in non-volatile memory, little
comparative work has been done with cache management
policies in file system applications [3], [15]. While this
work contributed important results, it did little to compare
policies and use different metrics to measure their perfor-
mance. Two simulation studies focussed either on a family
of caches with a single policy for cleaning blocks [3], or
two cleaning policies with limited performance data [151.

Our goal is to study this problem by looking at several
different ways to implement and manage a non-volatile
write cache. We simulate a small cache of non-volatile
RAM (NVRAM) to test different types of cache manage-
ment and cleaning policies. We use the least recently used
(LRU), the shortest access time$rst (STF), and largest seg-
ment per track (LST) disk scheduling algorithms to decide
what data to clean from the cache. We apply these algo-
rithms to caches managed by a simple write behind policy
where blocks are written to the cache and previously up-
dated blocks are written to disk only when the cache is full.
We compare these results to caches using write behind with
thresholds where purging begins when the percentage of
dirty blocks in the cache rises above a high threshold and
ends when it falls below a low threshold. We measure each
simulation with three major metrics: the amount of time
it took to service each write request, the amount of traffic
used to clean the cache, and the number of cache misses in
each cache.

Write behind and write behind with thresholds were both

0-7803-5258-0/99 $10.00 0 1999 IEEE 321

originally applied to non-volatile caches in work by Biswas,
Ramakrishnan, and Towsley [3]. This work contributed im-
portant results, but only focussed on cleaning with one disk
scheduling policy. We wished to understand more about the
interaction of these policies with different disk scheduling
techniques.

For our experiments, we model the components of the
U 0 subsystem of interest: the disk head, the disk controller,
the data bus, and the read and write caches. We then use
file system traces collected by Ruemmler and Wilkes [151
to drive a detailed simulation of the disk subsystem. We
validate the accuracy of our simulators by comparing sim-
ulation times with real trace times and measuring the error.

Section 2 discusses the disk scheduling algorithms and
write policies we used in our experiments. Experimental
observations and results are found in $3. The final section
summarizes the major results of this work and mentions
some future directions our research will take.

2 Cache management policies
To be effective, U 0 requests to a write cache must ei-

ther hit sectors already in the cache or empty space must be
available. The hit rate for the cache is governed by two fac-
tors: the locality of reference in the request stream, and the
scheduling algorithm used clean the cache. The availability
of free space depends on the policy used to evict data from
the cache.

We make several assumptions about the management of
the cache. Data in the cache is organized by its physical
track on disk. The cache is divided into track-based lists of
dirty and clean sectors by the cache controller. The con-
troller evicts sectors from the clean list when cache space is
needed for incoming data. Data is then written to the cache
making one or more tracks dirty. If a write request includes
sectors from a track on the clean list, the clean already on
the track (if any) are deleted and track becomes dirty. Dirty
tracks are moved to the clean list by committing the data in
that track to disk.

2.1 Cache scheduling policies
We use simple disk scheduling algorithms to order the

dirty and clean lists in the cache for our experiments. We
want examine the influence of three principles: temporal lo-
cality, seek distance, and write size. Three algorithms were
used in our simulation study: Least Recently Used (LRU),
Shortest Access Time First (STF), and Largest Segment
per Track (LST).

In the LRU algorithm, the most stale data in the cache is
purged first. LRU ignores the number of times data is writ-
ten into the cache; it keeps track of the oldest dirty data cur-
rently in the cache. This beneficially conditions the cache
when data already in the cache is modified because its life-
time in the cache is extended. This increases the opportu-

nity for further writes of that data to be absorbed by the
cache. LRU does nothing to ensure that the write is reason-
ably short or of significant size.

The STF algorithm attempts to minimize the amount of
time between when the write is initiated and when the first
bit of data is written. The cache controller models the cur-
rent position of the disk head and writes the data with the
lowest sum of seek time and rotational delay. This data may
be overwritten in the near future and the amount written
may be small. The amount of effort to model the position
of the disk head is also non-trivial.

With the LST algorithm, the cache controller sorts the
dirty list in the cache by the number of blocks in each dirty
track. It cleans the track with the most dirty blocks first.
LST requires very little state information. It has the ad-
vantage that it initiates the purge that will free the largest
possible amount of space in the cache. The seek distance
required to perform that purge may be large, and the data
may be written to the cache again in the near future.

2.2 Cache eviction policies
The simplest policy we use to free space in the cache

is write behind. Sectors are written to the cache until the
cache is full, and then dirty tracks are evicted when a new
write request arrives. Because blocks are evicted in cache
based groups, the scheduling algorithm can amortize the
cost of several write requests in one write. The disadvan-
tage of this approach is that the write request that causes the
cache to become full is stalled until a portion of the dirty
list can be written to disk.

A simple way to improve this policy is to add thresholds
to the cache to create proactive eviction policies. A sin-
gle threshold cache begins to clean after the percentage of
dirty blocks in the cache exceeds a high threshold. When
the threshold is crossed, cache controller sets a “clean re-
quest” flag. Once this flag is set, the controller commits
groups from the dirty list and moves them to the clean list.
The clean request flag is reset when the percentage of dirty
blocks falls below the high threshold. A dual threshold
cache adds a second low threshold. In this case, the clean
request flag is not reset until the percentage of dirty blocks
is less than the low threshold. The combination of high and
low thresholds delays the start and stop of purging from the
cache, creating hysteresis.

Adding thresholds has a number of advantages. There is
always some free space in the cache, abd writes stall only
during bursts in write traffic. The use of thresholds means
that cache cleaning does not need to be performed immedi-
ately. The controller can attempt to clean the cache when
the disk would otherwise be idle, for example. The use of
both high and low thresholds means that the clean request
flag is set infrequently if the difference between the two
is large. The task of cleaning the cache is split into smaller

322

parts, reducing the impact of the additional activity on other
U0 requests. If the cache does fill during peak periods of
load, it is still possible to immediately clean blocks in the
cache until the required amount of free space is available.

3 Simulation results
We studied the impact of cache replacement policy on the

utilization of the disk with a specific emphasis on overall
response time. We collected several related measurements:
service time, which included the seek time, settle time, and
rotational delay as well as time to transfer data to or from
the disk, and the queue time each request spent in a queue
waiting to be serviced. From the service time and queue
time, we calculated the overall response time for each I/O
request. We measured the number of times that writes were
made to the disk to clean the cache and the size of each
write used to clean the cache. We also recorded the number
of cache hits and cache misses for the non-volatile write
cache.

To run our experiments, we implemented our own mod-
els of the HP2200C and the HP97560 disks. We based our
models on techniques described by Ruemmler and Wilkes
[141, and an implementation by Kotz, Toh, and Radhakrish-
nan [1 I]. Each disk model is implemented in C++, and de-
signed to support multiple disks connected to one or more
data buses within the same simulation. The simulation cur-
rently uses the Sim++ event simulation package [8], but can
be easily ported to another environment.

We found that service time was the most useful due to
abnormally long queue lengths in the simulation. Small
inaccuracies of less than a millisecond in the services times
of our simulators skewed the queue times of simulated read
events compared to those in the traces. When the traces
were collected, long groups of reads of consecutive sectors
were made, presumably to back up the disks. These reads
were synchronous, and each read explicitly began within
a millisecond of the completion of the one before it. Our
disk service times were slightly too large (< lms), creating
long queues of events and long queuing times where none
existed in the trace. This affected the mean queue times and
mean response times for the disks we simulated.

We also found that the number of cache misses and the
number of writes to disk also strongly affected overall re-
sponse time. Each cache miss may force other events to
wait in a queue for service. If cache misses occur fre-
quently, mean queue and mean response times will in-
crease. The number of writes needed to clean the cache
compared to the number of writes in the trace is a strong
metric for cache efficiency. Because the cache cleaner cre-
ates groups of writes, other events from the trace will wait
in the queue while they are serviced. These bursts will also
affect also the queue and response times of events in the
trace.

Disk

For our experiments, we concentrated on disk 5 of the
snake trace set and disk 0 from the hplajw set. Some of
the important static and dynamic characteristics for these
data sets are summarized in Table 1 .

#of Read Mean Read Mean Service Block
I/os Size Time(al1) Size

Table. 1
Characteristics for disks used in our analysis.

5
0

~ ~~~

cmsj ‘ (bytes)
134420 5.354 11.735 512
41080 4.409 25.346 256

Disk #of Write YOs Mean Write Size Mean Service
Time (writes)

5
0

3.1 Write behind cache management
A write cache contains the modified disk blocks which

must be eventually committed to disk to make room for
new blocks as write events occur. A simple policy to evict
blocks from the cache is to wait until the cache is com-
pletely full and then purge the cache with a write behind
strategy, as explained in $2. Because the cache operates at
a nearly full steady state, writes frequently stall while room
is made for the new data. The idea of simple non-volatile
write behind caches was first suggested elsewhere using the
LST algorithm [3].

It was assumed in that work that such policies “would re-
sult in unacceptably poor performance” because of frequent
stalling and were never tested.

We performed our own tests with write behind caches.
We varied the cache size starting at 128KB and doubled the
size on each run until we reached 2MB. For the three disk
scheduling algorithms we tried, LRU performed the best in
these tests, closely followed by STF, and then LST. Our ser-
vice time measurements show that LRU and STF decreased
the mean service time by at least 25%, scaled well as cache
size increased, and reduced the number of writes to disk
by at least 75% for both disks. The LST managed cache
produced little reduction in the number of writes to disk
especially for small caches with a correspondingly small
reduction in service times.

Our results for stalled writes in some measure dispute the
assumption that write behind caches are ineffective because
of the high number of stalled writes (see Figure 1). While
the cache miss rate is high for LST caches (nearly 100% of
all writes are cache misses for small caches), cache misses
for the LRU caches were much smaller (less than 20% for
disk 5 and 40% for disk 0) with the perfromance of the
STF cache in between. These results show that write behind

(W (ms)
129379 6.876 12.388
82054 6.024 27.475

323

lWm0, I

uyao
P -1

Q 1 4 6 2;s 5;2 1024 2M6
I

CaFhe S k i (KE)

(a) Disk 5

60000

50000

40000

20000

10000

- - -.,

M 128 256 512 1024
Cache Siis (KE)

(b) Disk 0

Fig. 1. Cache misses for disks with a write behind cache.
caches can be effective and offer significant performance
improvement without having any cache parameters to tune.

3.2 Cache management with thresholds
While a simple write behind cache can improve cache

performance, the best cache management algorithm we
looked at only showed 30-50% improvement in mean ser-
vice time. For this reason, we also studied a track based
purge policy triggered by thresholds to prevent the cache
from becoming completely full or (in some cases) com-
pletely empty. By preventing the cache from becoming
completely full, stalled writes can be reduced because some
clean space is always available to hold new data. Since the
cache also does not completely empty, some data that will
be overwritten in the cache in the near future will (hope-
fully) not be written to disk.

3.2.1 Single threshold caches. First we considered a sin-
gle threshold variant of this cache eviction policy. With
this type of cache, the high and low thresholds are set to
the same value. The resulting cache is similar to a write
behind cache, with some improvements. Because there is
always some clean space in the cache, writes to the cache
stall less frequently and cache writes can be made by the
background cleaner. The amount of cache space cleaned
in the background is small and the cache must be cleaned
frequently.

First, we investigated the sensitivity of the cache to the
threshold setting. We looked at single threshold caches of
two different sizes for each disk; the caches were 128KB
and 256KB for disk 5 and disk 0. Cache sizes were small
to prevent the cache from holding the working set of written
blocks. At the same time, we wanted to get some feeling
for how these parameters change with cache size.

The number of writes to disk for a single threshold cache
was within 10% of that of a write-behind cache of the same
size for the LRU and STF algorithms until the threshold
rose above 90%. The write traffic of the LST cache for

disk 5 was also within 10% for both sizes, but the single
threshold LST cache improved about 30% for most thresh-
old values. The least amount of write traffic was produced
for all single threshold caches when the threshold was set at
98%. This single threshold cache produced 25-5096 fewer
writes than the write behind cache.

Our results showed that adding a single threshold only
improved the number of stalled writes produced by the
write behind cache (see Figures 1 and 2). The reduction
in stalls is attributed to the clean space kept available by
the threshold; data is written instead of forcing stalls. Since
only the number of stalls changes, temporal locality still
dominates and the LRU cache performs best.

Our results showed that choosing a good cache threshold
was a trade-off between the numbers of stalled writes and
writes to disk. We tried for a balance which decreased the
number of writes to disk, but avoided sharp increases in the
number of stalled writes. Based on these criteria, we noted
that the best choice for a high limit threshold is in the range
of 90-95% for both disks for all algorithms.

3.2.2 Dual threshold caches. Using a single threshold
improves cache performance, but it is difficult to find a
good balance between writes to disk and stalled writes. To
avoid this problem, we also looked at caches using high
and low thresholds to create hysteresis in the cache purging
process. Because the amount of space cleaned using a dual
threshold scheme is larger, the number of stalled writes will
decrease.

We began by testing how the interaction of the high and
low threshold values affected performance. We fixed the
high threshold at the single threshold values and varied the
low threshold value from 10-85%. For these experiments,
cache size was set at 256KB. The number of cleaning writes
and cache misses for each cache are found in Figures 3
and 4.

Finding a good value for the low threshold depends on
what metric is used. Based on the number of cache misses

324

P

I

050 055 0 6 0 065 070 075 080 0 8 5 090 095 098
Cache High Limit (%of cache size)

15000

1
P 10000 B ;
I;

5000

0 STFcache

050 055 0 6 0 065 070 075 080 085 090 005 000
Cache High L" 1% 01 cache awe)

-

-

-

(a) Disk 5 (b) Disk 0

Fig. 2. Number of cache misses for disks with a single threshold cache.

loo-

600, , I

,#
fl 0

< 2% -p -e r 0-

P I

80000 ,

? -1
STF cache 256K

I

, -
0

60000 -

- 0

40000 - .e -
_e-*'

3 0- .a- -O.

. a q g o o o o o o ~ o
0

20000.

020 0 3 0 0 4 0 050 060 070 080

40000

p ! E q
STF cache 256K

30000 -

3
I 2 o o o o -
0 -
10000 -

0- '
010 020 030 040 050 060 070 080

(a) Disk 5

STF cache 256K

I ' I

0

d
0

I I
' 0 . 1 0 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Cache Low Limit (% of cache size)

(b) Disk 0

Fig. 3. Number of cache misses for disks with a high and low threshold cache.

325

for each cache, all three algorithms perform best when the
low limit was set in the 1520% range. It is more difficult
to measure the performance of the write cache based on
the number of writes generated to clean the cache. The
LRU cache also shows the unusual property that number of
writes decrease by almost 5% as the lower limit is raised.
The LST and STF algorithms perform well for both disks
when the low limit is set in the 15-20% range. The number
for both algorithms is not minimal for disk 0, because of
the unusual rise and fall in the number of writes.

Write
Behind

LRU 22194

Table. 2
Write traffic for disk 5 and disk 0 generated by a

256k cache.

Single Dual
Threshold Threshold

21155 26039
LST
STF

98117 83010 28589
31773 30227 25791

Disk 5

30243
29165
27553

Disk 0

In terms of performance, adding a second threshold
causes mixed results. It reduces the number of stalled
writes for the LST cache to almost zero, and reduces the
number of writes for the LST cache to that of the other al-
gorithms (see Table 2). At the same time, it degrades the
performance of the LRU algorithm. Cleaning large portions
of the cache benefits the LST cache because it will always
use the fewest number of large writes to clean cache space.
This same action reduces the number of dirty blocks in the
LRU cache whenever cleaning is performed. The LRU al-
gorithm may be able to make better choices when there are
more dirty blocks in the cache. In spite of this limitation,
the LRU algorithm performs well, confirming that temporal
locality is still important.

The performance of the dual threshold caches leaves an
open question: is it better to stall less or write to the disk
less? We looked at the answer to this question while ex-
amining the impact of cache size for the LRU, STF, and
LST algorithms. We used the number of cache misses as
our best metric for setting high and low thresholds for each
cache. High threshold values were set to the values used
in our lower bound tests: 90% for the upper thresholds for
all caches. Low threshold values were set to 20% for disk 5

and 15% for disk 0. For these experiments, we varied cache
size from 128KB to 2MB, doubling memory size for each
successive run.

The results from our cache size experiments show that
all three management algorithms scale equally, though the
head position aware algorithms (LST and STF) may scale
slightly better than LRU. Loolung at data for the number
of writes generated by each cache, the LST, STF, and LRU
caches produced almost identical numbers of writes for disk
0, and LRU produced approximately 10% more writes for
disk 5. The rates of decrease for STF and LST were were
slightly higher than that for LRU for disk 5. Perhaps tempo-
ral locality becomes less significant as the cache becomes
large for that disk. At that point, algorithms which take
advantage of head position may become more useful.

Looking at the mean service and cache miss data, fewer
cache misses have a direct and beneficial effect on the ser-
vice time (see Figures 5 and 6). The LST cache produces
the lowest service times for both disks, and produces zero
stalled writes with the smallest amount of cache space for
both disks. Service times for all trace events quickly con-
verged to an average dominated by the service time of read
events for both disks.

Lower service times are only beneficial if they contribute
to lower overall response times. While the LST algorithm
does produce consistently fewer stalls and better service
times, it also tends to write more often to disk. If these ad-
ditional writes are increasing the amount of time that other
events spend queueing for service, then an algorithm other
than LST is a better choice.

To check to see if this was happening, we collected queue
time information for two sets of events in the disk traces.
The results in Figure 7 show mixed results. For disk 5, the
STF cache produces mean queue times for write events that
are better than either LRU and LST. The set of write events
from disk 0 shows that the LST cache has a lower mean
queue times than the other caches though the values are
close enough not to be significant. The read queue times for
disk 5 were abnormally long (for reasons mentioned at the
beginning of this section), but, the read queue times for both
disks did show trends similar to their write counterparts.

4 Conclusions
We examined several aspects of non-volatile cache man-

agement used in conjunction with delayed writes to disk.
As disk subsystems continue to lag the performance of ever
faster processors, such caches are an increasingly impor-
tant way to remove an I/O bottleneck in write-dominated
systems. Our goal was to compare different cache manage-
ment techniques by looking at different ways to implement
and clean disk write caches of NVRAM. We used trace-
driven simulations to obtain information about the number

326

SM), I

9000

- E 6000-
a$

3000

0-

Ij \ -

-

128 256 512 1024 2M8

\ 1

SM)

500-

400-

53w-

200-

0

loo -

128 256 512 1024 '2048
Cache Size (KB)

(a) Disk 5

Fig. 5. Write cache misses for disks with different dual threshold write cache sizes.

4500 a 128 256 512 1024 2048

Cache Size (KE)

(a) Disk 5

13000

12000

4 9000

8000

STF - all events

a.

I
128 255 512 1024 2046

7000

Cache Size (KB)

(b) Disk 0

Fig. 6. Mean service times for disks with different dual threshold write cache sizes.

(a) Disk 5 (b) Disk 0

Fig. 7. Mean write queue times for disks with different dual threshold write cache sizes.

327

of write cache misses, the mean service times, and the num-
ber of writes to disk for two disks.

Our analysis of non-volatiles caches was based on a trace
driven simulation of the HP97560 and HP2200 disks. The
traces used were those collected by Reummler and Wilkes
from the snake and hplajw trace sets. We presented results
for one disk from each set of traces to examine the effec-
tiveness of a write cache with each disk.

Our work with NVRAM caches showed that temporal
locality is a key to cache efficiency for many caches, es-
pecially small ones. We implemented and tested models
of caches using a simple write-behind purging model, and
using write-behind with thresholds. We used the least re-
cently used (LRU), largest segment per track (LST) and
shortest seek time first (STF) algorithms to decide what
data to clean from the cache. Comparison of the data for
the number of (cleaned) writes to disk and stalled writes
shows that the LRU algorithm works best in many situa-
tions. Algorithms which attempt to use head position to
determine what to clean next (LST and STF) can produce
fewer stalled writes, but generally write to disk more often.
For many kinds of caches, the cost of the additional writes
outweighs the benefits of fewer stalls.

Our initial work with write-behind caches showed that
the LRU managed cache was the most effective, by far.
Simple write behind caches had been rejected by others un-
der the assumption that writes to them would frequently
stall. Such caches using head position algorithms, particu-
larly LST, performed poorly, sometimes no better than the
cache-less disk itself. The LRU managed cache signifi-
cantly reduced the number of writes to disk and improved
response time. The number of stalled writes was large com-
pared to more complex cache management policies, but the
policy is very simple and does not need tuning.

We found that one of the few cases where temporal lo-
cality is not dominant is when high and low thresholds
are used. The large hysteresis of such a cache substan-
tially reduces the number of writes that the LST algorithm
must make to clean the cache, making its write performance
equivalent to other algorithms. This performance improve-
ment combined with the smaller number of stalled writes
creates reduced service times. A study of how these prop-
erties scale shows that head position algorithms like LST
may perform better than LRU when cache sizes are large.

The major issue we want to explore to continue this work
is idle detection. m e background cleaner we used in our
dual threshold caches is very naive; it does not check to see
if the disk is idle before it cleans. We discovered that this
had some negative effects for queue size and queue time.
The cleaner began to clean the cache shortly before a large
burst of writes arrived at least once. None of these writes
stalled once they were serviced by the cache, but they were

forced to wait which the cache was cleaned. The actual
response times for these writes were much larger than they
could have been if an idle detector found the disk not to be
idle. We hope to use existing work in idle detection and its
exploitation to improve disk performance further [9].

References
Mary Baker, Satoshi Asami, Etienne Deprit, John Ousterhout, and
Margo Seltzer. Non-volatile memory for fast, reliable file systems.
Operuting Systems Review, 26(Special issue): 10-22, Oct 1992.
Anupam Bhide, Daniel Dias, Nagui Halim, Basil Smith, and Francis
Parr. A case for fault-tolerant memory for transaction processing. In
Digest of Pupers FCTS-23 23rd Internutionul Symposium on Fuult-
Tolerunt Computing, pages 451-60. IEEE Computer Society Press,
Aug 1993.
Prabuddha Biswas, K. K. Ramakrishnan, and Don Towsley. Trace
driven analysis of write caching policies for disks. Peflhnunce
Evuluution Review, 21(1):12-23, Jun 1993.
Prebuddha Biswas, K. K. Ramakrishnan, Don Townsley, and C. M.
Krishna. Performance analysis of distributed file systems with non-
volatile caches. In Proceedings of 2nd Internutionul Symposium
on High Performunce Distributed Computing, pages 252-62. E E E
Computer Society Press, 1993.
Steven Bobrowski. Orucle7 Server Concepts Manual. Cooperative
Server Technology. Oracle Corporation, 1992.
Peter M. Chen, Wee Teck Ng, Subhachandra Chandra, Christo-
pher Aycock, Gurushankar Rajamani, and David Lowell. The Rio
file cache: surviving operating system crashes. SIGPLAN Notices,
31(9):74-83, Sep 1996.
G. Copeland, T. Keller, R. Krishnamurthy, and M. Smith. The case
for safe RAM. In Proceedings ofthe 15th Internutionul Conference
on Very h r g e Dutubuses, pages 327-35. Morgan Kaufmann, Aug
1989.
Paul A. Fishwick. Simpack: getting started with simulation pro-
gramming in C and C++. Technical Report 92-022, University of
Florida, Department of Computer Science and Information Science
and Engineering, Gainesville, FL, Jul 1992.
Richard Golding, Peter Bosch, Carl Staelin, Tim Sullivan, and
John Wilkes. Idleness is not sloth. In Proceedings of the Win-
ter'95 USENIX Conference, pages 201-22. USENIX Association,
Jan 1995.
D. Hitz, J. Lau, and M. Malcolm. File system design for a N F S
server appliance. In Proceedings of the Winter I994 USENIX Con-
,ference, pages 23546. USENIX Association, Jan 1994.
David Kotz, Song Bac Toh, and Sriram Radhakrishnan. A detailed
simulation model of the HP 97560 disk drive. Technical Report
PCS-TR94-220, Department of Computer Science, Dartmouth Col-
lege, 1994.
David E. Lowell and Peter M. Chen. Free transactions with Rio
Vista. In 16th Associution,fiw Computing Machinery Symposium On
Operuting Systems Principles, Oct 1997.
Mendel Rosenblum and John K. Ousterhout. The design and im-
plementation of a log-structured file system. In Proceedings o f l 3 f h
ACM Symposium on Operating Systems Principles, pages 1-15. As-
sociation for Computing Machinery SIGOPS, Oct 1991.
Chris Ruemmler and John Wilkes. An introduction to disk drive
modeling. IEEE Computer, 27(3): 17-28, Mar 1994.
Chris Ruemmler and John Wilkes. Unix disk access patterns.
In USENIX Technicul Conference Proceedings, pages 405-20.
USENIX, Winter 1993.
John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The
HP AutoRAID hierarchical storage system. Operating Systems Re-
view, 29(5):96-108, Dec 1995.

328

