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Abstract—Increasingly, archival systems are relying on
authentication-based techniques that leverage secret-splitting
rather than encryption to secure data for long-term storage.
Secret-splitting data across multiple independent repositories
reduces complexities in key management, eliminates the need for
updates due to encryption algorithm deprecation over time, and
reduces the risk of insider compromise. While reconstruction of
stored data objects is straightforward if a user-maintained index
is available, the system must also support disaster recovery incase
the index is unavailable. Designing a mechanism for efficient
index-free reconstruction, that does not increase the risk of
attacker compromise, is a challenge. Reconstruction requires the
association of chunks that make up an object, which is the kind
of information attackers can use to identify chunks they must
steal to illicitly obtain data.

We propose two new techniques, the set-subset reconstruction
and secret-split secure hash (S3H) reconstruction, which allow
chunks of data to be correlated and quickly reconstructed without
providing useful information to an attacker. Both techniques
operate on the entire collections of secret-split chunks in the
archive. While they can efficiently rebuild an entire archive,
they are inefficient and impractical for rebuilding single objects,
making them useless for attackers that do not have access to all
of the data. These techniques can each be tuned to trade-off be-
tween reconstruction performance and security, reducing overall
runtime from O(NK) (for N objects requiring K recombined
chunks each to return the original object) to between O(N) and
O(N2). These runtimes are practical for archives containing as
many as 107 objects for the secret-split secure hash method and
109 objects for the set-subset method. Larger archives can run
these techniques with manageable runtimes by grouping data
into separate smaller collections and running the algorithms on
each collection in parallel.

Index Terms—Archival Storage, Secret-Splitting, Security, Dis-
aster Recovery

I. INTRODUCTION

In comparison to traditional encryption techniques,

authentication-based methods are preferred for storing long-

term data. Key management complexities and deprecation of

encryption algorithms over time makes traditional encryption

techniques unreliable for securing archival storage. Increas-

ingly, approaches that rely on securely splitting data across

archives and requiring authentication at each archive are

becoming more common. Under this approach, data is split

into n chunks so that at least m ≤ n of them are required

to rebuild the original data, often using techniques based on

Shamir’s secret-splitting [1]. The chunks are then distributed

across n administratively-isolated servers, ensuring both the

reliability and availability of the data while also protecting it

from internal attacks [2], [3].

Secret-splitting techniques effectively hide the relationships

between the individual chunks for a single data object, requir-

ing the user to know which chunks need to be retrieved to

rebuild a given object. In systems such as POTSHARDS [3]

and Cleversafe [4], users maintain an index containing this

information, allowing them to request the necessary chunks

for a specific object from the servers on which they are stored.

To allow reconstruction in the absence of an index, each chunk

could explicitly refer to the other chunks from the same object.

However, this technique would make it straightforward for an

unscrupulous archive operator, with access to one chunk from

an object, to identify a small number of chunks to steal from

other archives to rebuild the desired object. To avoid this major

security risk some secret-split archives avoid storing pointers

to chunks for the same object. If the index is unavailable, the

user could obtain all the chunks from all the servers. Then they

can test all possible reassembly combinations consisting of one

chunk from each server, producing a combinatorial explosion

with an increase in the number of data chunks. To address this

issue, POTSHARDS proposed a disaster recovery technique

called approximate pointers [3], where each data chunk points

to a subset of chunks in the next server that could potentially

belong to the same object.

While more efficient than the naive method, the number

of reconstructions in approximate pointers increases exponen-

tially with an increase in the size of the pointer subset of

shares and the threshold scheme. It is important to maintain a

higher threshold with larger number of servers to improve data

privacy, as more servers will need to be compromised to get the

data. However the reconstruction of such an archive is combi-

natorially prohibitive. In the case of approximate pointers, this

increases the reconstruction time needed to rebuild the data in

the archive. We propose two new techniques, the set-subset
reconstruction and the secret-split secure hash reconstruction,

that use hints to correlate between chunks of the same object

without giving away any meaningful information to attackers,

resulting in faster reconstruction of the datastore. The set-

subset method tags each data chunk with a set of numbers.

For a group of chunks to be a potential match, the number of

unique numbers across all the chunks in the group must be

below a threshold. The secret-split secure hash method uses

hints derived from the unique ID of object chunks to find

chunks that are a potential match. To find matching chunks the
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Fig. 1. Shamir’s secret-splitting generates N equal-sized object shares out of
which any K shares are both necessary and sufficient to rebuild the original
object.

hints are recombined and tested against the unique ID. Both

our methods are an improvement over approximate pointers

and, efficiently reduce the reconstruction space needed to

identify sets of object chunks across servers. Both techniques

provide hints to reassemble data chunks, while not providing

enough information for an attacker to identify exactly which

chunks go together, preventing targeted theft of those chunks.

The main contributions of this research are:

1) Two new disaster recovery algorithms for rebuilding

objects in a secret-split archival storage system.

2) Theoretical modeling of reconstruction times of secret-

split datastores, with experimental validation for up to

107 shares for the secret-split secure hash reconstruction

and 109 shares for the set-subset method.

3) Exploration of performance versus security trade-offs in

parameters for these new algorithms.

II. BACKGROUND

To understand how our techniques work and why they are

necessary, we discuss several approaches that have been used

in the past for information storage and retrieval that have

motivated us to develop our disaster recovery methods.

A. Secret-splitting

Secret-splitting is a technique used to store data securely

within an archive. It generates N chunks, often called shares,

from an object [1] that are distributed among N servers within

the archive, such that each server only contains a single share

of each object. For a single object, K ≤ N shares known

as siblings, must be combined to reconstruct the original

object. Such an approach is known as a (K,N) threshold

scheme, shown in Figure 1, and may be either information

theoretically-secure or just computationally secure. Under in-

formation theoretic security, any K − 1 shares provide zero

information about the object. Non-information theoretically

secure schemes provide more information, but usually in-

sufficient information to allow brute-force reconstruction to

succeed. Because information theoretic security requires that

each share be the same size as the original object, it requires

N times the storage of the original un-split data. Thus archives

may choose not to use information theoretically secure secret-

splitting for their data because of the high storage overhead [4],

Fig. 2. Our base result shows the combinatorial explosion in reconstruction of
a secret-split datastore using the brute force technique without optimizations.
For a 1 MB file with threshold three and a reconstruction rate of 20 GB/sec,
it would take approximately 1.5 years to reconstruct 10,000 shares.

[5]. Data can be split using non-information theoretically

secure methods. Our methods work with object identifying

metadata information, and therefore always use information

theoretically secure techniques.

Reconstruction time in our secret-split datastore is affected

by two major factors, the threshold scheme and the number

of object shares in each server. Assuming a scenario where

we do not know which shares go together, an increase in the

number of shares in each server results in a factorial increase in

reconstruction performance. Our base results in Figure 2 shows

the combinatorial explosion when none of the disaster recovery

algorithms are being used. The threshold scheme decides the

number of candidates to be tested in each round.

B. Secret-splitting versus Encryption

Traditional encryption techniques have many limitations,

including key management and algorithm deprecation over

time [6], [7], both making secret-splitting more preferable

for archival storage. Other factors such as massive cloud

computing power combined with advances in parallelization

have made bulk resources readily available. We assume that

with enough time, bulk computational resources, and advances

in cryptography, many encryption techniques can eventually

be broken. Additionally, for archival data, encryption has

major confidentiality versus reliability trade-offs. Storing a

single copy of an encryption key would produce a single

point of maximum security, which could cause breach of data

incase that single key was stolen. At the same time storing

multiple copies of the key in different locations would provide

reliability but sacrifice confidentiality making the system more

vulnerable to attacks. Compromising any one of the total keys

would allow an attacker to steal data. In addition to encryption-

related problems, there are many issues specifically associated

with long term storage of data such as the need for constant
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updates to maintain consistency and availability in systems

[8], [9]. Secret-splitting simultaneously achieves high levels of

both confidentiality and reliability, and is therefore preferred

for archival storage of data.

C. Systems using Information Dispersal

There are many information dispersal techniques apart from

secret-splitting that have been used to securely store data.

Nirmala describes Rabin’s Information Dispersal Algorithm

(IDA), which splits the data with a threshold of (m : n) such

that m shares are needed to rebuild the object. Unlike secret-

splitting schemes, the total size of the resulting data in Rabin’s

IDA grows by a factor of n/m. To simplify the operations in

Rabin’s IDA, Mackay introduced IDA using Galois fields [10],

[11], which uses an n × m matrix to encode and disperse

the data, providing availability but sacrificing confidentiality.

Abbadi preserves both reliability and confidentiality by intro-

ducing Salted IDA [12], providing more secure information

dispersal by maintaining a secret seed and a deterministic

function on the client side. PASIS [13], [14] uses erasure-

coding to break fault tolerant data into fragments to reduce the

space and bandwidth overhead. AONT-RS [15] implements the

All-Or-Nothing Transform, which ensures that data can only

be known if all of it is present, with Reed-Solomon coding.

This approach reduces storage costs while simultaneously

increasing security. Shor et al discusses Secure RAID that

minimizes the computational overheads of secret sharing, but

requires non-negligible storage overhead and random data

generation [16]. Other systems using information dispersal

are Oceanstore [17], Glacier [5], Mnemosyne [18] and IBM’s

Cleversafe [4]. Storer, et al., use secret-splitting to securely

store objects with POTSHARDS [3]. An index containing

information about the location of the shares and the objects

they belong to is maintained by the users. Every share stores

a header that can be used to reconstruct the data provided

all shares of the data are present. Losing the index to an

attacker does not compromise data of other users. Percival [2],

a query-based system provides us with a subset of relevant

shares within a secret-split datastore. While these systems

differ in the way that they split data across multiple archives,

our techniques for rebuilding data can work with any of them,

as well as other systems that distribute data across multiple

systems such as SafeStore [19].

D. Disaster Recovery

Correlation between sibling shares without an index is

difficult for an information theoretically secure secret-split

datastore. In such cases, disaster recovery techniques are nec-

essary to associate between related shares. The naive method

to correlate between shares requires testing every possible

combination between all shares in the secret-split datastore. As

we saw earlier in Figure 2, this is impractical as the number

of shares in the datastore increases because of the exponential

increase in reconstruction time needed to rebuild the original

object.
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Fig. 3. Approximate Pointers uses a pointer to a set of shares in the next
server such that any share from the set could be a sibling of the object. The
figure shows a pointer set of size four and the path to finding siblings for
object 0. Like object 0 there are pointers that point to a set of approximate
siblings from each share on the server. As the threshold increases, the number
of reconstructions to be tested increases.

POSTHARDS [3] uses approximate pointers, shown in

Figure 3, as a disaster recovery method to find sibling shares,

where each share points to a subset of possible siblings

in the next server. This reduces the number of potential

reconstructions by narrowing down sibling options. However,

to find the exact position of the sibling this approach still needs

to go through combinations of all shares within the pointer

set in the following server. The number of reconstructions to

rebuild a datastore depends on the size of the pointer set S
and the threshold K:

S(K−1) × Total shares in server

The model recommends choosing a larger pointer set and a

higher threshold for higher data security. Optimizations were

performed on approximate pointers by masking off lower order

bits of the next shard’s identifier that further reduced improved

the reconstruction speed:

(S(K−1))/2× Total shares in server

Approximate pointers also presents a tradeoff between recon-

struction performance and security. The advantage of approx-

imate pointers is that, to identify a sibling, the intruder will

need to steal all of the shares and test every combination in

the pointer set. To rebuild an object, an attacker would need

to compromise threshold number of archives, which is more

difficult and easily detectable for a larger threshold scheme.

In this case, the space of potential siblings increases exponen-

tially with the threshold scheme for the system. However, this

method fails when the chain of reference is compromised by

a missing server. A missing server potentially causes data loss

such that reconstruction of the datastore cannot be performed.

Our methods reduce the number of groupings that must be

attempted to rebuild the objects by leveraging the following

properties:

• The set-subset method uses similarity in sets attached to

each share to determine if a group of shares are siblings.
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• The secret-split secure hash method recombines hints

derived from share IDs and tests them against the share

IDs to identify potential siblings.

Due to the reduced reconstruction space, our methods re-

build a secret-split datastore faster than approximate pointers,

with the added benefit that despite missing shares they can

rebuild the datastore as long as threshold number of shares

are present.

III. THREAT ANALYSIS

There are different points of vulnerabilities in secret-split

datastores. The user-share index or the hash table being used to

correlate between the shares could be stolen or compromised.

This would make it easier to steal meaningful shares belonging

to single or multiple objects. Despite this vulnerability, an

attacker would find it difficult to steal an object, because he

could easily be detected while he tries to compromise multiple

servers. Secret-split datastores are mainly susceptible to insider

attacks. Datastore administrators who can read and manage

information about which shares are siblings and the server they

belong in have complete access to local shares and can easily

steal them. In this scenario, we rely on the administratively-

separated property of servers within a secret-split datastore

to prevent administrators from stealing shares from multiple
servers and subsequently running our algorithms to rebuild

data. Attempts to steal large quantities of data are easier to

detect, making it nearly impossible to attack a secret-split

datastore by doing so.

Our methods deal with two types of adversaries: an external

intruder that can compromise the archive E and the inside

attacker I who has information about shares and their exact

locations in the archive servers. In case of I , when the adver-

sary has access to all shares and there information on a single

server, he can use this information or pointers from these

shares to steal a small number of potential sibling shares from

another server without being caught. Stealing a significant

number of shares from the second server would be noticeable

and the adversary could be intercepted. Additionally, since

he does not have access to share information of the second

server he cannot steal shares from any other servers. Having a

high value of threshold can prevent adversaries from rebuilding

the data if more than one and less than threshold number of

servers are compromised. In case of E, the adversary will have

to steal all shares from the archive that he has compromised

in order to rebuild it. Not only will he have to go through

all authentication barriers of each archive, additionally the

intrusion detection systems will be able to identify access

patterns from the adversary and stop him from getting hold

of all the shares.

Archival storage adversaries are assumed to have unlimited

time and computation power to steal object shares and rebuild

the object. Attacks to steal shares over a longer period of time

are difficult to detect as they may fall below the threshold

that triggers most intrusion detection algorithms. For example

in the case of attacker I , who has information about shares

belonging to a particular object and their locations, may

compromise a single server and steal the share belonging

to the object from that server at some point. One missing

share may alert administrators of a breach, but due to lack

of any particular pattern they will assume that the attacker

has gained information that is not useful. The same attacker

waits a few years and breaks into another server, stealing

another share belonging to the same object, leading to similar

assumptions by the administrators of the second server. This

scenario if repeated again and again over time may provide

the attacker with threshold number of shares that he can then

use to rebuild the object. Our algorithms are designed to work

with storage mechanisms that prevent long-term attacks on

secret-split datastores while still allowing for disaster recovery

without storing pointers to object siblings.

Secret-split datastores are also susceptible to targeted theft

attacks. During targeted data theft, an attacker identifies a

small set of shares based on some common characteristics.

They then use that information to exclusively access only those

shares, thereby compromising the secure properties of a secret-

split datastore. Breaking into sufficient number of servers may

allow an attacker to reconstruct objects from the shares stored

in those servers. The typical targeted theft attack example

consists of an insider at a single location who has full access

to the shares at that location, authorized access or not, and

is attempting to reconstruct some data of interest by gaining

access to the constituent shares on another server without

detection [20]. Furthermore, because the original data can be

reconstructed if enough of the sibling shares are recombined,

targeted theft typically results in the unauthorized release of

information.

For our methods we define two types of targeted theft

attacks, strict targeted theft and loose targeted theft. Strict

targeted theft is when an attacker identifies and accesses a

small number of shares without detection using only a server’s

public interface. For example, the potential intruder E could

use POTSHARDS’ public interface to query for a share based

on its ID, but that does not allow him to browse the collection

of shares in any way. Building upon this attack vector, loose

targeted theft refers to an attacker not only using a server’s

public interface, but also having the ability to access a small

number of shares directly without detection. In this case the

intruder would be I with administrative privileges and will

not only be able to query for shares on POTSHARDS’ public

interface but will also access to a bunch of shares that they

can then use to rebuild an object.

Since it takes into account insider threat, loose targeted theft

is a more realistic attack vector. It is assumed that such an

attacker would be limited by standard monitoring practices,

and as a result be able to only access small sections of the

datastore at a time. The term small is subjective and varies

with system requirements and design. Neither of these methods

allow an attacker to browse a server’s full contents since many

other attacks can be performed once an attacker has achieved

that level of compromise [21]. It is by these two definitions of

targeted theft that we acknowledge that compromising a server

is not a binary, i.e. an all-or-nothing action.
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IV. EFFICIENT RECONSTRUCTION ALGORITHMS

We present two novel methods that address the potentially

combinatorially prohibitive task of reconstructing a large

amount of secret-split data. Both methods can quickly rule

out false siblings, thus reducing the possible reconstruction

space. The two methods provide differing resistance to strict

and loose targeted theft, and exhibit different tradeoffs between

security and reconstruction efficiency.

A. Set-Subset Method

The set-subset method uses similarity between sets of

numbers attached as identifiers to object shares to determine

if they are siblings. In the set-subset method, each object i
chooses a set of values Si from a much larger set of values

M shared across all objects in the archive. For simplicity, we

assume that:

M = {0, 1, 2 . . . |M | − 1}
The system then decides on |S|, which determines how many

values are associated with each object’s Si. Each sibling share

j generated from object i is then assigned a randomly-chosen

proper subset of the object’s value set: Pij ⊂ Si. The set-

subset method is thus characterized by these parameters:

• M is a set of allowable values for each object’s value set.

• |S| is the size of an object’s value set.

• |P | is the size of a sibling share’s value set. We use

|P | = � |S|
2 �.

• |Rsm| = |S|
|M | determines the fraction of available values

that are used by any given object.

First, when an archival datastore is created, the size of the

value set M is fixed, along with the other parameters listed

above. For each object i that is stored, the system first chooses

the object’s value set Si from the integers {0, 1, 2 . . . |M | −
1}. Si need not be unique within the archive, so no check is

required to ensure this property. When object i is split into

shares, each resulting sibling share is associated with its own

value set Pij ⊂ Si, and the sibling shares are then sent to

separate servers for permanent storage. Note that a malicious

administrator on a server storing shareij cannot directly access

sibling shares shareix, x �= j, since there are many non-sibling

shares with several values in common with shareij . Moreover,

the data store API likely does not index shares by their value

sets, further increasing the difficulty of targeted theft.

To reconstruct all stored objects, the user must first obtain

each server’s shares, keeping them separate, since a given

object will store at most one sibling share on a given server.

The system then builds an index for each server’s shares,

associating a reference to a share with each pair of values in

its value set. For example, when |S| is odd, if Pij contained

〈2, 3, 40, 505〉, a reference to shareij would be associated

with 〈2, 3〉, 〈2, 40〉, 〈2, 505〉, 〈3, 40〉, 〈3, 505〉, and 〈40, 505〉.
Because |P | = |S|

2 , or 4 here, we know that any two sibling

shares a and b must share at least two values in their value set

since, if they did not, |Pa∪Pb| > |S|. These indices thus allow

us to quickly identify pairs of shares that may be siblings and

quickly rule out those that don’t have at least two values in

common.

The algorithm then proceeds by building up larger and

larger sets of potential sibling shares, with increasingly greater

constraints on how many values must match in a potential

additional sibling. For example, suppose that |S| = 17. If two

potential siblings a and b have value sets where |Pa∪Pb| = 14,

any potential additional sibling c must have no more than

3 values not included in Pa∪Pb. Since each share has 10 values

in it, |(Pa∪Pb)∩Pc| ≥ 7. This means that we can now index

larger tuples, further increasing the filtering effect and more

quickly identifying potential sibling shares. We can also rule

out potential sibling groups for which there are no suitable

shares that can join the group.

Another example is where we consider two potential sib-

lings with an even |S| = 6 and |P | = 4: Pa = 〈2, 3, 5, 7〉 and

Pb = 〈2, 5, 7, 9〉. The resulting union contains 〈2, 3, 5, 7, 9〉,
and so has room for only one more value. A potential sibling

share with Pc = 〈2, 3, 7, 12〉 may be added to the set, since

it produces a value set of 〈2, 3, 5, 7, 9, 12〉 whose size is

no greater than 6. However, any additional siblings needed

for this group must have value sets containing only these

values. For the same Pa and Pb, a potential sibling with

Pd = 〈2, 5, 14, 15〉 would not be suitable for this potential

group, even though it shares two values with each of Pa and

Pb, since it would increase the total size of the value set to 7.

However, it might be the case that this new share d could be

in a different group with either a or b, but not both.

The ratio between the maximum allowed value, M , and

number of values chosen, |S|, defines both the efficiency and

loose targeted theft resistance of the set-subset method. This

ratio is denoted by Rsm, and the effects of varying Rsm are

discussed in the runtime analysis of the method. With a lower

value of Rsm, there is an improvement in performance at the

cost of reduced resistance to loose targeted theft.

The size of P is designed to be as small as possible while

minimizing the number of sets that need to be combined in

order to make a determination regarding potential siblings. By

setting |P | as a function of |S|, |P | = |S+1|
2 , P is as small as

it can be while allowing a determination to be made after only

two sets are combined. A smaller value of P would result in

more sets having to be combined before being able to make

a determination since the size of the union of two disjoint P
sets would still be less than |S|. Larger values of P , along

with speedy reconstructions, are possible, albeit at the cost of

increasing the likelihood of targeted theft, since sibling shares

must now share more than two values in their value sets.

B. Secret-Split Secure Hash Method

The secret-split secure hash method recombines subset of

hint bits to reconstruct an ID that is tested against the share

ID to determine if two shares are siblings. Like the set-subset

method, the main goal behind the secret-split secure hash

method is to quickly reduce the reconstruction space required

to identify sibling shares in order to perform a reconstruction
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of a complete secret-split datastore without apriori detection

of siblings.
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Fig. 4. Notations used in the diagrams for secret-split secure hash method
to denote object, object shares, hint, hints shares, secret-split and rebuild
functions.
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Fig. 5. An object is split into object shares, and every share is assigned a
unique ID. Hints are generated from the unique ID. Hints are further secret-
split into hint shares.

The secret-split secure hash method recombines hints de-

rived from unique share IDs to identify sibling shares. It can

be broadly separated into two steps; the distribution of object

shares among servers with appropriate share headers and the

correlation between object shares. Given a threshold scheme

of (K,N), every object is first split into N siblings, and each

sibling is assigned a unique 256-bit ID. This ID can either be

a set of random bits or a set of hashed bits.

A subset of bits, called a hint, is extracted from the 256-bit

unique ID. This subset of bits is further secret-split to generate

a set of hint shares, which are distributed among sibling shares.

Figure 4 shows a key to all the notations used in the diagrams.

Step 1 in Figure 5 illustrates the subset of bits, HXY , extracted

from 256-bit ID of share SXY , where X is the object number

and Y is the sibling number. Step 2 in Figure 6 illustrates

the secret-split pieces of the hint, the hint shares, and their

distribution among the object siblings.

Hint shares enable us to perform fewer reconstructions to

eliminate shares that are not siblings. The distribution is made

such that each share contains a piece of its own hint and a

piece of hint from all its other sibling shares. Step 3 in Figure 6

shows the distribution of object siblings among servers, where

server Y stores the object share SXY with an internal hash

table using the hint HXY as a key. Each server has a unique

hash table that allows the algorithm to pre-filter out the shares

that will never be siblings, all the while not enabling strict

targeted theft.

We denote Kh as the hint splitting threshold which is the

number of hint shares needed to reconstruct a hint. The value
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Fig. 6. Hint shares are distributed among sibling shares such that every share
contains a piece of it own hint and pieces of hint from its siblings. Finally
object shares are distributed among servers such that no server contains more
than a single share from an object.
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Fig. 7. Recombination of any set of shares gives three possible outcomes If
the value of hint generated after recombining hint shares exists in the hash
table, then the set of shares may be siblings.

of Kh does not have to be the same as the threshold of the

object shares K �= Kh. The splitting threshold of the hint

shares does not affect the algorithm in any way as long as the

total number of hint shares is the same as the total number of

object shares, N in this case.

Reconstruction uses the hint as well as the hint shares from

candidate shares to test for siblings. Every server has a hash

table with the 256-bit unique ID of the object share as the value

and its corresponding subset of hint bits as the key. Step 2 in

Figure 7 illustrates reconstruction tests for a given a candidate

tuple of shares. There are three possible outcomes that can

occur after reconstruction of a candidate tuple of shares, the

shares could definitely be siblings, the shares could potentially

be siblings or they could definitely not be siblings.

Definite and potential siblings result in positive outcomes

which leads to an addition being made to the value tuple of

the hash table. For every negative outcome the corresponding

share values are removed from the hash table. Recombining

servers less than the threshold number of servers results

in two possible outcomes, potential siblings and definitely

not siblings. Recombination of threshold number of servers
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Fig. 8. In the final hash table every hint key points to a set of sibling share
IDs.

generates definitely sibling tuples. Duplicate computations are

avoided by checking for previously tested combinations in a

bit vector, which reduces the total reconstruction time of the

secret-split datastore. Once all reconstructions are finished,

every hash table is left with a hint value pointing to a set of

share IDs. These shares can be recombined using the object

threshold scheme to give us the original object.

V. MODELING AND IMPLEMENTATION

The first step prior to implementation is to build a model

which helps us analyze the theoretical reduction in recon-

struction space and ultimately used to validate each practical

implementation. We use results from our theoretical model to

validate our experimental results.

Table I summarizes the comparisons of Approximate Point-

ers to our methods in terms of efficiency, overhead, runtime

and resistance to targeted thefts. All tests were run on a 4-

core, 64 bit Linux machine with 24 GB of RAM. The results

have been derived for a datastore up to 107 shares for S3HA,

109 shares for set-subset method and threshold schemes of

(2, 5), (3, 5) and (4, 5). Overall, both set-subset and secret-

split secure hash methods perform better than approximate

pointers. All the methods have high data availability due to

secret-splitting property allowing for an object to be rebuilt

as long as threshold number of shares are available. The

space overhead for basic splitting and rebuilding a single

object depends on the secret-splitting algorithm being used.

We built all our experiments on top of the libgfshare, JErasure

and Cryptopp secret-splitting libraries. Approximate Pointers

allows users to query for share IDs through POTSHARDS’

public interface without allowing them get any additional

information about the object making it highly resistant to

strict targeted theft. Our methods are immune to strict tar-

geted theft as the object can only be rebuilt after all the

shares are acquired. In case of broken chain of references,

approximate pointers is highly susceptible to loose targeted

theft as an intruder could access the shares from the broken

server. The runtime of all methods are given in terms of

number of reconstructions needed to reconstruct an object. As

we discussed earlier approximate pointers has an exponential

rise in reconstructions as the threshold is increased, and is

thereby less efficient with a higher runtime as compared to

S3HA which avoids duplicate reconstructions and has a lower

runtime.

A. Set-Subset Method

The set-subset method was modeled by first identifying the

factors that probabilistically determine the reduction in the

amount of reconstruction space in every step of the algorithm.

Leveraging every server’s preprocessing, only groups with at

least two values in common were tested. Recall that each

server maintains groups of shares based on tuples of common

shares.

The set-subset method is a series of set union operations,

where an incoming set, P1, is combined with an existing set,

P2, in a way that the existing set P ′
2 is updated to be the union

of the two sets, P ′
2 = P1 ∪ P2. There is a gradual increase in

the number of values in the existing set over the life of the

algorithm. However, the number of values in the incoming set,

P1, always remains constant.

For two candidates to be siblings, they must have a mini-

mum number of values, x, in common between their P sets.

This minimum number, x, is defined by Equation 1 and states

that the minimum number of values required to be in common

between the two sets is primarily determined by how many

values can be added to P2 while keeping |P2| ≤ |S|.

x = |P1| − (|S| − |P2|) (1)

Looking at an example using Equation 1, given |S| = 16
and |P | = 9, if at a certain point during the execution of the

algorithm an existing P2 set has 13 values due to previous

operations, these two sets need to have at least 6 values in

common in order to be potential siblings. We can determine

the required number of values in common between any two P
sets in order for them to be siblings. Therefore, it is possible

to determine the probability of those two sets having x values

in common. This probability, ρ(x), is defined in a simplified

form in Equation 3:

ρ(x) =

(|P1|
x

) x−1∏
a=0

( |S| − a

M − a

) x−1∏
b=0

( |P2| − b

|S| − b

)
(2)

=
|P2|

(|P1|
x

)
(|P2| − 1)x−1

Mx−1
(3)

To determine the probability that the two sets have at least
y values in common, we need the sum of required values for

y as in Equation 4:

|P |∑
c=y

ρ(c) (4)

This model was then tested by varying both the range M
and the size of S, resulting in the probability in Equation 4

being altered. This directly affects the number of sibling tests

needed to correctly identify all sets of siblings.
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TABLE I
RELATIVE COMPARISON OF THE KEY FEATURES BETWEEN THE THREE METHODS USED TO PREVENT DATA LOSS IN SECRET-SPLIT DATASTORES.

Approximate Pointers Set-Subset Secret-Split Secure Hash
Availability High High High

Space Overhead Low Low Low
Strict Targeted Theft Resistance High Immune Immune
Loose Targeted Theft Resistance Low Medium Low

Efficiency Low Medium High
Runtime High Medium Low

Fig. 9. Practical implementation of Set-Subset Method in comparison to
theoretical model.

Figure 9 illustrates a model for M = 256 that highlights the

number of siblings tests required for varying share counts per

server and varying set sizes S. Each sibling test represents a

union of each share’s P set and then testing for compatibility.

For example, in case of compatible shares, |P1 ∪ P2| ≤ |S|
whereas for incompatible shares |P1∪P2| > |S|. The increase

in required tests when |S| = 8 and shares per server > 109 is

due to decreased effect that pre-filtering has at that Rsm.

The implemented set-subset method is validated against the

theoretical model. The results are illustrated using a black line

in Figure 9. Each experiment was run until the sample set’s

variance fit a student t–distribution. In a t–distribution, the

variance is equal to d/(d − 2), where d is the degrees of

freedom in the experiment, the number of test runs minus one.

It can be seen that the theoretical model accurately predicted

how the implementation would perform.

B. Secret-Split Secure Hash Method

Although both the set-subset method and the secret-split

secure hash method have the same goals, they have different

operations. The set-subset method’s efficiency relies on the

probability of the set commonality whereas the secret-split

secure hash method’s efficiency relies on the degrees of

freedom with varying hint sizes.
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���� ���� ���� ����
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4,

Fig. 10. Object shares can be pre-filtered by reconstructing hint shares for a
particular share and the testing candidates specifically with those hint share
values.

The first step to reconstruction is pre-filtering. For each

share on a server, a complete set of hint shares are recon-

structed. This is done by combining the original hint with that

share’s corresponding hint share, as shown in Figure 10, giving

us a set of hint shares. This set contains the possible values

for potential siblings in other server hash tables. For example,

in order to find the pre-filtered set of shares on server 2, hX01

can be used to perform a hash table lookup on server 2.

Once pre-filtering is complete, there are three types of

candidate shares that can be tested: shares that appear to be

siblings, shares that are definitely siblings and shares that are

not siblings. The effects of false positives are discussed in the

runtime analysis section of secret-split secure hash method.

The theoretical model of the secret-split secure hash method

is mainly based on the space reduction factor, that is the

fraction by which the reconstruction space reduces after every

round of candidate share tests. This ensures that no candidate

tuple is tested more than once. We show the number of hint

share combinations, λ, for step number x using a formula. Tak-

ing into consideration the splitting threshold K, the number of

shares in each server c, the number of shares recombined in

each step H , hint bits b and space reduction Δ. H varies from

splitting threshold to the total number of shares. Here space

reduction is being defined as the reduced computation space

in S3HA due to the elimination of duplicate computations.

λx =
H−1∑

i=(K−1)

(
H − 1

i

)
(i+ 1)
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Fig. 11. For a threshold of (3,4) we show the number of possible combinations
in each round. Duplicate combinations are tested only once. In the practical
implementation we have eliminated duplicate combinations by looking them
up in a bit vector at the beginning of each round.

For x = 1 Δ1 = 2
For x > 1

Δx =

(x−1)∑
i=1

λi

Space reduction= 2λx

Stepwise recombination attempts considering space reduction:

R =
λxc

H

2Δxb

As the number of servers increases, the combinations of

hints that can be reconstructed increases. For example calcu-

lations for Figure 11, assuming a threshold value of two, when

contents of four servers are considered is: In Round 1:

λ1 =

1∑
i=1

(
1

i

)
(i+ 1)

λ1 = 2 and Space Reduction is 22b

In Round 2:

λ2 =
2∑

i=1

(
2

i

)
(i+ 1)

λ2 = 7 and Space Reduction increases to 27b.

In Round 3:

λ3 =
3∑

i=1

(
3

i

)
(i+ 1)

λ3 = 19 and Space Reduction increases to 219b.

Fig. 12. Implementation of S3HA on a secret-split datastore with a million
shares assuming an 8-bit hint size and 2, 3, 4 threshold number of shares.

This model was tested by varying the size of the hint, b, for

several hint splitting thresholds for a wide range of number

of shares per server. Figure 12 shows the model for b = 32
and the resulting number of hint reconstruction tests that

were required. For 106 shares per server, it will take roughly

1010 reconstruction tests when using a hint splitting threshold

of two, but will require 1018 reconstruction tests for the

same size server using a hint splitting threshold of four. This

illustrates that increasing the hint splitting threshold increases

security. Adding more servers which need to be compromised

to rebuild the object affects the performance negatively, further

highlighting the speed versus security tradeoff in the secret-

split secure hash method.

This method is implemented using JErasure, Cryptopp and

the libgfshare secret-splitting libraries. The secret-split secure

hash method’s implementation was then validated against the

theoretical model by running multiple performance tests and

the results of which are depicted as the black line in Figure 12.

This shows that the theoretical model accurately predicted how

the implementation would perform.

VI. RUNTIME ANALYSIS

The two core problems we address during calculation of

runtime are the potential data loss due to full reconstruction

of all secret-split data and the infeasible amount of time it

takes to do so. Therefore it is critical to understand how the

design parameters for each method affect their runtime as

well their resistance to loose targeted theft. Figure 13 shows a

performance comparison between the mathematical models of

approximate pointers, set-subset method and secret-split secure

hash method. Set-subset method outperforms both methods.

Data security in approximate pointers is based on its pointer

set size. A larger pointer set increases the number of share

combinations needed to rebuild the archive making reconstruc-

tion without an index difficult. In Figure 13, we notice the
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Fig. 13. Each method runs for a threshold of (4, 5). Although the number
of reconstructions in the graph are shown for a single threshold, performance
of each method variously greatly due to their parameters. Set-subset method
uses a SiblingSetSize = 4 and M = 256, and secret-split secure hash
method uses 32-bit hints.

stark difference in the performance of approximate pointers

when pointer size is increased from 102 to 105, highlighting a

performance versus security tradeoff. Similar to approximate

pointers, S3H also has a performance versus security tradeoff.

Security in S3H can be improved by choosing lower number

of hint bits. S3H with a hint size of 32-bits performs well

for up to 10 million shares. As number of shares increases

the performance of S3H goes down. This performance can be

improved by choosing a higher number of hint bits that would

then reduce the total number of combinations significantly.

A. Set-Subset Method

The runtime graphs show a quadratic and linear growth rate

line for the number of operations, the number of sibling or

reconstruction tests required given an input size of 109 shares

per server. Considering a best case scenario in which a full

reconstruction of all secret-split data can be performed in a

single pass of a single server, we get the linear growth rate

line. This occurs in the trivial case where K = 1, as well as

when only a single pass is required of an additional server’s

contents and required siblings can be retrieved in constant

time. For example, when K = 2, linear time reconstruction

can be achieved when during a single pass of server two, each

required sibling on server one can be retrieved in constant

time.

The quadratic growth rate line is when K = 2 and is the

equivalent to the brute-force reconstruction, in which one must

attempt to reconstruct all combinations of shares from each

server. In general, brute-force reconstruction requires polyno-

mial runtime O(NK), where K is the minimum number of

shares required for reconstruction and N is the total number

of objects. The quadratic growth rate line is a special case of

this general process.

The solid curve in Figure 14 shows the number of sibling

tests required for various Rsm ratios. We already know that

|S| is the number of values chosen from which each share’s

Fig. 14. The set-subset method roughly performs between O(n) and O(n2)
depending on the chosen values of |S| and M . As one moves left on the curve,
performance increases at the cost of decreased resistance to loose targeted
theft. The shaded areas denote regions where the percentage of homogeneity
is potentially low enough to enable targeted theft depending on requirements
of the operating environment.

P set values are drawn, and M defines the range of those

values. Logically, as the Rsm decreases, each P set becomes

more unique increasing the efficiency of the algorithm. This

results in a quicker reduction of the reconstruction space for

sets of sibling shares.

The trade-off to this performance increase is the increased

susceptibility to loose targeted theft. This is denoted by mov-

ing to the left along the dashed line in Figure 14. As each P set

becomes more unique, eventually it becomes trivial to identify

a share’s siblings using their P sets. This effect is visible in

Figure 14 as the Rsm approaches zero. The red and yellow

regions on the graph are a rough guideline of an acceptable

amount level of loose targeted theft vulnerability, illustrating

the Rsm ratios that result in 5% and 10% homogeneity of

a server’s shares. In this context, homogeneity refers to the

similarity of P sets between shares. For example, in Figure 14

it can be seen that when the Rsm is approximately 0.125, 5%

of the shares on each server will have identical P sets. As the

P sets on a server become more homogeneous, loose targeted

theft becomes more difficult to perform without detection since

a larger percentage of the shares would need be accessed

without detection. The shaded regions only serve as guidelines

and the systems level of detection would mainly be based on

their actual operating environment.

In general it can be seen that the set-subset method performs

between O(n) and O(n2) depending on the chosen values

of |S| and M . Ultimately the design choice of what Rsm to

implement, is up to the system designer, and is based on both

the size of the datastore and the environment’s acceptable level

of susceptibility to loose targeted theft.

Algorithm 1 defines the process of how the set-subset
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Algorithm 1 SetSubset Algorithm

1: function SETSUBSET

2: existingSets = setsByServer[0]

3: step = 1

4: repeat
5: for each set in existingSets do
6: incomingSets = setsByServer[step]

7: for each incomingSet in incomingSets do
8: union = set ∪ incomingSet

9: if |union| ≤ |S| then
10: outgoingSets.push(union)

11: existingSets = outgoingSets

12: outgoingSets = new set

13: step = step + 1

14: until |existingSets| ≤ filesPerServer

Fig. 15. Change in number of hint reconstruction tests with varying hint sizes
for a million shares per server. Performance can be maximized by choosing
a hint size for the expected maximum size of the datastore, which will result
in the optimally linear runtime. In this example, linear runtime occurs when
b=7.

method reduces the reconstruction search space. Line 2 initial-

izes the algorithm to use server 1’s P sets as the existingSets.

Line 7 then tests each of these P sets against each of the P
sets from server 2 by testing the size of their union set. If the

test passes, the new union set is stored in a list to be used as

the existingSets during the next iteration. The algorithm exits

when the sets of sibling shares have all been identified or fails

due to visiting all servers in the system without successfully

identifying all sets of sibling shares.

B. Secret-Split Secure Hash Method

The main trade-off setting the secret-split secure hash

method apart from the previous method is a large performance

increase at the cost of resistance to loose targeted theft, that

is if loose targeted theft is not a concern then S3H can run in

linear time.

In general, the design choice of hint size is based on the

trade-off between performance and resistance to loose targeted

theft. If we are concerned about the low resistance to loose

targeted theft in this method, then we can alternately choose

to use the set-subset method.

Considering all optimizations used in this project, our model

performs best for a secret-split datastore up to 107 objects.

The model can be made to work for a larger datastore

with a different grouping of objects. There are two different

groupings that can be applied for different system require-

ments. Objects that have a higher accessibility rate can be

recombined using a model that has better performance that is

lower threshold and higher hint size, while objects that are

highly secure can be recombined using a model with higher

threshold and lower hint size. Larger datastores can also be

efficiently reconstructed by grouping the shares into smaller

subsets based on priority and accessibility.

Algorithm 2 defines the process of how the secret-split hash

method reduces the search space required to identify sets of

sibling shares. Line 2 sets up the initial candidate tuples such

that each tuple consists of c hint shares, where c = Kh − 1,

consisting of every combination of hint shares from c servers.

Each of these tuples is tested against an incoming hint share

from the next server in the datastore on line 8. In order to

perform this test, the hints for each of the shares in the tuple,

as well as the incoming share, need to be reconstructed.

If all of the sibling tests pass, the incoming share is a

possible sibling with the other shares in the tuple; as a result,

it is added to the tuple as well as adding the tuple to the new

candidates list for the following round. Once all shares on a

given server are tested against each of the existing candidate

tuples, the process continues to the next server, and continues

until all sets of sibling shares have been identified.

VII. CONCLUSION/FUTURE WORK

Data analysis and management has become an integral part

of all business models. Not only are enterprises generating

large quantities of data, but they also want to make the data

available for an infinite period of time. Enterprises rely on

this stored data to analyze trends, develop future business

models and products. For example, the medical industry stores

a variety of different history in its archives like patient infor-

mation, preexisting diseases and their cures, tried and tested

results in terms of successes and failures. Shamir’s secret-

splitting allows such long term data to be securely stored in

archives. The information-theoretically secure property of this

secret-splitting makes it time-consuming to reconstruct data

without information that groups shares of the same object. Our

methods provide customizable parameters that can be tuned

to tradeoff between speed and performance based on system

requirements.

Our implemented disaster recovery methods reconstruct data

objects in a secret-split data store when an index explicitly

correlating sibling shares is unavailable. These methods both

tag shares belonging to an object with limited information

that facilitates reassembly if all shares are available while
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Algorithm 2 Secret-split secure hash algorithm

1: function SECRETSPLITHASH(st) � st: the hint splitting

threshold

2: candidateTuples = INITIALIZE

3: step = 1

4: repeat
5: for each tuple in candidateTuples do
6: hintShares = server[st + step − 1]

7: for each hintShare in hintShares do
8: if SIBLINGTEST(tuple, hintShare, st) then
9: tuple.push(hintShare)

10: newCandidates.push(tuple)

11: candidateTuples.clear()

12: candidateTuples = newCandidates

13: newCandidates.clear()

14: step = step + 1

15: until |candidateTuples| ≤ filesPerServer

16: function INITIALIZE

17: tempList

18: for each repoIndex do
19: for each hintShare do
20: if tempList.size() is hintShareIndex then
21: tempList.push(new Tuple(hintShare))

22: continue
23: tuple = server[repoIndex][hintShareIndex]

24: clone = tuple.clone()

25: clone.push(hintShare)

26: tempList.push(clone)

27: return tempList

28:

29: function SIBLINGTEST(tuple, hintShare, st)

30: for st - 1 ≤ count ≤ |tuple| do
31: for choose count shares from tuple do
32: hint = RECONSTRUCT(shares, hintShare)

33: if hint �= origHint then
34: return false

35: return true

preventing an attacker from identifying the specific shares

needed to rebuild a particular object, even if the attacker

has full access to one of the data store’s servers. Both the

set-subset and the secret-split secure hash methods are cus-

tomizable, allowing the system implementer to choose either

reconstruction efficiency or added resistance to targeted theft.

Our methods improve on existing reconstruction techniques,

like approximate pointers, in several ways. First, they are

both more resistant to the loss of an entire server, since they

both rely on building groups of shares that need not be done

in a strict order. Second, our approaches scale better than

existing approaches, which take longer as the threshold for

the number of required shares increases. Both of our methods

have runtimes varying between O(N) to O(N2), and greatly

outperform both the naive method with complexity of O(NK)
and the combinatorially prohibitive approximate pointers with

runtime of O(N ×SK−1), while providing higher availability

and immunity to targeted theft.

By making these reconstruction methods available, sys-

tem implementers can develop storage systems that leverage

multiple independent servers to provide higher data security

with increased resistance to theft and insider attack. Both our

systems can survive the loss of the index that allows users to

”put the pieces back together”, providing approaches that can

reconstruct entire archives efficiently while still maintaining

high levels of security. As part of future work we plan to

implement these methods with systems like POTSHARDS,

Cleversafe, Percival, SafeStore and other systems that secret-

split the data, to compare our system performance with dif-

ferent information dispersal techniques.

In combination with systems such as POTSHARDS or

Cleversafe, our techniques pave the way for highly secure

authentication-based archival storage that can survive changes

in encryption algorithms and insider attacks on single archives

while allowing the recovery of an entire data store without the

need for user input.
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