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ABSTRACT
Large-scale storage systems need to provide the right amount of
redundancy in their storage scheme to protect client data. In partic-
ular, many high-performance systems require data protection that
imposes minimal impact on performance; thus, such systems use
mirroring to guard against data loss. Unfortunately, as thenum-
ber of copies increases, mirroring becomes costly and contributes
relatively little to the overall system reliability. Compared to mir-
roring, parity-based schemes are space-efficient, but incur greater
update and degraded-mode read costs. An ideal data protection
scheme should perform similarly to mirroring, while providing the
space efficiency of a parity-based erasure code.

Our goal is to increase the reliability of systems that currently
mirror data for protection without impacting performance or space
overhead. To this end, we propose the use of large parity codes
across two-way mirrored reliability groups. The secondaryrelia-
bility groups are defined across an arbitrarily large set of mirrored
groups, necessitating a small amount of non-volatile RAM for par-
ity. Since each parity element is stored in non-volatile RAM, our
scheme drastically increases the mean time to data loss without im-
pacting overall system performance.

Categories and Subject Descriptors
D.4.2 [Software]: Storage Management—Secondary storage; D.4.5
[Software]: Operating Systems—reliability

General Terms
Reliability
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1. INTRODUCTION
Storage systems use redundancy in order to store data reliably.

High performance storage systems, such as Ceph [12] and GPFS[9]
use mirroring to store client data over possibly thousands of disks.
While mirroring is well suited for high-performance workloads,
full data replication results in a great deal of overhead andcon-
tributes little to the overall probability of not losing data during
the economic lifespan of the file system [7]. For instance, 2-way
mirroring could yield two or three nines of data survivability, but
pushing this number to four or five nines requires much higherre-
dundancy. Systems such as Oceanstore [6] and FAB [8] have the
ability to provide higher redundancy and pay less in terms ofspace
consumption using parity-based erasure correcting codes for data
protection. These systems trade space efficiency for the read-write-
modify update and degraded-mode read penalties incurred when
using parity-based protection schemes.

One quality most mirrored and erasure-encoded systems share
is a single level of replication; trading off either space efficiency
or performance in the process. Our aim is to maintain the perfor-
mance advantages of a mirrored system while providing very high
reliability. Instead of providing additional redundancy using a sin-
gle parity-based encoding, we propose a two-level scheme that adds
a second layer of redundancy; resulting in data protection that can
handle correlated and massive failures without incurring unaccept-
able space and performance overhead. Our scheme creates primary
redundancy groups using two-way mirroring, which enables fast re-
covery in the case of single disk failure. A second, erasure-encoded
redundancy group is computed across a large set of primary copies
of mirrored data. The second layer of redundancy augments a tradi-
tional mirroring scheme with additional protection; making recov-
ery attainable in the case of massive or correlated failures.

In an effort to minimize the parity update costs across the second
layer of reliability groups, we store all parity data in non-volatile
RAM (NVRAM), which is distributed throughout the storage de-
vices. By creating very large stripes in the second layer of redun-
dancy, our solution only requires a small fraction of NVRAM.For
example, suppose a single data strip encompasses 1 GB and a single
parity strip is computed from 1000 data strips. Such a configura-
tion would result in 1 MB of parity for every gigabyte of data,or

1
1000 parity overhead. We chose this number because currently, the
price of NVRAM, such as compact flash, is less than 1000 times
that of disk measured in $/GB. Since NVRAM can be updated at
a much higher rate, our solution is cheaper and faster than adding



disk space to store additional parity data for a much smallerre-
liability stripe. In addition, we find that data reliabilityincreases
substantially even when using single parity across mirrored groups.

The main contribution of this paper is the addition and analy-
sis of large parity groups across mirrored reliability groups. We
believe that high-performance storage systems that currently rely
on mirroring for reliability will benefit from the extra redundancy,
without compromising system performance. As our preliminary re-
sults show, our scheme results in much higher reliability than 2-way
mirroring. Since this work concentrates on reliability, wepostpone
a detailed performance analysis.

2. OVERVIEW
Our scheme is not specific to any single system; however, for

clarity, we present our analysis in a system similar to Ceph [12].
The system stores client data in fixed-sized blocks, calledbuckets.
The buckets themselves are objects assigned to object-based stor-
age devices (OSD), which are assumed to contain at least a disk
and some NVRAM. All client data is stored indata bucketson
disk, while parity data is placed inparity bucketson NVRAM.

Our storage system stores client data in buckets of size approxi-
mately 1 GB, so each device stores about 1,000 data buckets. The
storage system consists of about 10,000 devices and hence stores
about 107 buckets, for a total of 10 PB of raw storage. In the fu-
ture, we expect the size of storage installations to increase and the
capacity of disk drives to increase, though perhaps not at the his-
torical rate of 60% to 80%. Our purpose in giving these numbers
is to give a more concrete picture of the system, but we expectthe
utility of our approach to increase with larger systems.

For our analysis, we assume the system uses mirroring to pro-
tect buckets against device failure. Each bucket is stored on two
devices selected in a pseudo-random manner using algorithms sim-
ilar to RUSH [5]. A bucket is considered lost if the two devices
are lost or sector failures corrupt both copies of the bucket. Buck-
ets are addressed by a simple number and might migrate duringthe
lifetime of the system as new devices are added to the system and
old ones are removed because of failure or obsolescence.

Assume that a disk fails every 5 years. Because of the distributed
nature of our storage devices, the system is reconfigured andpro-
tected much faster than the several hours it takes to read a disk
completely. In such a system 30 minutes is a very conservative es-
timate for reconfiguration time, even including time to detect the
failure. This means that each bucket is vulnerable to singleOSD
failure for 30 minutes / 5 years = 10−5 of its life. Thus, a bucket is
lost at a probability of 10−10 times the lifespan of its data. Unfortu-
nately, there are many buckets, leading to a much greater likelihood
of data loss.

We increase the already excellent survival chances of mirrored
data by maintaining additional parity data stored in a NVRAMcal-
culated over a reliability stripe of thousands of disks. In the rare
case of a bucket annihilation on disk (e.g. loss of both replicas), we
shut down the system and use the NVRAM based parity together
with the other buckets in the same reliability group to reconstruct
the missing buckets. The calculation is tedious (involvingreading
thousands of disks) but highly likely to succeed.

We propose a technique that calculates NVRAM parity data over
a large set of data buckets. Each bucket in the system is assigned
to a single reliability stripe withR buckets total to which we add
1, 2 or 3 NVRAM parity buckets. In each of the three scenarios,
we calculate the parity using a maximum distance separable (MDS)
code. A(n,k) MDS code that computesn−k parity buckets overk
data buckets can sustain the failure of anyn−k buckets. We assume
that an XOR-parity scheme is used to calculate single parity, while
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Figure 1: The layout of our disaster recovery encoding scheme.
Primary and mirrored replicas are distributed such that no two
replicas of a single data bucket are stored on the same disk. The
data contents of each object contribute to the parity of a single par-
ity group, achieving another level of redundancy. We assumethat
at least one physical copy of each data element in a parity group
exists on a distinct disk.

Disk Overhead NVRAM Overhead
Mirror N

2 TB 0
Mirror+P N

2 TB
(

P· 1
R · N

2 ·B
)

GB

Table 1: Storage overhead for each reliability scheme given N1 TB
OSDs, B 1 GB buckets per OSD, secondary reliability groups with
R data buckets and P parity elements per group.

Reed-Solomon codes are used for double and triple parity.
Figure 1 shows how both mirrored replicas and parity groups are

defined in our system. Eachdata bucketis stored in two physical lo-
cations, as theprimary replicaandmirrored replica. Each replica
must be stored on two distinct OSDs. The contents of each data
bucket also contribute to a singleparity group, with the constraint
that each data element in a parity group must exist on a distinct
OSD. This constraint is easily maintained if we consider thephys-
ical location of the primary and mirrored replica of a data bucket.
The data elements of a parity group are used to compute a parity
element, which is stored in distributed NVRAM banks across the
OSDs themselves.

Each parity group protectsR data buckets from data loss. If a
data bucket’s corresponding primary and mirrored replicasare lost
due to disk failure, the remaining data buckets and parity buckets
in the parity group are used to reconstruct the lost bucket. Once the
lost data bucket is reconstructed, the primary and mirroredreplica
are redistributed. Reconstruction during whole OSD failure, though
more complicated and time consuming, works in a similar fashion.
As long as each parity group uses an(n,k) MDS code, our scheme
can tolerate anyn−k lost data buckets.

Figure 2 shows the overhead associated with 2-way mirroring
and parity groups over the mirrored buckets, assuming 1,000 (1 GB)
buckets per OSD, 10,000 OSDs and 3,000 buckets per parity group.



If the parity groups utilize an encoding that adds a single parity
element, then the total storage overhead is roughly 5,000 TBof
disk redundancy and 1.63 TB of NVRAM redundancy. Since the
NVRAM storage is distributed throughout the system, placing 1 GB
of NVRAM on each OSD should be sufficient. Also note that the
storage overhead in our example (excluding 2-way mirroringover-
head) is 1.63 TB for every 5,000 TB of data, or 0.03%.

An issue arises when using a Reed-Solomon code to calculate
the additional parity. In most fast software implementations of
Reed-Solomon, a Galois field with 256 elements is used to calcu-
late parity. Unfortunately, this field will only support 257buckets
per reliability group. Following byte boundaries, the nextlargest
field, GF(216), contains 65,536 elements, which is sufficient for
our purposes. We have developed an efficient implementationof
GF(216) and larger fields [4].

3. RELIABILITY ANALYSIS
Intuitively, the addition of NVRAM parity would be expectedto

lead to much higher data reliability than standalone mirroring. We
quantify and compare the reliability of the mirrored and NVRAM
parity schemes using both probabilistic and stochastic analysis. The
analysis shows that augmenting a mirrored system with NVRAM
parity results in a substantial increase in reliability.

The target storage system in our analysis contains a total ofN
OSDs, though strictly speaking,N varies due to failure and re-
placement. We assume thatB buckets are stored on each device,
resulting inN ·B buckets of storage in the entire system. Each data
bucket is mirrored; thus, the system storesN·B

2 buckets of data. We
distinguish between physical buckets and data buckets, where the
latter is stored in two physical buckets. In the following, we simply
say bucket for a data bucket.

3.1 Probabilistic Analysis
By design, we never store the two physical buckets of a (data)

bucket on the same OSD. Assume now thatk OSDs have failed in a
Ceph-like system that relies on 2-way mirroring for data reliability.

With probability p(k) =
(k

2)
(N

2)
, a given bucket is located on thesek

OSDs and hence lost. Then, with probabilityq(k) = 1− p(k), the
failures have not led to data loss. Givenk failures and no NVRAM
parity, the system survival probability isQ0P(k) = q(k)

N·B
2 ; the fail-

ure probability is 1−Q0P(k).
Suppose a 2-way mirrored scheme is augmented with the NVRAM

parity scheme by addingn parity buckets to each group containing
R data buckets. This allows the whole group to survive up ton
bucket failures—situations wherebothmirrors of a bucket are lost.
Givenk failures, the probability thatl ≤ k of then NVRAM parity

buckets in a single group are located on a failed OSD is
(n

l)(
N−n
k−l )

(N
k)

.

Since there aren− l available NVRAM parity buckets in the group,
the chance of data survival is the probability that at mostn− l of
the R data buckets are unavailable; given by the cumulative bino-
mial distribution. The survival probability of a single parity group
is calculated as

Q(n,R,k) =
n

∑
l=0

(
(n

l

)

·
(N−n

k−l

)

(N
k

)

n−l

∑
ν=0

(

R
ν

)

p(k)νq(k)R−ν

)

.

Assumingk failures, the survival probability of a system withn
NVRAM parity buckets perRbucket group isQnP(k)= Q(n,R,k)

N·B
2·R

,

since there areN·B
2·R parity groups in the system.

Figure 2 shows the effect of computing NVRAM parity across
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Figure 2: Data loss probabilities for an increasing number of
OSD failures, across mirroring and the single parity reliability
schemes. Both schemes use2-way mirroring as the primary redun-
dancy scheme. The single parity scheme computes parity across
groups of1,000data buckets.

data buckets. These results show that using of parity groupswith
just a single parity element has a dramatic effect on reducing the
probability of data loss given multiple OSD failures. We findthat
calculating a single NVRAM parity across every 1,000 buckets
gives even odds to survive roughly 35 OSD failures, while mir-
roring alone has the same odds to survive about 4 OSD failures.

Figure 3 gives the data loss probabilities for double and triple
parity NVRAM layouts. First, notice that adding more NVRAM
protection per group greatly increases the number of tolerated fail-
ures. This figure also shows the effect of group size on the proba-
bility of data loss, which is lower for smallerR. This observation is
rather intuitive because the probability of two or more OSD failures
occurring in the same group decreases with group size. The relia-
bility benefit associated with group size introduces a cost/reliability
tradeoff; decreasing the size of the NVRAM parity groups will in-
crease NVRAM utilization.

3.2 Calculating Mean Time to Data Loss
The probability calculations given above demonstrate thatcom-

puting large NVRAM parity groups across mirrored data results in
very high data survival probabilities. We now use the probabilistic
analysis to derive and compare the expected mean time to dataloss.

Figure 4 shows our generic Markov model with which we calcu-
late Mean Time to Data Loss (MTTDL). The system is in a state
Sk, wherek denotes the number of OSDs currently unavailable. The
initial state isS0. For accuracy, the model presumes that we replace
failed OSDs with new OSDs, whereas in reality, the OSDs are not
replaced; instead, the system is replenished from time to time with
new batches of OSDs. While these OSDs would probably also have
a higher capacity and carry more buckets, modeling these details is
quite difficult and would not yield additional insights.

Since the baseline redundancy scheme is 2-way mirroring, the
failure of two or more OSDs may result in data loss. IfQnP(k)
denotes the chances of survival whenk disks have failed, then we
calculate the probability that the additional failure caused data loss
as the conditional probability

Pk = Pr(DLk|NDLk−1) = 1−
QnP(k)

QnP(k−1)
,

whereDLk is the event of data loss afterk OSD failures and
NDLk−1 is the event of no data loss afterk−1 OSD failures. Since



S 0 S 1 S k
F

N ⋅ λ ( 1 ' P 2 ) ⋅ ( N ' 1 ) ⋅ λ ( 1 ' P k ) ⋅ ( N ' k ' 1 ) ⋅ λ ( 1 ' P k + 1 ) ⋅ ( N ' k ) ⋅ λ. . . . . .ρ 2 ⋅ ρ k ⋅ ρ ( k + 1 ) ⋅ ρP 2 ⋅ ( N ' 1 ) ⋅ λ P k + 1 ⋅ ( N ' k ) ⋅ λ. . .
Figure 4: Our Markov model resembles a standard Birth-Death
model with an additional absorbing failure state (F). Transitions
between the non-absorbing states are OSD failures that do not re-
sult in data loss and OSD repairs. A transition to the failurestate
is a data loss event.

all buckets are mirrored across distinct OSDs, we setP0 = 0 and
P1 = 0.

Our Markov model is closely related to a standard birth and death
model, but with additional failure transitions. The model assumes
that disk drives fail at a constant rateλ and “repair” replicates all
buckets from the failed OSD elsewhere and that the rate of repair is
ρ.

As shown in Figure 4, an OSD failure corresponds to a birth
and a repair to a death. An OSD failure without data loss is the
transition from stateSk going toSk+1 with rate(1−Pk+1)(N−k)λ .
If an OSD failure leads to data loss, then the model transitions to
the failure stateF , taken with frequencyPk+1(N−k)λ . The repair
transition from stateSk to Sk−1 is taken with ratekρ, where the
multiplier, k, accounts for concurrent OSD recovery. We cannot
expect numerically reliable answers for large numbers of state and
we cut off our Markov model at a stateSS wherepS≈ 1 and then
setPS = 1.

Figure 5 displays the system MTTDL for a mirrored system
without NVRAM parity and a system with single NVRAM parity.
We measure system MTTDL as a function of OSD mean time to
failure (MTTF) and repair rate. The analysis assumes repairrates
of 1

4 , 1
2 and 1 hour. Due to the seemingly random allocation of

buckets to disks, these repair times are sufficient to “copy”all of
the failed buckets on a OSD to other OSDs in the system. The
MTTDL numbers indicate that the use of single NVRAM parity
per group results in a much more reliable system than standalone
mirroring. We also find that repair rate has a non-trivial effect on
system reliability. Even though the use of a single NVRAM parity
bucket per group results in a 4,000 fold increase in MTTDL, ap-
plying these results to the provisioning of an actual storage system
needs to be done with caution because the basic assumption-the
Markov property- makes MTTDL values (millions of years) very
hard to comprehend.

Unfortunately, we could not numerically handle the large num-
ber of required states for double and triple parity with any con-
fidence. In light of this, we still believe the analysis as a whole
justifies the use of NVRAM parity in a mirrored system.

4. RELATED WORK
Most large-scale distributed systems rely on redundancy for data

availability and reliability. High performance systems such as GPFS [9]
(which also supports RAID 5) and Ceph [12] utilize mirroringfor
redundancy. FAB [8] has the ability to use either erasure codes or
mirroring for redundancy, while FARSITE [1] uses mirroringin-
stead of erasure codes. All of these systems use a single level of

redundancy, which may fall prey to correlated failures or failure
during rebuild. We believe that our techniques could be incorpo-
rated into these systems resulting in much higher reliability.

Other systems use multiple levels of redundancy for greaterfault-
tolerance and availability. POTSHARDS [11] performs a single
availability-centric split using threshold cryptographybefore stor-
ing data across archives using secure distributed RAID. Oceanstore [6]
replicates so-called active data and disperses copies of this data into
deep archival data using erasure codes. Our scheme independently
generates two-levels of redundancy in a way that has a minimal
impact on average-case performance, while dramatically improv-
ing data reliability.

A variety of studies analyze ways to further improve storagesys-
tem reliability. Xin et al. [13] propose mechanisms for mirrored
and mirrored RAID 5 systems that increase system recovery rate
and recover from nonrecoverable read errors. While Xinet al. an-
alyzed mirrored and mirrored-RAID 5 configurations, we propose
and analyze large parity codes over mirrored groups.

Schwarzet al. [10] propose and analyze a mechanism, called
disk scrubbing, used to actively check data integrity in large storage
systems. Bakeret al. [3] and Bairavasundaramet al. [2] further
validate the importance of active data scrubbing (or auditing) for
detecting and recovering from latent faults as quickly as possible.
Although we did not consider active checking in our analysis, we
expect disk scrubbing to be integral in future analysis—especially
when considering latent errors.

5. CONCLUSION AND FUTURE WORK
There exists a great deal of work to be completed in our disas-

ter recovery encoding scheme. Our preliminary analysis does not
include a performance evaluation. In the future, we plan to com-
pare the update, degraded-mode read and rebuild overhead ofour
two-level scheme to a one-level mirroring scheme. In addition, we
plan to consider the effect of correlated failures, latent sector faults
and “bad” batches of disks. Finally, this scheme may be extended
to a multi-level hierarchy of arbitrary erasure encoding schemes.
We plan to investigate the utility and reliability of this and other
hierarchical encoding schemes.

We have presented a method that drastically increases the relia-
bility of mirrored systems, while imposing relatively small space
and expected performance overhead. Our scheme generates an
extra level of redundancy, using large parity-based erasure codes,
computed across mirrored groups. All parity is stored in distributed
NVRAM banks, resulting in a faster implementation comparedto
storing additional redundancy on disk.

Our preliminary analysis shows that even the use of a parity
group with a single parity element contributes greatly to the overall
reliability of the system. Our probabilistic analysis shows that the
NVRAM parity scheme increases resilience against multipleOSD
failures that might occur, for example, as the result of a badbatch
of disks. System MTTDL (defined as loss of a single data bucket),
also increases, about 4000-fold by introducing a single RAMpar-
ity per 1000 buckets. As the standalone mirroring results show,
recourse to the NVRAM parity is rare, but may be necessary since
such events are quite traumatic.
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Figure 3: Data loss probabilities for an increasing number of OSD failures and three parity group sizes, across double (a) and triple (b)
parity groups. Both schemes use2-way mirroring as the primary redundancy scheme.
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