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Abstract

Typical algorithms for decentralized data distribution
work best in a system that is fully built before it first used;
adding or removing components results in either exten-
sive reorganization of data or load imbalance in the sys-
tem. We have developed a family of decentralized algo-
rithms,RUSH(Replication Under Scalable Hashing), that
maps replicated objects to a scalable collection of storage
servers or disks.RUSH algorithms distribute objects to
servers according to user-specified server weighting. While
all RUSH variants support addition of servers to the sys-
tem, different variants have different characteristics with
respect to lookup time in petabyte-scale systems, perfor-
mance with mirroring (as opposed to redundancy codes),
and storage server removal. AllRUSH variants redis-
tribute as few objects as possible when new servers are
added or existing servers are removed, and all variants
guarantee that no two replicas of a particular object are
ever placed on the same server. Because there is no central
directory, clients can compute data locations in parallel,
allowing thousands of clients to access objects on thou-
sands of servers simultaneously.

1. Introduction

Recently, there has been significant interest in using
object-based storage as a mechanism for increasing the
scalability of storage systems. The storage industry has
begun to develop standard protocols and models for ob-
ject based storage [19], and various other major players in
the industry, such as the National Laboratories have also
pushed for the development of object-based storage devices
(OSDs) to meet their growing demand for storage band-
width and scalability. The OSD architecture differs from
a typical storage area network (SAN) architecture in that

block management is handled by the disk as opposed to a
dedicated server. Because block management on individ-
ual disks requires no inter-disk communication, this redis-
tribution of work comes at little cost in performance or ef-
ficiency, and has a huge benefit in scalability, since block
layout is completely parallelized.

There are differing opinions about what object-based
storage is or should be, and how much intelligence belongs
in the disk. In order for a device to be an OSD, however,
each disk or disk subsystem must have its own filesystem;
an OSD manages its own allocation of blocks and disk lay-
out. To store data on an OSD, a client provides the data and
a key for the data. To retrieve the data, a client provides a
key. In this way, an OSD has many similarities to an object
database.

Large storage systems built from individual OSDs still
have a scalability problem, however: where should indi-
vidual objects be placed? We have developed a family of
algorithms,RUSH(Replication Under Scalable Hashing)
that addresses this problem by facilitating the distribution
of multiple replicas of objects among thousands of OSDs.
RUSHallows individual clients to compute the location of
all of the replicas of a particular object in the system al-
gorithmically using just a list of storage servers rather than
relying on a directory. Equally important, a simple algo-
rithm for the lookup and placement of data to a function
from a key to a particular OSD makes it easy to support
complex management functionality such as weighting for
disk clusters with different characteristics and online reor-
ganization.

2. RUSH: A Family of Algorithms

One important aspect of large scalable storage systems
is replication. Qin,et al. [21] note that, without replication
or another form of data protection such as erasure coding,
a two petabyte storage system would have a mean time to
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data loss of around one day. It is therefore important that an
object placement algorithm support replication or another
method of data protection.

Since our algorithms all support replication and other
features necessary for truly scalable OSD-based storage
systems, we have named the family of algorithms which we
have developed,Replication Under Scalable Hashing, or
RUSH. In fact,RUSHvariants support something stronger:
adjustablereplication. That is,RUSHvariants allow the
degree of replication of a particular object to be adjusted
online, independent of the degree of replication of other
objects. Adjustable replication can be used to significantly
increase the mean time to data loss in an OSD based sys-
tem [21].

It is also important to note that in order for replication to
be effective, it must guarantee that replicas of the same ob-
jects are placed on different disks. While some peer-to-peer
systems such as OceanStore [15] do not make such guaran-
tees, but rather use high degrees of replication to make sta-
tistical promises about the number of independent replicas,
RUSHvariants all make this guarantee.RUSHvariants also
distribute the replicas of the objects stored on a particular
disk throughout the system, so that all of the disks in the
system share the burden of servicing requests from a failed
disk.

Since many storage systems are upgraded and expanded
periodically,RUSHvariants also support weighting, allow-
ing disks of different vintages to be added to a system.
Weighting allows a system to take advantage of the newest
technology, and can also allow older technology to be re-
tired.

Another essential characteristic ofRUSHvariants is op-
timal or near-optimal reorganization. When new disks are
added to the system, or old disks are retired,RUSHvari-
ants minimize the number of objects that need to be moved
in order to bring the system back into balance. This is in
sharp contrast to pseudo-random placement using a tradi-
tional hash function, under which most objects need to be
moved in order to bring a system back into balance. Ad-
ditionally, RUSHvariants can perform reorganizationon-
line without locking the filesystem for a long time to re-
locate data. Near-optimal reorganization is important be-
cause completely reorganizing a very large filesystem is
very slow, and may take a filesystem offline for many
hours. For example, a 1 petabyte file system built from
2000 disks, each with a 500 GB capacity and peak transfer
rate of 25 MB/sec would require nearly 12 hours to shuf-
fle all of the data; this would require an aggregate network
bandwidth of 50 GB/s. During reorganization, the system
would be unavailable. In contrast, a system runningRUSH
can reorganize online because only a small fraction of ex-
isting disk bandwidth is needed to copy data to the new
disks.

RUSHvariants are completely decentralized, so they re-
quire no communication except during a reorganization.
As a storage system scales to tens or even hundreds of
thousands of disks, decentralization of object lookup be-
comes more and more essential. Moreover,RUSHvariants
require very few resources to run effectively:RUSHvari-
ants are very fast and require minimal memory. These two
features enable the algorithms to be run not only on the
clients, but on the OSDs themselves, even under severely
constrained memory and processing requirements. Run-
ning on the OSD can assist in fast failure recovery.

2.1. Terminology and Symbols

RUSHvariants are able to offer such flexibility and per-
formance in part because they make assumptions about
the structure of the OSDs and clients. First, we assume
that disks and clients aretightly connected, i. e., disks and
clients are able to communicate with each other directly,
with relatively uniform latency, and with relatively high re-
liability. This is in contrast toloosely connectedpeer-to-
peer and WAN networks in which communication laten-
cies are longer and possibly highly varied. Our target envi-
ronment is a corporate data center or scientific computing
network, likely dedicated to storage traffic.

Another important assumption crucial to the function-
ing of RUSHis that disks are added to the system in ho-
mogeneous groups. A group of disks, called asub-cluster
have the same vintage and therefore share both perfor-
mance and reliability characteristics. It is possible to add
disks with different characteristics at the same time—they
must merely be grouped into multiple homogeneous sub-
clusters.

All of the RUSHvariants are described in pseudo-code
later in this section; the symbols used in the pseudo-code
and the accompanying explanations are listed in Table 1.

2.2. RUSHConcepts

There are several common features of theRUSHvariants
which combine to allow scalability, flexibility and perfor-
mance. The first of these is the recognition that as large
storage systems expand, new capacity is typically added
several disks at a time, rather than by adding individual
disks. The use of sub-clusters leads naturally to a two-part
lookup process: first, determine the sub-cluster in which an
object belongs, and then determine which disk in the sub-
cluster holds that object. This two part lookup allows us
to mix and match different sub-cluster mapping algorithms
and different disk mapping algorithms, in order to provide
the best feature set for a particular problem.

All of the RUSH variants are structured recursively.
This recursive structure arises from the recursive nature of

2



Symbol Description
x The key of the object being located.
r The replica ID of the object being located
j The ID of some sub-cluster. Higher id’s

were added more recently
mj The number of disks in sub-clusterj
wj The (un-normalized) weight of each disk

in sub-clusterj
m′j The total amount of weight in sub-

cluster j
n′j The total amount of weight in all the sub-

clusters added previous to sub-clusterj
(i.e. sub-clusters 0. . . j−1)

z A pseudo-random number, or result of a
hash function

Table 1. Symbols used in RUSHpseudo-code
and explanations.

adding disks to an existing system: a system naturally di-
vides into the most recently added disks, and the disks that
were already in the system when they were added.RUSHP

andRUSHR follow this model closely, whileRUSHT ap-
plies a divide and conquer approach. Although the pseudo-
code is recursive, real implementations may be iterative in
order to avoid the function call overhead.

Probabilistic placement of objects also seems like a nat-
ural choice forRUSHbecause many hash functions offer
excellent performance and even distribution of objects, .
Probabilistic placement also facilitates weighting of sub-
clusters and the distribution of replicas of a particular ob-
ject evenly throughout the system.

All of the RUSHvariants use a parametric hash with
two additional parameters. The hash function is a simple
multiplicative hash which yields values in the range[0,1):
h(k) = Ak mod 1 whereA∈ [0,1).

Unfortunately, a simple multiplicative hash function
generates a highly correlated sequence of randomly-
distributed hash values when its parameters are sequential,
as shown in Figure 1(a). SinceRUSHrequires that hash
values be well-distributed regardless of parameter sequen-
tiality, we use a simple hash function on one parameter to
seed a random number generator and then use the stream
of resulting values as random numbers. The output of the
generator is shown in Figure 1(b).

2.3. RUSHP: Placement using Prime Numbers

RUSHP is described in detail in our previous work [10]
so we will only briefly discuss this algorithm. The algo-
rithm for RUSHP, using symbols described in Table 1 is
shown in Figure 2.
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(a) Correlation of hash values
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) Correlation of a pseudo-
random stream

Figure 1. Two dimensional correlation of the
hash values of sequential keys and the ran-
dom generator.

RUSHP takes a key and replica id and returns a disk id. It
first decides in which sub-cluster an object replica belongs
by computing the parametric hash of an object. It compares
the hash value, which is in the range[0,1), to the ratio of the
amount of weight in the most recently added sub-cluster to
the total weight in the system. If the hash value is less than
the ratio of weights, the object replica belongs in the most
recently added sub-cluster. Otherwise, the object must be-
long in one of the previously added sub-clusters, soRUSHP

discards the most recently added sub-cluster and repeats the
process.

OnceRUSHP decides on the sub-cluster in which an ob-
ject replica belongs, it places the object replica in some
disk in the sub-cluster using the functionf (x, r) = z+ rp(
modmj)

1, wherez is essentially a hash of the keyx, p is
a randomly chosen prime number, andmj is the number of
disks in the sub-cluster.

With a few simple number theory lemmas we can show
that as long asr is less than or equal tomj , f (x, r i) 6=
f (x, rk) for i 6= k. Using a more advanced analytic number
theory result called the Prime Number Theorem for Arith-
metic Progressions [9], we can show that this function will
distribute the replicas of objectx in mjφ(mj ) different ar-
rangements2, and each arrangement is equally likely.

Note that, in most cases, a single sub-cluster will not
contain all of the replicas of an object. However, there is
a finite probability of this occurring, and it indeed will al-
ways happen if there is only one sub-cluster, so the algo-
rithm must allow for this possibility.RUSHP uses a trick
to allow all of the sub-clusters except for the original sub-
cluster to have fewer disks than the object replication fac-
tor, as described in our original paper onRUSHP [10].

1We use the group theoretic notation for modulus, where mod has
lower operator precedence that arithmetic operations and other functions,
so that the modulus binds with the whole algebraic expression to the left.

2φ(·) is the Euler Totient function.
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def RUSHP (x, r, j):
m′j ←mjwj

n′j ← ∑ j−1
i=0 m′i

z= hash(x, j,0) · (n′j +m′j)
choose a prime numberp≥m′j based onhash(x, j,1)

v← x+z+ r× p
z′← (z+ r× p) mod(n′j +m′j)
if mj ≥ R and z′ < m′j

map the object to servern j +(v modmj)
else ifmj < R and z′ < R·wj and v modR< mj

map the object to servern j +(v modR).
else

RUSHP (x, r, j−1)

Figure 2. Pseudo-code for RUSHP.

2.4. RUSHR: Support for Removal

RUSHR differs fromRUSHP in that it locates all of the
replicas of an object simultaneously, allowing sub-clusters
to be removed or reweighted without reorganizing the en-
tire system.RUSHR uses the same ratio thatRUSHP uses
in order to determine which objects go where: the ratio
between the number of servers in the most recently added
sub-cluster and the number of servers in the whole system.
These values, however are passed separately as parameters
to a draw from the hypergeometric distribution3. The re-
sult of the draw is the number of replicas of the object that
belong in the most recently added sub-cluster, as shown in
Figure 3(a).

Once the number of replicas that belong in the most re-
cently added sub-cluster has been determined, we use a
simple technique, shown in Figure 3(b), to randomly draw
the appropriate number of disk identifiers.

2.5. RUSHT: A Tree-Based Approach

RUSHT was devised to increase the scalability ofRUSH
by allowing computation time to scale logarithmically with
the number of sub-clusters in the system. It also offers
more flexibility in the ways in which a system can be re-
organized. It accomplishes this with some sacrifice in the
competitiveness of its reorganizations, as described in Sec-
tion 3.4.

RUSHT is similar toRUSHP, except that it uses a binary
tree data structure rather than a list. Each node in the tree
knows the total weight to the left and right of the node,
and each nodes has a unique identifier which is used as a
parameter to the hash function.

As with the otherRUSHvariants,RUSHT first looks up
the sub-cluster in which an object replica belongs. The
RUSHT algorithm, shown in Figure 4(b) accomplishes this
by calculating the hash of the key of the object, parameter-
ized by the unique index of the current node (starting with

3We add weighting to the hypergeometric distribution to support
weighting of sub-clusters.

def getSub−Cluster(node,x, r):
if node.flavor= SUB−CLUSTER:

return node
if hash(x,node.index, r,0) < node.left.totalWeight:

return getSub−Cluster(node.left,x, r)
else:

return getSub−Cluster(node.right,x, r)

(a) Locating the sub-cluster in which replicar of objectx is stored

def RUSHT (x, r)
node← getSub−Cluster(root,x, r)
j ← node.index
v← hash(x, j,0,1) ·mj

choose a prime numberp≥m′j based on hash(x, j,0,2)

s← x+v+ r · p( modmj)
return ( j,s)

(b) TheRUSHT main algorithm
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(c) A tree for a system with five sub-clusters, with nodes labeled
by their binary index

Figure 4. Pseudo-code for the RUSHT algo-
rithm.

the root).RUSHT then compares this hash value to the ratio
between the amount of weight to the left of the current node
and the total amount of weight to the left and right of the
node. If the hash value is less than this ratio, then the object
belongs to the left of the current node, otherwise, it belongs
to the right. This process is repeated until a sub-cluster leaf
node is reached.

A tree illustrating the result of this process for a system
with five subclusters is show in Figure 4(c).

Once the replica’s sub-cluster has been found,RUSHT

then determines the specific server in the sub-cluster on
which to place the object replica in the same way that
RUSHP does, described in Section 2.3. The technique used
in RUSHP for allowing sub-clusters to be smaller than the
replication factor does not work, however, forRUSHT ; this
is perhaps the main drawback ofRUSHT .

When a system gains additional sub-clusters or is oth-
erwise reorganized,RUSHT must ensure that nodes in the
tree always have the same unique identifier. This is done by
allocating binary identifiers starting with the leftmost leaf
(the original sub-cluster in the system), allocating that leaf
the identifier “1.” To add a new root node, shift the root’s
identifier one bit to the left, copy the identifiers from the
left subtree to the right subtree, and append a “1” on the
left hand side of every identifier in the right hand subtree,
pruning off any unused branches.4 A tree illustrating the

4We can optimize this so that only identifiers that are actually needed
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def init()
for j = 0 to c−1:

m′j ←mjwj

n′j ← ∑ j−1
i=0 m′i

end for

def RUSHR (x,R, j, l)
seed the random number generator with hash(x, j,0)
t←max(0,R−n j)
// H is a draw from the weighted hypergeometric distribution
u← t +H(R− t,n′j− t,m′j +n′j− t,wj)

if u > 0 then
seed the random number generator with hash(x, j,1)
y← choose(u,mj)
reset()
addn j to each element iny
appendy to l
R←R−u

end if
if R= 0:

return l :
else:

return RUSHR (x,R, j−1, l)

(a) An algorithm for mapping all replicas of an object to corresponding
servers.

def initChoose (n)
a0...n−1←{0, . . . ,n−1}

def choose (k, n )
for i = 0 to k−1

generate a random integer 0≤ z< (n− i)
// swap az and an−i−1

r i ← az

az← an−i−1

an−i−1← r i

end for
return r

def reset
for i ∈ {0, . . . ,k−1}

c← an−k+i

if c < n−k:
ac← c

an−k+i← n−k+ i
end for

(b) Algorithm for choosingk integers out of{0, . . . ,n−
1} without replacement.

Figure 3. Pseudo-code for the RUSHR algorithm.

result of this process for a system with five sub-clusters is
show in Figure 4(c).

3. RUSH in Practice

Since theRUSHfamily of algorithms was designed to
allocate data in petabyte-scale storage systems, we mea-
sured its behavior under different situations to show that
RUSHdoes, indeed, meet its design goals. In this section
we describe a series of experiments that illustrate various
characteristics of each of theRUSHvariants. All measure-
ments were performed on a 2.8 GHz Pentium 4 machine.

3.1. Object Lookup Performance

In our first experiment, we examine the performance
characteristics ofRUSH. Informally, in the worst case,
RUSHP andRUSHR must iterate over every sub-cluster in
the system, doing a constant amount of work in each sub-
cluster, so the lookup time ofRUSHP andRUSHR grows
linearly with the number of sub-clusters in the system.
RUSHT on the other hand, uses a binary tree to locate the
correct sub-cluster, again doing constant work at each node,
so lookup time is logarithmic in the number of sub-clusters
in the system.

The lookup time forRUSHP andRUSHR, however, also
varies depending on the weighting in the system. If the

are allocated. We chose to describe this as pruning for the sake of sim-
plicity.

most recently added disks have higher weight than previ-
ously added disks, then the lookup process will tend to stop
after only examining the most recently added sub-clusters.
Since newer disks will tend to have greater capacity and
and throughput, we expect newer disks to have higher
weight, and thus we expect the performance ofRUSHP and
RUSHR to be sub-linear.

SinceRUSHT must always traverse a tree regardless of
the weightings of the sub-clusters in the system, weighting
does not affect the performance ofRUSHT . This may be
advantageous in systems where quality of service guaran-
tees are important.

To perform the experiments in this section, we started
with a system with only a single sub-cluster. We then
looked up four million object replicas, and took the average
time for a lookup. Two more sub-clusters were added, and
the process repeated; this was done until we reached 100
sub-clusters. Figure 5(a) shows the performance ofRUSHP

andRUSHR where each sub-cluster has the same weight,
and where the weight in each sub-cluster increases expo-
nentially, by a factor of 1.1. Figure 5(b) shows the shape
of the performance curve forRUSHT . As expected, lookup
times forRUSHT increased logarithmically with the num-
ber of sub-clusters in the system. The timing is so much
faster thanRUSHP and RUSHR that it does not show up
on Figure 5—lookups required less than one microsecond
even after 100 clusters had been added. The unevenness of
theRUSHT line is due to the limited resolution of the timer
on our system. If performance is an issue, mappings done
by RUSHP andRUSHR can be cached because mappings
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Number of Clusters
0 10 20 30 40 50 60 70 80 90

T
im

e 
pe

r 
m

ap
pi

ng
 (

us
)

0

0.2

0.4

0.6

0.8

1
RUSH t

(b) Lookup times forRUSHT

Figure 5. Per-object-replica lookup times as
the number of sub-clusters in the system
varies, under two weighting scenarios.

of object replicas to disks do not change unless the system
configuration is changed.

3.2. Object Distribution

In this experiment, we tested the ability ofRUSHto dis-
tribute objects according to a distribution of weights over
sub-clusters. We inserted 10,000 objects with 4 replicas
each into 3 sub-clusters of 5 disks each. Each sub-cluster
has twice the weight of the sub-cluster to its left.

Figure 6 shows the results of this experiment. Even with
only 40,000 object replicas, all of theRUSHvariants place
objects almost exactly according to the appropriate weight.
The leftmost bar in the figure shows the ideal value; none
of theRUSHvariants differ greatly from this ideal distribu-
tion.
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Figure 6. The distribution of object replicas
over three sub-clusters with five disks each
for RUSHP, RUSHR and RUSHT .

3.3. Failure Resilience

In this experiment, we studied the behavior of the sys-
tem when a disk fails. When a disk fails, the disks which
hold replicas of the objects stored on the failed disk must
service requests which would have been serviced by the
failed disk. In addition, these disks must devote some per-
centage of their resources to failure recovery once the failed
disk has been replaced. We call this extra workloadfailure
load.

The more evenly distributed the replicas of objects from
the failed disk, the more evenly distributed the failure load.
In order to minimize service degradation and cascading
failures,RUSHdistributes the replicas of objects on a par-
ticular disk over the entire system. These replicas are dis-
tributed according the weights of each sub-cluster. We call
the distribution of replicas of objects stored on the failed
disk thefailure distribution.

Figure 7 shows the failure distribution for disk 8 in a sys-
tem with 3 sub-clusters of 5 disks each, all evenly weighted.
Both RUSHP andRUSHT show a slight tendency to favor
disks that are close to the failed disk, whileRUSHR shows
no such tendency. For comparison, we also examined a sys-
tem in which the all the replicas of an object are allocated
to four adjacent disks. For example, replicas of some ob-
ject might be distributed to disks 8, 9, 10, and 11. In such a
system, when disk 8 fails, replicas of the objects on disk 8
could be located on disks 5, 6, 7, 9, 10 or 11. In compari-
son to the system that places replicas on adjacent disks, the
“favoritism” showed byRUSHP andRUSHT is almost neg-
ligible. In systems with more disks and more objects, the
favoritism is even less pronounced, especially when com-
pared to a system that distributes replicas to adjacent disks
regardless of how many servers are in the system.

Unfortunately, the deviation from the optimal value de-
pends on several complex factors and is therefore difficult
to quantify. InRUSHP andRUSHT , the amount of the devi-
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Figure 7. The distribution of replicas of ob-
jects on disk 8, which has just failed. RUSH
variants distribute the load under failure;
Next-3 uses adjacent disks for replicas caus-
ing imbalanced load under failure.

ation depends partly on the number unique coprimes of the
size the sub-cluster in which the failure occurred, known as
the Euler Totient Function. Despite this difficulty in quan-
tifying the variance, we can see empirically thatRUSHR

gives the most faithful failure distribution, but thatRUSHP

andRUSHT are both extremely accurate. Figure 7 is repre-
sentative of our findings for other system configurations.

3.4. Reorganization

The final experiments described in this paper examined
the number of objects that move during four different re-
organization scenarios. In the first scenario, a sub-cluster
is added to the system. In the second, a single disk is re-
moved from the system, causing the number of disks in a
sub-cluster to be adjusted. In the third scenario, the weight
of a sub-cluster is increased. In the fourth scenario, an en-
tire sub-cluster is removed from the system. In each of the
experiments, the system starts with six sub-clusters with 4
disks each. We added 10,000 objects, each having 4 repli-
cas, and then reorganized the system, counting the number
of objects which moved during the reorganization.

As shown in Figure 8,RUSHP and RUSHR both per-
form optimally when a sub-cluster is added to the system;
in fact, they are theoretically optimal, so any variation is
due to small variations in probabilistic distribution.RUSHT

is slightly sub-optimal, but is consistently within a small
constant factor of the optimal case.

RUSHwas not designed for a system in which individ-
ual disks are removed, as is apparent from the second col-
umn in Figure 8. WhileRUSHR andRUSHT move about
three times as many objects as the optimal number,RUSHP

Add New
Subcluster

Remove
One Disk

Increase
Weight

Remove
Subcluster

N
um

be
r 

of
 O

bj
ec

ts
 M

ov
ed

0

5000

10000

15000

20000

25000 Optimal
RUSH p
RUSH r
RUSH t

Figure 8. The number of objects which move
under various reorganizations.

moves around ten times as many—over a third of the ob-
jects in the system! If removing a disk is necessary, and the
number of objects moved is unacceptable, we can take ad-
vantage ofRUSH’s adjustable replication factors by main-
tain a list of removed disks. If an object maps to any re-
moved disk, increase its replication factor by one and look
up the new replica instead. This process may be repeated
until an existing disk is found. While this mechanism
clearly causes an optimal number of objects to be moved,
it has some limitations. For example,RUSHP andRUSHT

both have a maximum replication factor. Also, worst case
lookup time increases linearly with the number of removed
disks. A more in depth examination of this mechanism is
the subject of future research.

The third column of Figure 8 shows thatRUSHT and
RUSHR perform well when the weight of an entire sub-
cluster is increased, butRUSHP again performs poorly. In
both adding (column 3) and removing weight (column 4)
from a sub-cluster,RUSHT andRUSHR both perform well,
whereasRUSHP does not. This behavior is expected, since
RUSHT andRUSHR were designed to allow changing sub-
cluster weights, whereasRUSHP was not.

4. Applications of RUSH

EachRUSHvariant excels in a different environment.
While RUSHT offers the best performance and the best
overall flexibility in reconfiguration, it does not allow sub-
clusters smaller than the maximum number of a replicas
that a single object may have. It also moves more than the
optimal number of objects during reorganization, though
the number is within a small factor of the optimal number
of objects.RUSHT is thus best suited for very large systems
in which disks will be added in large numbers. However,
for systems which the designers intend to build by adding a
very small number of disks at a time (small scale systems)
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RUSH
P R T LH* SH Tab

Replication X X X X -
Adjustable replication X X X -
Weighting X X X -
Arbitrary sub-cluster size - X X -
Optimal reorganization - - -
Near-optimal reorganization - X X X -
Configurable disk / sub-cluster
removal

X X X -

Erasure coding X X X -
Decentralized X X X X X
Minimize correlated failure X X X -
Allows sub-cluster resizing X X -
Small memory footprint X X X X

Table 2. Features of RUSH and three other
related algorithms/distribution mechanisms.
SH refers to simple hashing, and Tab is a sim-
ple tabular approach.

or systems that will be reorganized continuously, one of the
otherRUSHvariants may be better.

RUSHR also provides significant flexibility, but at the
cost of performance. SinceRUSHR performance degrades
linearly with the number of sub-clusters in the system, it is
not well suited to a system where sub-clusters are added or
removed frequently. It also cannot support systems where
each “replica” in a replica group is actually a distinct entity
rather than an exact copy, as would be the case if “repli-
cas” were used as part of an erasure coding scheme. On the
other hand, becauseRUSHR does not rely on the number
theory behindRUSHP andRUSHT , it can allow any repli-
cation factor up to the total number of disks in the system.
This means that a system usingRUSHR has more flexibility
in the number of disks that can be removed from the system
individually using the mechanism discussed in Section 3.4.
It also has more flexibility to use a “fast mirroring copy”
technique [21] to increase the mean time to data loss in a
system.

RUSHP offers similar behavior toRUSHR, except that it
supports erasure coding. This ability comes at the expense
of not being able to remove sub-clusters once they are
added (without significant reorganization costs).RUSHP

also requires that the replication factor in the system be less
than or equal to the number of disks in the first sub-cluster
added to the system, but subsequent sub-clusters need not
have sufficient disks to hold all of the replicas of a single
object on unique disks. In that respect, it is more flexible
thanRUSHT , but less flexible thanRUSHR.

BecauseRUSHT ’s performance does not depend on the
weighting of the sub-clusters, and objects on every sub-
cluster can be located in the same amount of time,RUSHT

can make better quality of service guarantees.

Table 2 gives a side-by-side comparison of the features
of the RUSHvariants and Linear Hashing variants [14],
simple hashing, and a tabular, or “directory” approach. An
“X” indicates that the algorithm supports the feature and “-
” indicates that it supports the feature under some circum-
stances. The “tabular” approach keeps a centralized table,
possibly cached in part on the clients, containing pointersto
all of the object replicas. It has “-” instead of “X” because
the approach neither rules out nor ensures any of these fea-
tures. In fact,RUSHcould be used to generate and maintain
the table in such a system. Any such system has the same
constraints toRUSH: it must guarantee that no two repli-
cas of the same object are on the same disk and support
weighting.

We conclude this section by giving a brief example of
a system best suited to each of theRUSHvariants. In a
small system such as a small storage server or a replicated
object database, the user does not necessarily want to add
several disks or servers at once. In that caseRUSHP or
RUSHR is more appropriate. In the case of a small storage
server, storage space is typically a more important issue
that in an object database, where transaction speed is often
more important. For that reason,RUSHP, which supports
erasure coding, is probably more suited to a small storage
server, whereasRUSHR is probably more suited to an ob-
ject database because of the added flexibility in configura-
tion. Large storage systems, on the other hand, typically
add many disks at once, and therefore are not constrained
by the need to add a minimum numbers of disks to the sys-
tem at once. Very large storage clusters are also typically
very performance sensitive. BecauseRUSHT provides the
best performance both in terms of lookup times and reor-
ganizations, and because of its flexibility in configuration
and reconfiguration,RUSHT is most appropriate for very
large storage systems, such as the one we are designing in
the Storage Systems Research Center at the University of
California, Santa Cruz.

5. Related Work

The topic of Scalable Distributed Data Structures
(SDDS) has received considerable attention. Litwin,et al.
have developed many distributed variants of Linear Hash-
ing which incorporate features such as erasure coding and
security. The original LH* paper provides an excellent
introduction to the LH* variants[14]. LH* unfortunately
does not use disk space optimally [2], and results in a “hot
spot” of disk and network activity during reorganizations.
More importantly, LH* does not support weighting, and
distributes data in such a way that increases the likelihood
of correlated failures or performance degradations. Other
data structures such as DDH [7] suffer from similar issues
in utilizing space efficiently. Kröll and Widmayer [12] pro-
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pose tree-based SDDSs called Distributed Random Trees
which allow for complex queries such as range queries.
DRTs do not support data replication (although the authors
discuss metadata replication), and their worst case perfor-
mance is linear in the number ofdisksin the system. Litwin
et al. also propose a B-Tree based family called RP* [13],
which suffers from problems similar to LH*.

Choy,et al. [5] describe algorithms for distributing data
over disks which move an optimal number of objects as
disks are added. These algorithms do not support weight-
ing, replication, or disk removal. Brinkmann,et al.[3] pro-
pose a method to distribute data by partitioning the unit
range. Their algorithm features 2-competitive reorganiza-
tions and supports weighting but not replication; it was ex-
tended by Wu and Burns [20] to map file sets, rather than
files, to the unit range using a method similar to our tech-
nique of mapping objects to replica groups. SCADDAR [8]
explored algorithms for assigning media blocks to disks in
a system in which disks are added and removed. SCAD-
DAR uses remapping functions similar in flavor to those
in RUSH, but does not support replication beyond simple
offset-based replication as discussed in Section 3.3. Con-
sistent hashing [11] has many of the qualities ofRUSH,
but has a high migration overhead and is less well-suited to
read-write file systems; Tang and Yang [18] use consistent
hashing as part of a scheme to distribute data in large-scale
storage clusters.

Chau and Fu discuss algorithms to support graceful
degradation of performance during failures in declustered
RAID systems [4]. As discussed in Section 3.3, our al-
gorithms also feature graceful degradation of performance
during failures.

Peer-to-peer systems such as CFS [6], PAST [17], and
Gnutella [16] assume that storage nodes are extremely un-
reliable. Consequently, data has a very high degree of repli-
cation. Furthermore, most of these systems make no at-
tempt to guarantee long term persistence of stored objects.
In some cases, objects may be “garbage collected” at any
time by users who no longer want to store particular objects
on their node, and in others, objects which are seldom used
are automatically discarded. Because of the unreliability
of individual nodes, these systems use replication for high
availability, and are less concerned with maintaining bal-
anced performance across the entire system. Other large
scale persistent storage systems such as Farsite [1] and
OceanStore [15] provide more file system-like semantics.
Objects placed in the file system are guaranteed, within
some probability of failure, to remain in the file system
until they are explicitly removed. The inefficiencies intro-
duced by the peer-to-peer and wide area storage systems
address security, reliability in the face of highly unstable
nodes, and client mobility, among other things. However,

these features require too much overhead for a tightly cou-
pled high-performance object storage system.

6. Future Work

One problem withRUSHis that we do not yet know how
to calculate the inverse—we can not directly answer the
question, “which objects are stored on a given a disk?” We
must instead iterate through all possible object identifiers
and replica numbers and calculate the disk on which it be-
longs. We then simply discard all objects that do belong on
the disk in question. Some preliminary research, however,
suggests that it may be possible to invertRUSH, and enu-
merate the objects assigned to a particular server. This pro-
cess involves solving a system ofn linear equations, where
n represents the number of comparisons necessary to locate
the correct subcluster for an object.

We also would like to place theoretical bounds on the the
number of objects which can move during a reorganization,
and quantify the standard error in the number of objects
stored on a particular disk.

We are currently exploring different mechanisms for re-
ducing the impact of removing a single disk either tem-
porarily or permanently from the system.

Finally, we are examining the utility of these algorithms
for a broader class of applications including an object
database and a searchable distributed web cache.

7. Conclusions

This paper has provided an overview of a family of
algorithms we have developed to distribute objects over
disks in a heterogeneous object based storage device. We
describe three algorithms:RUSHP, RUSHR and RUSHT .
These three algorithms all support weighting of disks, ob-
ject replication, and near-optimal reorganization in may
common scenarios.

Our experiments show that while all three algorithms
can perform lookups very quickly,RUSHT performs an or-
der of magnitude faster in systems which have been re-
organized several times.RUSHT also provides the best
reorganization behavior under many conditions. This in-
creased flexibility comes at some expense to the range of
configurations which are possible forRUSHT . In particu-
lar, every subcluster in a system managed byRUSHT must
have at least as many disks as an object has replicas. Since
small systems will typically have small replication factors,
this may or may not be an impediment. Clearly, however,
RUSHT is the best algorithms for distributing data over
very large clusters of disks.

RUSHP andRUSHR both provide alternatives toRUSHT

for smaller systems. Since it has the greatest flexibility in
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configurationsRUSHR may be the best option for systems
which need to remove disks one at a time from the sys-
tem. Because it supports erasure coding,RUSHP may be
the best option for smaller systems where storage space is
at a premium.

RUSHalgorithms operate well across a wide range of
scalable storage systems. By providing support for replica-
tion, system growth and disk obsolescence, and totally de-
centralized lookup,RUSHenables the construction of high-
performance, highly parallel object-based storage systems.
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