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ABS TRACT 

The reliability and availability of replicated data can often 
be increased by generating new replicas when some 
become inaccessible due to system malfunctions. This 
technique has been used in the Regeneration Algorithm, a 
replica control protocol based on file regeneration. 

The read and write availabilities of replicated data 
managed by the Regeneration Algorithm are evaluated and 
two new regeneration protocols are presented that over- 
come some of its limitations. The first protocol combines 
regeneration and the Available Copy approach to improve 
availability of replicated data. The second combines regen- 
eration and the Dynamic Voting approach to guarantee 
data consistency in the presence of network partitions while 
maintaining a high availability. Expressions for the availa- 
bilities of replicated data managed by both protocols are 
derived and found to improve significantly on the availability 
achieved using extant consistency protocols. 
Keywords: file consistency, fault-tolerant systems, repli- 
cated files, mutual exclusion, performance evaluation. 

1. INTRODUCTION 
Recent advances in computer network technology and 
reductions in the cost of storage media have made the 
replication of important data on several sites of a local area 
network a cost-effective proposition. The management of 
replicated data is a cumbersome task, complicated by site 
failures and network partitions that may introduce incon- 
sistencies between replicas of the same object. Special 
consistency control protocols have been devised to insure 
that the users of the replicated data are always provided 
with a single consistent view of all replicated objects. 

A number of these protocols have been described in 
the literature [l-7,12-181. Most of these protocols operate 
by disallowing accesses to the replicated data when some 
conditions on the states of the replicas are not met. 

Pu [15-171 has recently proposed a consistency con- 
trol protocol taking a more active approach. The Regen- 
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eration Algorithm regenerates new replicas when it detects 
that one or more of the replicas have become inaccessible 
due to system malfunctions. While reads are allowed 
under their protocol so long as one current replica of the 
object remains accessible, writes are disabled if fewer than 
the initial number of replicas are accessible and there are 
not enough spares for the missing replicas to be regen- 
erated. No provisions are made by the algorithm for 
enforcing mutual exclusion or for recovering from a total 
failure. 

The concept of regeneration is appealing because 
replicas can usually be generated at a much faster rate 
than sites can be repaired. Previously, a similar idea had 
been used in a modified majority consistency voting proto- 
col proposed by one of the authors [13]. The protocol 
applies to replicated data consisting of n full replicas and m 
witnesses. Witnesses have most of the attributes of full 
replicas, contain all of the file state information and partici- 
pate like full replicas in the collection of quorums but hold 
no data [12]. They can be easily converted into full replicas 
without requiring any adjustment of the read and write 
quorums. Unlike the Regeneration Algorithm, this protocol 
provides mutual exclusion and guarantees file consistency 
in the presence of network partitions. The decision to use 
static quorums in the protocols did not allow changes in the 
total number of replicas and witnesses. 

Although the Regeneration Algorithm does not suffer 
from this lack of flexibility, it has its own limitations. As Noe 
and Andreassian suggested in their study of the effective- 
ness of replication [lo], write availabilities could be 
significantly improved by applying the philosophy of the 
Available Copy protocol [2] to the Regeneration Algorithm. 
Under their proposal, missing replicas would be replaced 
by new replicas whenever feasible but writes would con- 
tinue to be allowed even if some or all of the missing repli- 
cas could not be regenerated. 

Another limitation of the Regeneration Algorithm is its 
inability to guarantee data consistency in the presence of 
network partitions. Many local area networks consist of 
several carrier-sense segments or token rings linked by 
selective repeaters or gateway sites. Since repeaters and 
gateways can fail without causing a total network failure, 
special merging protocols are needed to allow replicas to 
be spread over more than one segment or token ring. 

The read and write availabilities of replicated data 
managed by the Regeneration Algorithm are evaluated and 
two new protocols that overcome some of its limitations are 
presented. The first proposal combines regeneration and 
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and improve the <avilability of replicated objects. Thk 
second proposal combines regeneration and the Dynamic 
Voting approach. Unlike other regeneration protocols, it 
applies to environments where network failures are likely to 
occur as it guarantees data consistency in the presence of 
network partitions. 

Section 2 contains an analysis of the performance of 
the Regeneration Algorithm. Section 3 discusses the 
benefits of combining regeneration and the Available Copy 
approach. Section 4 explains how mutual exclusion can be 
enforced by combining regeneration with Dynamic Voting. 
Section 5 discusses the operation costs of regeneration 
protocols and discusses strategies to reduce them. Finally, 
Section 6 has our conclusions. 

2. AVAILABILITY ANALYSIS OF REGENERATION 
A replicated object managed by the Regeneration Algo- 
rithm consists of m sites holding replicas of the data and n 
spare sites on which new replicas can be installed when 
the algorithm detects that one or more of the current repli- 
cas have become inaccessible. Spare sites and sites hold- 
ing replicas may fail; we assume that failed sites are even- 
tually repaired. 

There are three cases for the Regeneration Algo- 
riihm: read, write and recovery. A read operation requires 
that there be at least one operational site. If there is, then 
the read can take place from that site. The write operation 
requires that there be m replicas of the object to record the 
write. Should this not be the case, enough replicas must 
be regenerated to bring the number of replicas back to its 
initial value before the write can complete. Suppose that k 
sites holding replicas have failed, then there must be at 
least k spares available. These spares would also need to 
have enough space in their secondary store to accommo- 
date the new replicas of the object. If there are not enough 
spares or space then the write will fail. 

The recovery operation allows recovering sites to 
rejoin the replication if the replica held at that site is up-to- 
date. If it is not, then the recovering replica is discarded. 
Note that a site will never recover to find that it is up-to-date 
and there are already m replicas. This is because regen- 
eration is only done on write, which invalidates all failed 
replicas. In the event of total failure, the algorithm specifies 
that the resource will be re-loaded manually. We have 
chosen to wait for the last replica to fail to recover since this 
removes unpredictable human behavior from the analysis. 
We must wait for n + l  sites to recover since there are 
always m up-to-date sites, and in the worst case n spares 
could recover before any of the failed replicas have 
recovered. 

We assume that the replicas of the replicated data 
object reside on distinct sites of a computer network. When 
a site fails, a repair process is immediately initiated. 
Should several sites fail, the repair process will be per- 
formed in parallel on these failed sites. Since the replica- 
tion algorithm does not operate correctly in the presence of 
partitions, we assume that the communications network 
linking the sites cannot fail. 

We assume that individual site failures, individual site 
repairs and writes are independent events distributed 
according to exponential laws. We will denote by il the 
individual site failure rate, by p the individual site repair 
rate, and by A the write rate. Since regeneration is only 

replicated object. 
It has long been established that the exponential 

model is robust, and although the results obtained are 
approximate, that it provides a good estimate of system 
behavior. Our assumption that failures are independent 
events is justified by our experience with our local network. 
Since the systems are loosely coupled, the failure of a sin- 
gle site does not affect the operation of the other sites. 

For the sake of simplicity, we will assume that spare 
sites always have enough free space in secondary store to 
accommodate new replicas and that no regeneration will 
ever fail because of space constraints. This is not a restric- 
tion on the protocols, but a simplifying assumption for the 
sake of the analysis. 

The availability Ao of a replicated data object with 
respect to a given operation o will be defined as the limiting 
value of the probability p,(q that the operation could be 
performed successfully on the object at time t for t going to 
infinity: 

I 

Ao = lim p,(t) 
I+- 

The behavior of a replicated object with m replicas 
and n spares managed by the Regeneration Algorithm can 
be represented by the Markov chain shown in figure 1. 
There are five classes of state transitions: the failure of 
replicas, the failure of spares, the repair of replicas, the 
repair of spares and regeneration. The failure of a replica 
is indicated by a transition from left to right, from state (i, j )  
to ( i - I ,  j ) ,  i > O ,  with rate i i l .  The failure of a spare is 
similarly modeled by a transition from top to bottom, from a 
state (i, j )  to ( i ,  j - 1  ), j>O,  with rate j i l .  

The repair of a replica is indicated by a transition 
from right to left, from state (i- 1, j )  to ( i ,  j ) ,  with rate 
( m - i + l ) p .  Such a transition is possible since we know 
that the replica must be up-todate, since a write would 
have caused a regeneration to occur and put the system in 
state ( m ,  k). Failures can occur following a write, in which 
case those failed replicas become out-of-date and are 
transformed into spares. The repair of a spare is indicated 
by a transition from bottom to top, from state ( i ,  j - 1 )  to 
( i ,  j ) ,  with rate (n -  j +  1)p. 

The algorithm specifies that a regeneration take 
place when there are only m - k replicas available, k >O, 
and there are at least k spares. A regeneration is modeled 
by a transition from state ( m - k ,  j )  to ( m ,  j - k ) ,  j r k ,  with 
rate A. When a write operation occurs with rate A, and 
there are fewer than m replicas, a regeneration will take 
place. 

Let pij denote the probability that the object is in state 
(i, j ) .  The read availability of a replicated object with m 
replicas and n spare sites will be given by 

m n  

id ]=a 
A h  (m, n )  = C, Pij 

and the write availability is given by 
f m  n 

1 
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Figure 1 : State Transition Diagram for Regeneration 

As the system' has exactly (m + l ) (n+  1) distinct states, 
these expressions can be represented as quotients of 
polynomials of maximum degree (m+ l ) ( n + l )  in 
A ,  p,  and x .  These quotients quickly become too com- 
plex to be manipulated other than by symbolic manipula- 
tion programs. For instance, we have for two replicas and 
a single spare: 

A h P ,  I ) =  
2+ 1 o p  + I 8p2 + I 2p3 +2e +7p e + p 2 e  

(1 +p13 (2+4p + 2p2 +2e +p e) 
withp=A / p  and e=z /p. When m>n, any system state 
in which the total number of accessible replicas and 
spares i+ j is greater than or equal to m contains at least 
one up-todate replica. The write availability of the data is 
then given by the formula for m-out-of-(m + n) sites: 

ifk 
k=O 

A W n ,  n)= 
(1 +p)m+" 

Figures 2 and 3 display respectively the read and 
write availabilities of replicated data with two replicas and 
one, two or three spares for values of the failure-rate-to- 
repair-rate ratio p varying between 0 and 0.5. We 
assume for both graphs that the regeneration rate z is 
equal to ten times the site repair rate. In our experience, 
having x be ten times the site repair rate is a conservative 
estimate. For example, if site repairs take an average of 
an hour, regenerations would take six minutes. Twenty 
megabytes of data can easily be transferred over a local 
area network in this period. Figure 2 demonstrates the 
excellent read availability of replicated data managed by 
the Regeneration Algorithm while figure 3 displays a 
lower performance for write availability. 

As figures 4 and 5 indicate, this difference is even 
more accentuated when the replicated data have three 
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Figure 2: Read Availabilities for Two Replicas 
and Various Numbers of Spares 

replicas. Read availabilities remain extremely high even 
for large values of p while write availabilities remain 
mediocre for one or even two spares, falling well below 
the availabilities of replicated data with three replicas and 
no spares managed by an Available Copy protocol. 
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Figure 3: Write Availabilities for Two Replicas 
and Various Numbers of Spares 
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Figure 4: Read Availabilities for Three Replicas 
and Various Numbers of Spares 

3. REGENERATIVE AVAILABLE COPY 
When network partitions are known to be impossible, 
Available Copy protocols provide a simple means for 
maintaining data consistency. These protocols are based 
on the observation that replicas that have participated in 
all writes necessarily hold the most recent version of the 
data. The object remains available so long as at least 
one of these replicas remains accessible. 

The write rule for an Available Copy protocol is 
extremely simple: write to all available copies. Since all 
available copies receive each write, they are kept in 

' ' 
\\ 

I 
I I I I I 

0 .I .2 .3 .4 .5 
Failure to repair ratio 

and Various Numbers of Spares 
Figure 5: Write Availabilities for Three Replicas 

a consistent state: data can then be read from any avail- 
able copy. If there is a replica of the data on the local site, 
then the read operation can be accomplished locally, 
avoiding any network traffic. 

When a site recovers following a failure, if there is 
another site which holds the most recent version of the 
data then the recovering site can repair immediately. In 
the event of total failure it is not known by the recovering 
sites which of them hold the most recent version of the 
data until the last site to fail can be found. In order to 
speed recovery, it is desirable to ascertain as quickly as 
possible the last site, or set of sites, that failed. 

There are several advantages in combining the 
regeneration and Available Copy approaches. As noted 
by Noe and Andreassian [IO], it would considerably 
improve on write availability by allowing writes as long as 
one replica of the data remains accessible. Recoveries 
from total failures would also be accelerated as the proto- 
col would keep track of replica states. 

The behavior of a replicated object with m replicas 
and n spares managed by an Available Copies protocol 
with regeneration can be represented by a Markov chain 
organized as a series of n + 1 layers. As shown on figure 
6, each horizontal plane has 2m states having the same 
number of available spares but different numbers of avail- 
able replicas. 

Failures and recoveries in a layer occur exactly as 
they would in an Available Copy model [9]: un- 
complemented states represent configurations where the 
replicated object has from m to zero available replicas 
while complemented states represent configurations 
where the last replica that failed remains unavailable and 
some of the sites holding other replicas have recovered. 
The failure of a replica is indicated by a transition from left 
to right, from state ( i ,  j )  to ( i -  1, j ) ,  i > O ,  with rate i A .  A 
failure can also occur from back to front, from state ( 1, j )  
to (0, j ) .  
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Figure 6: State-Transition Diagram for Available Copy with Regeneration 
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Figure 7: Availabilities for Two Available Copies 

Following such a failure the system is unavailable. 
The recovery of a replica is indicated by transition from 
right to left, from state ( i -1 ,  j) to ( i ,  j ) ,  with rate 
( m - i + l ) p .  Recoveries can also occur from front to 
back, from state ( i- 1, j) to ( i, j ) ,  or from state (0, j )  to 
(1, I ) ,  with rate p. Such a transition indicates the 
recovery of the last site to fail. 

The activity of spares is modeled by the transitions 
between layers. The failure of a spare is indicated by a 
transition from top to bottom, from a state ( i ,  j )  to 
( i ,  j -1 ), j.0, with rate jA.. The recovery of a spare is 
similarly modeled by a transition from bottom to top, from 
a state ( i ,  j -1 ) to  ( i ,  j ) ,  with rate ( n - j +  1)p. 

I I I I I I 
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Figure 8: Availabilities for Three Available Copies 
with Regeneration and Various Numbers 
of Spares 

The regeneration process for Available Copy with 
regeneration is modeled by a transition from state 
(m-k, j )  to ( m - k + / ,  j - / ) ,  /=min(k, j). The Available 
Copy protocol attempts to regenerate as many replicas as 
possible, up to m, but, unlike the pure regeneration algo- 
rithm, is satisfied if it cannot regenerate all replicas. 

Since the replicated data remain available as long 
as one replica is accessible, the read and write availabili- 
ties of the replicated object are identical and are given by 

m n  

i=l j=O 
A A C R ( ~ ,  n ) = z  Z Pij 

where pi, is the probability of the replicated object being in 
state ( i, j ) .  As the system has exactly 2m (n + 1) states, 
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Figure 9: State-Transition Diagram for Dynamic Voting with Regeneration 

this expression can be represented as a quotient of two 
polynomials of maximum degree 2m (n+ 1) in A, and n. 

Figures 7 and 8 display the availabilities of repli- 
cated data with respectively two and three available 
copies for various numbers of spares. We assume for 
both figures that the regeneration rate x is equal to ten 
times the site repair rate. 

When no spare sites are included, we have the 
same availability as a regular Available Copy protocol. 
The addition of spare sites to the configuration has the 
effect of accelerating partial recoveries when replicas can 
be generated faster than sites can be repaired. Since the 
protocol keeps track of replica states, recovery from total 
failure only requires the recovery of the sites belonging to 
the last set of available replicas. 

This protocol does have limitations. I Since repli- 
cated data now have the same read and write availabili- 
ties, the higher write availabilities obtained with this proto- 
col were achieved at the expense of lower read availabili- 
ties. Allowing writes when only one replica of the object 
remains available significantly increases the probability of 
irrecoverable failures, such as corruption of the only up- 
to-date replica. To achieve a higher level of protection in 
environments where this could be a problem, writes could 
be required to involve some minimum threshold of repli- 
cas m’with 1 cm’cm. 

4. REGENERATIVE DYNAMIC VOTING 
Large local-area networks often consist of several 
carrier-sense segments or token rings linked by repeaters 
or gateways. Since repeaters and gateways may fail 
without halting the operation of the entire communication 
network, these networks are susceptible to network parti- 
tions just as long-haul point-to-point networks are. Net- 
work partitions pose a special threat to replicated data 
since having replicas on both sides of a partition could 
allow the replicated data to be left in an inconsistent state. 
Although various merging algorithms have been 
developed to attempt to reconcile these inconsistencies 
when the partition is repaired, the safest solution to the 
problem is to adopt a consistency protocol based on 

quorum consensus. 
Majority Consensus Voting [4,5] is the best known 

example of such a protocol. As it is a static protocol, it 
has the major disadvantage of only providing reliability 
and availability figures well below those provided by 
dynamic protocols. 

Unlike Majority Consensus Voting, Dynamic Voting 
protocols [3] automatically adjust the necessary quorum 
of replicas required for an access operation to changes in 
the state of the network. Whenever some replicas of an 
object become inaccessible either because of a site 
failure or a network partition, the protocol checks if 
enough replicas remain available to satisfy the current 
quorums. If this is the case, these replicas constitute a 
new majority block and a new quorum is computed. To 
enforce mutual exclusion, recovered replicas that do not 
belong to the current majority block will not be allowed to 
participate in elections so long as they have not been 
reintegrated. To keep track of the status of the replicated 
object, every replica will maintain some state information. 
This information will include a verslbn number identifying 
the last write recorded by the replica and either a partition 
vector [3] or both a partition set and an operation number 
[14] identifying the replicas belonging to the current 
majority block. These algorithms perform identically as 
long as the access rate is sufficient to keep the partition 
sets up-to-date. 

The state-transition-rate diagram for Dynamic Vot- 
ing with m replicas and n spare sites is shown in figure 9. 
We assume that network partitions are possible but have 
a negligible probability. This assumption keeps the com- 
parison between the three protocols equitable and further 
simplifies our models. Since individual site failures and 
repairs are the only likely events, the diagram is very simi- 
lar to the diagram we previously obtained for Available 
Copy. The two protocols behave similarly so long as two 
or more replicas remain accessible. When one of the two 
last replicas becomes inaccessible, the protocol has no 
way to ascertain if this results from an unlikely network 
partition or from a more likely site failure. To enforce 
mutual exclusion and to protect against network failures, 
the protocol then relies on a tie-breaking rule [7] and only 
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allows the data to remain available if the site holding the 
last accessible replica precedes the site holding the 
replica that became inaccessible according to some arbi- 
trary static ordering of the sites in the network. All states 
(2, j )  with j =  1, . . . , n have two outgoing failure transi- 
tions instead of one. The first transition, from (2, j ) ,  with 
rate A goes to state (1, j )  and corresponds to the situa- 
tion where the site holding the last accessible replica pre- 
cedes the site holding the replica that became inaccessi- 
ble. The second transition with rate A goes to state (T, j )  
and corresponds to the the other case. 

As was the case for the protocol combining the 
Available Copy and the regeneration approaches, the 
read and write availabilities of the replicated data are 
identical and are given by 

m n  

1=1 j=O 
A D V R ( ~ ,  n)=C CPij 

where pij is the probability of the replicated object being in 
state ( i ,  j ) .  As the system has exactly 2m (n+ 1) states, 
this expression can be represented as a quotient of two 
polynomials of maximum degree 2m (n+ 1) in A, p and K. 
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Figure 10: Availabilities for Dynamic Voting with 
Regeneration and Various Numbers 
of Spares 

Regeneration only has the effect of accelerating 
partial recoveries and does not modify quorum size. As a 
result, our Dynamic Voting protocol with regeneration 
requires a minimum of three replicas to operate effec- 
tively. Figure 10 displays the availabilities of replicated 
data with three replicas and various numbers of spares 
between zero and infinity. As we have done before, we 
assume that the regeneration rate K is equal to ten times 
the site repair rate. In this case as well, the benefits of 
regeneration are clearly visible: adding even one single 
spare site to the three replicas has an immediate 
beneficial effect on the availability of the replicated data. 
Increasing the number of spares has a similar effect 
although the benefit of adding one extra spare tapers off 
more quickly than for our Available Copy protocol with 
regeneration. 

5. THE COST OF REGENERATION PROTOCOLS 
An analysis of regeneration-based protocols cannot be 
complete without a brief discussion of their operating 
costs. Two types of costs need to be considered here, 
namely, the costs of using the protocols under normal 
operating conditions and the costs of regenerating failed 
replicas. 

In the absence of failures, Available Copy with 
Regeneration and Dynamic Voting with Regeneration 
operate exactly as conventional Available Copy or 
Dynamic Voting protocols do. As a result, they incur the 
same costs. Efficient implementations of Available Copy 
[9] and Dynamic Voting Protocols [I41 have been pro- 
posed. These implementations would require very few 
changes to accommodate protocols with regeneration. 

The perceived high costs of generating new repli- 
cas probably constitute the greatest obstacle preventing a 
wider use of regeneration-based protocols. It is indeed 
true that frequent regenerations of large files can 
unnecessarily slow writes while overtaxing the network 
bandwidth. However, the true impact of this phenomenon 
on the system performance must be assessed from a 
realistic perspective. Regenerations can only occur after 
one or more replicas have become inaccessible. In the 
absence of network failures, a replicated object will never 
regenerate at a higher rate than the combined failure 
rates of its replicas. Therefore, regenerations will remain 
infrequent events in most installations. 
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Figure 11 : Availabilities for Three Available Copies 
with Mitigated Regeneration 

However, there are a significant number of comput- 
ing environments experiencing a relatively high number of 
site failures. It is often the case that most of these 
failures result from software errors. Unlike failures result- 
ing from hardware malfunctions, software failures only 
require a system restart. This procedure can be per- 
formed automatically in most installations and typically 
requires from ten to twenty minutes [14]. A significant 
number of regenerations can be avoided by waiting for a 
fixed time interval in the same range before initiating the 
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regeneration of a replica that has just become unavail- 
able. This temporization strategy would have very little 
impact on the availability of the replicated data as long as 
the rate at which failed replicas are regenerated continues 
to remain higher than their overall repair rate. 

Another possible approach is to wait until the 
number of accessible replicas falls below some threshold 
m” <m before initiating any regeneration. For instance, 
such mitigated regeneration protocols would only regen- 
erate when less than three of the five original replicas of 
an object remain available. Figure 11 compares the avai- 
lability of mitigated and unmitigated Available Copy proto- 
cols with regeneration with three replicas. Dashed curves 
reflect the availabilities obtained using unmitigated regen- 
eration while continuous curves reflect the availabilities 
obtained when one replica is regenerated every time a 
single replica remains available. As one can see, the 
mitigated protocol performs nearly as well as the protocol 
attempting to maintain three available replicas under all 
circumstances. 

A third method for limiting the cost of regeneration 
applies only to Dynamic Voting protocols with regenera- 
tion. It consists of regenerating witnesses instead of full 
replicas. Witnesses are inexpensive to regenerate as 
they contain only state information [12]. A similar idea has 
recently been proposed by van Rennesse and Tanen- 
baum in the context of voting protocols that take into 
account the topology of the network on which the replicas 
reside [19]. 

6. CONCLUSIONS 
Regeneration attempts to increase the reliability and avai- 
lability of replicated data by generating new replicas when 
one or more of the replicas are missing. We have 
presented an availability analysis of the regeneration- 
based consistency control protocol that has been pro- 
posed by Pu [15-171. We have also presented two regen- 
eration protocols overcoming some of the limitations of 
that scheme. Our first protocol combines regeneration 
and the Available Copies approach to improve on the 
availability of replicated data. Like the original Regenera- 
tion Algorithm, it applies to environments where network 
partitions are impossible. Our second protocol combines 
regeneration and the Dynamic Voting approach to 
guarantee data consistency in the presence of network 
partitions while maintaining high availability. The availa- 
bilities of replicated data managed by both protocols were 
derived and found to improve significantly on the write 
availabilities provided by extant consistency protocols. 
Several techniques to reduce the costs of frequently 
regenerating large data objects were also discussed. 

We found the Available Copy protocol with regen- 
eration to perform better than Pu’s Regeneration Algo- 
rithm and all Available Copy protocols not including 
regeneration. We hope that architects of systems imple- 
menting replicated objects will consider Available Copy 
with regeneration as the consistency protocol of choice 
for environments where network partitions are known to 
be impossible. Dynamic Voting with regeneration extends 
the benefits of regeneration to environments where net- 
work partitions are possible; it should be a prime con- 
tender in such environments. 

Further work is still needed to assess the network 
traffic overhead resulting from regeneration, to estimate 
its additional storage costs, and to evaluate the perfor- 

mance of mitigated protocols that would only regenerate a 
fraction of the initial number of replicas. The applicability 
of regeneration to other consistency protocols should also 
be investigated; block-level protocols and protocols using 
witnesses are prime candidates for regeneration since the 
objects managed are small. 
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