
Regeneration Protocols for Replicated Objects

Darrell D. E. Long' Jehan-Franwis Pirig

Computer Systems Research Group
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, California 92093

ABS TRACT

The reliability and availability of replicated data can often
be increased by generating new replicas when some
become inaccessible due to system malfunctions. This
technique has been used in the Regeneration Algorithm, a
replica control protocol based on file regeneration.

The read and write availabilities of replicated data
managed by the Regeneration Algorithm are evaluated and
two new regeneration protocols are presented that over-
come some of its limitations. The first protocol combines
regeneration and the Available Copy approach to improve
availability of replicated data. The second combines regen-
eration and the Dynamic Voting approach to guarantee
data consistency in the presence of network partitions while
maintaining a high availability. Expressions for the availa-
bilities of replicated data managed by both protocols are
derived and found to improve significantly on the availability
achieved using extant consistency protocols.
Keywords: file consistency, fault-tolerant systems, repli-
cated files, mutual exclusion, performance evaluation.

1. INTRODUCTION
Recent advances in computer network technology and
reductions in the cost of storage media have made the
replication of important data on several sites of a local area
network a cost-effective proposition. The management of
replicated data is a cumbersome task, complicated by site
failures and network partitions that may introduce incon-
sistencies between replicas of the same object. Special
consistency control protocols have been devised to insure
that the users of the replicated data are always provided
with a single consistent view of all replicated objects.

A number of these protocols have been described in
the literature [l-7,12-181. Most of these protocols operate
by disallowing accesses to the replicated data when some
conditions on the states of the replicas are not met.

Pu [15-171 has recently proposed a consistency con-
trol protocol taking a more active approach. The Regen-

This work was supported in part by a grant from the NCR Corporation
and the University of California MICRO program. ' Computer and Information Sciences, University of California, Santa
Cruz. CA 95064.
* Department of Computer Science, University of Houston, Houston,
TX 77004.

eration Algorithm regenerates new replicas when it detects
that one or more of the replicas have become inaccessible
due to system malfunctions. While reads are allowed
under their protocol so long as one current replica of the
object remains accessible, writes are disabled if fewer than
the initial number of replicas are accessible and there are
not enough spares for the missing replicas to be regen-
erated. No provisions are made by the algorithm for
enforcing mutual exclusion or for recovering from a total
failure.

The concept of regeneration is appealing because
replicas can usually be generated at a much faster rate
than sites can be repaired. Previously, a similar idea had
been used in a modified majority consistency voting proto-
col proposed by one of the authors [13]. The protocol
applies to replicated data consisting of n full replicas and m
witnesses. Witnesses have most of the attributes of full
replicas, contain all of the file state information and partici-
pate like full replicas in the collection of quorums but hold
no data [12]. They can be easily converted into full replicas
without requiring any adjustment of the read and write
quorums. Unlike the Regeneration Algorithm, this protocol
provides mutual exclusion and guarantees file consistency
in the presence of network partitions. The decision to use
static quorums in the protocols did not allow changes in the
total number of replicas and witnesses.

Although the Regeneration Algorithm does not suffer
from this lack of flexibility, it has its own limitations. As Noe
and Andreassian suggested in their study of the effective-
ness of replication [lo], write availabilities could be
significantly improved by applying the philosophy of the
Available Copy protocol [2] to the Regeneration Algorithm.
Under their proposal, missing replicas would be replaced
by new replicas whenever feasible but writes would con-
tinue to be allowed even if some or all of the missing repli-
cas could not be regenerated.

Another limitation of the Regeneration Algorithm is its
inability to guarantee data consistency in the presence of
network partitions. Many local area networks consist of
several carrier-sense segments or token rings linked by
selective repeaters or gateway sites. Since repeaters and
gateways can fail without causing a total network failure,
special merging protocols are needed to allow replicas to
be spread over more than one segment or token ring.

The read and write availabilities of replicated data
managed by the Regeneration Algorithm are evaluated and
two new protocols that overcome some of its limitations are
presented. The first proposal combines regeneration and

538
CH2695-5/89/oooO/0538$01.~ 0 1989 IEEE

and improve the <avilability of replicated objects. Thk
second proposal combines regeneration and the Dynamic
Voting approach. Unlike other regeneration protocols, it
applies to environments where network failures are likely to
occur as it guarantees data consistency in the presence of
network partitions.

Section 2 contains an analysis of the performance of
the Regeneration Algorithm. Section 3 discusses the
benefits of combining regeneration and the Available Copy
approach. Section 4 explains how mutual exclusion can be
enforced by combining regeneration with Dynamic Voting.
Section 5 discusses the operation costs of regeneration
protocols and discusses strategies to reduce them. Finally,
Section 6 has our conclusions.

2. AVAILABILITY ANALYSIS OF REGENERATION
A replicated object managed by the Regeneration Algo-
rithm consists of m sites holding replicas of the data and n
spare sites on which new replicas can be installed when
the algorithm detects that one or more of the current repli-
cas have become inaccessible. Spare sites and sites hold-
ing replicas may fail; we assume that failed sites are even-
tually repaired.

There are three cases for the Regeneration Algo-
riihm: read, write and recovery. A read operation requires
that there be at least one operational site. If there is, then
the read can take place from that site. The write operation
requires that there be m replicas of the object to record the
write. Should this not be the case, enough replicas must
be regenerated to bring the number of replicas back to its
initial value before the write can complete. Suppose that k
sites holding replicas have failed, then there must be at
least k spares available. These spares would also need to
have enough space in their secondary store to accommo-
date the new replicas of the object. If there are not enough
spares or space then the write will fail.

The recovery operation allows recovering sites to
rejoin the replication if the replica held at that site is up-to-
date. If it is not, then the recovering replica is discarded.
Note that a site will never recover to find that it is up-to-date
and there are already m replicas. This is because regen-
eration is only done on write, which invalidates all failed
replicas. In the event of total failure, the algorithm specifies
that the resource will be re-loaded manually. We have
chosen to wait for the last replica to fail to recover since this
removes unpredictable human behavior from the analysis.
We must wait for n + l sites to recover since there are
always m up-to-date sites, and in the worst case n spares
could recover before any of the failed replicas have
recovered.

We assume that the replicas of the replicated data
object reside on distinct sites of a computer network. When
a site fails, a repair process is immediately initiated.
Should several sites fail, the repair process will be per-
formed in parallel on these failed sites. Since the replica-
tion algorithm does not operate correctly in the presence of
partitions, we assume that the communications network
linking the sites cannot fail.

We assume that individual site failures, individual site
repairs and writes are independent events distributed
according to exponential laws. We will denote by il the
individual site failure rate, by p the individual site repair
rate, and by A the write rate. Since regeneration is only

replicated object.
It has long been established that the exponential

model is robust, and although the results obtained are
approximate, that it provides a good estimate of system
behavior. Our assumption that failures are independent
events is justified by our experience with our local network.
Since the systems are loosely coupled, the failure of a sin-
gle site does not affect the operation of the other sites.

For the sake of simplicity, we will assume that spare
sites always have enough free space in secondary store to
accommodate new replicas and that no regeneration will
ever fail because of space constraints. This is not a restric-
tion on the protocols, but a simplifying assumption for the
sake of the analysis.

The availability Ao of a replicated data object with
respect to a given operation o will be defined as the limiting
value of the probability p,(q that the operation could be
performed successfully on the object at time t for t going to
infinity:

I

Ao = lim p,(t)
I+-

The behavior of a replicated object with m replicas
and n spares managed by the Regeneration Algorithm can
be represented by the Markov chain shown in figure 1.
There are five classes of state transitions: the failure of
replicas, the failure of spares, the repair of replicas, the
repair of spares and regeneration. The failure of a replica
is indicated by a transition from left to right, from state (i, j)
to (i - I , j) , i > O , with rate i i l . The failure of a spare is
similarly modeled by a transition from top to bottom, from a
state (i, j) to (i , j - 1), j>O, with rate j i l .

The repair of a replica is indicated by a transition
from right to left, from state (i- 1, j) to (i , j) , with rate
(m - i + l) p . Such a transition is possible since we know
that the replica must be up-todate, since a write would
have caused a regeneration to occur and put the system in
state (m , k). Failures can occur following a write, in which
case those failed replicas become out-of-date and are
transformed into spares. The repair of a spare is indicated
by a transition from bottom to top, from state (i , j - 1) to
(i , j) , with rate (n - j + 1)p.

The algorithm specifies that a regeneration take
place when there are only m - k replicas available, k >O,
and there are at least k spares. A regeneration is modeled
by a transition from state (m - k , j) to (m , j - k) , j r k , with
rate A. When a write operation occurs with rate A, and
there are fewer than m replicas, a regeneration will take
place.

Let pij denote the probability that the object is in state
(i, j) . The read availability of a replicated object with m
replicas and n spare sites will be given by

m n

id]=a
A h (m, n) = C, Pij

and the write availability is given by
f m n

1

539

Figure 1 : State Transition Diagram for Regeneration

As the system' has exactly (m + l) (n+ 1) distinct states,
these expressions can be represented as quotients of
polynomials of maximum degree (m+ l) (n + l) in
A , p, and x . These quotients quickly become too com-
plex to be manipulated other than by symbolic manipula-
tion programs. For instance, we have for two replicas and
a single spare:

A h P , I) =
2+ 1 o p + I 8p2 + I 2p3 +2e +7p e + p 2 e

(1 +p13 (2+4p + 2p2 +2e +p e)
withp=A / p and e=z /p. When m>n, any system state
in which the total number of accessible replicas and
spares i+ j is greater than or equal to m contains at least
one up-todate replica. The write availability of the data is
then given by the formula for m-out-of-(m + n) sites:

ifk
k=O

A W n , n)=
(1 +p)m+"

Figures 2 and 3 display respectively the read and
write availabilities of replicated data with two replicas and
one, two or three spares for values of the failure-rate-to-
repair-rate ratio p varying between 0 and 0.5. We
assume for both graphs that the regeneration rate z is
equal to ten times the site repair rate. In our experience,
having x be ten times the site repair rate is a conservative
estimate. For example, if site repairs take an average of
an hour, regenerations would take six minutes. Twenty
megabytes of data can easily be transferred over a local
area network in this period. Figure 2 demonstrates the
excellent read availability of replicated data managed by
the Regeneration Algorithm while figure 3 displays a
lower performance for write availability.

As figures 4 and 5 indicate, this difference is even
more accentuated when the replicated data have three

1

A(2) .95

\
\
\

\ 1
I

I I I I I
0 .1 .2 .3 .4 .5

Failure to repair ratio

Figure 2: Read Availabilities for Two Replicas
and Various Numbers of Spares

replicas. Read availabilities remain extremely high even
for large values of p while write availabilities remain
mediocre for one or even two spares, falling well below
the availabilities of replicated data with three replicas and
no spares managed by an Available Copy protocol.

1 -

.95 -

.9 -

.a5 -

.8 -

.75 -

I

\'
" 1

I
I I I I I

0 .I .2 .3 .4 .5
Failure to repair ratio

Figure 3: Write Availabilities for Two Replicas
and Various Numbers of Spares

\ ...

' , '. . ..\

' \
\ .

\ ..
\ ..,
\ .. 2

' 1

0 .I .2 .3 .4 .5
Failure to repair ratio

Figure 4: Read Availabilities for Three Replicas
and Various Numbers of Spares

3. REGENERATIVE AVAILABLE COPY
When network partitions are known to be impossible,
Available Copy protocols provide a simple means for
maintaining data consistency. These protocols are based
on the observation that replicas that have participated in
all writes necessarily hold the most recent version of the
data. The object remains available so long as at least
one of these replicas remains accessible.

The write rule for an Available Copy protocol is
extremely simple: write to all available copies. Since all
available copies receive each write, they are kept in

' '
\\

I
I I I I I

0 .I .2 .3 .4 .5
Failure to repair ratio

and Various Numbers of Spares
Figure 5: Write Availabilities for Three Replicas

a consistent state: data can then be read from any avail-
able copy. If there is a replica of the data on the local site,
then the read operation can be accomplished locally,
avoiding any network traffic.

When a site recovers following a failure, if there is
another site which holds the most recent version of the
data then the recovering site can repair immediately. In
the event of total failure it is not known by the recovering
sites which of them hold the most recent version of the
data until the last site to fail can be found. In order to
speed recovery, it is desirable to ascertain as quickly as
possible the last site, or set of sites, that failed.

There are several advantages in combining the
regeneration and Available Copy approaches. As noted
by Noe and Andreassian [IO], it would considerably
improve on write availability by allowing writes as long as
one replica of the data remains accessible. Recoveries
from total failures would also be accelerated as the proto-
col would keep track of replica states.

The behavior of a replicated object with m replicas
and n spares managed by an Available Copies protocol
with regeneration can be represented by a Markov chain
organized as a series of n + 1 layers. As shown on figure
6, each horizontal plane has 2m states having the same
number of available spares but different numbers of avail-
able replicas.

Failures and recoveries in a layer occur exactly as
they would in an Available Copy model [9]: un-
complemented states represent configurations where the
replicated object has from m to zero available replicas
while complemented states represent configurations
where the last replica that failed remains unavailable and
some of the sites holding other replicas have recovered.
The failure of a replica is indicated by a transition from left
to right, from state (i , j) to (i - 1, j) , i > O , with rate i A . A
failure can also occur from back to front, from state (1, j)
to (0, j) .

54 I

Figure 6: State-Transition Diagram for Available Copy with Regeneration

\

... 1 \ \

\
\
\

\ '
\

\
\ '
\ O

0 .1 .2 .3 .4 .5
Failure to repair ratio

with Regeneration and Various Numbers
of Spares

Figure 7: Availabilities for Two Available Copies

Following such a failure the system is unavailable.
The recovery of a replica is indicated by transition from
right to left, from state (i -1 , j) to (i , j) , with rate
(m - i + l) p . Recoveries can also occur from front to
back, from state (i- 1, j) to (i, j) , or from state (0, j) to
(1, I) , with rate p. Such a transition indicates the
recovery of the last site to fail.

The activity of spares is modeled by the transitions
between layers. The failure of a spare is indicated by a
transition from top to bottom, from a state (i , j) to
(i , j -1), j.0, with rate jA.. The recovery of a spare is
similarly modeled by a transition from bottom to top, from
a state (i , j -1) to (i , j) , with rate (n - j + 1)p.

I I I I I I
0 .1 .2 .3 .4 .5

Failure to repair ratio

Figure 8: Availabilities for Three Available Copies
with Regeneration and Various Numbers
of Spares

The regeneration process for Available Copy with
regeneration is modeled by a transition from state
(m-k, j) to (m - k + / , j - /) , /=min(k, j). The Available
Copy protocol attempts to regenerate as many replicas as
possible, up to m, but, unlike the pure regeneration algo-
rithm, is satisfied if it cannot regenerate all replicas.

Since the replicated data remain available as long
as one replica is accessible, the read and write availabili-
ties of the replicated object are identical and are given by

m n

i=l j=O
A A C R (~ , n) = z Z Pij

where pi, is the probability of the replicated object being in
state (i, j) . As the system has exactly 2m (n + 1) states,

542

Figure 9: State-Transition Diagram for Dynamic Voting with Regeneration

this expression can be represented as a quotient of two
polynomials of maximum degree 2m (n+ 1) in A, and n.

Figures 7 and 8 display the availabilities of repli-
cated data with respectively two and three available
copies for various numbers of spares. We assume for
both figures that the regeneration rate x is equal to ten
times the site repair rate.

When no spare sites are included, we have the
same availability as a regular Available Copy protocol.
The addition of spare sites to the configuration has the
effect of accelerating partial recoveries when replicas can
be generated faster than sites can be repaired. Since the
protocol keeps track of replica states, recovery from total
failure only requires the recovery of the sites belonging to
the last set of available replicas.

This protocol does have limitations. I Since repli-
cated data now have the same read and write availabili-
ties, the higher write availabilities obtained with this proto-
col were achieved at the expense of lower read availabili-
ties. Allowing writes when only one replica of the object
remains available significantly increases the probability of
irrecoverable failures, such as corruption of the only up-
to-date replica. To achieve a higher level of protection in
environments where this could be a problem, writes could
be required to involve some minimum threshold of repli-
cas m’with 1 cm’cm.

4. REGENERATIVE DYNAMIC VOTING
Large local-area networks often consist of several
carrier-sense segments or token rings linked by repeaters
or gateways. Since repeaters and gateways may fail
without halting the operation of the entire communication
network, these networks are susceptible to network parti-
tions just as long-haul point-to-point networks are. Net-
work partitions pose a special threat to replicated data
since having replicas on both sides of a partition could
allow the replicated data to be left in an inconsistent state.
Although various merging algorithms have been
developed to attempt to reconcile these inconsistencies
when the partition is repaired, the safest solution to the
problem is to adopt a consistency protocol based on

quorum consensus.
Majority Consensus Voting [4,5] is the best known

example of such a protocol. As it is a static protocol, it
has the major disadvantage of only providing reliability
and availability figures well below those provided by
dynamic protocols.

Unlike Majority Consensus Voting, Dynamic Voting
protocols [3] automatically adjust the necessary quorum
of replicas required for an access operation to changes in
the state of the network. Whenever some replicas of an
object become inaccessible either because of a site
failure or a network partition, the protocol checks if
enough replicas remain available to satisfy the current
quorums. If this is the case, these replicas constitute a
new majority block and a new quorum is computed. To
enforce mutual exclusion, recovered replicas that do not
belong to the current majority block will not be allowed to
participate in elections so long as they have not been
reintegrated. To keep track of the status of the replicated
object, every replica will maintain some state information.
This information will include a verslbn number identifying
the last write recorded by the replica and either a partition
vector [3] or both a partition set and an operation number
[14] identifying the replicas belonging to the current
majority block. These algorithms perform identically as
long as the access rate is sufficient to keep the partition
sets up-to-date.

The state-transition-rate diagram for Dynamic Vot-
ing with m replicas and n spare sites is shown in figure 9.
We assume that network partitions are possible but have
a negligible probability. This assumption keeps the com-
parison between the three protocols equitable and further
simplifies our models. Since individual site failures and
repairs are the only likely events, the diagram is very simi-
lar to the diagram we previously obtained for Available
Copy. The two protocols behave similarly so long as two
or more replicas remain accessible. When one of the two
last replicas becomes inaccessible, the protocol has no
way to ascertain if this results from an unlikely network
partition or from a more likely site failure. To enforce
mutual exclusion and to protect against network failures,
the protocol then relies on a tie-breaking rule [7] and only

543

allows the data to remain available if the site holding the
last accessible replica precedes the site holding the
replica that became inaccessible according to some arbi-
trary static ordering of the sites in the network. All states
(2, j) with j = 1, . . . , n have two outgoing failure transi-
tions instead of one. The first transition, from (2, j) , with
rate A goes to state (1, j) and corresponds to the situa-
tion where the site holding the last accessible replica pre-
cedes the site holding the replica that became inaccessi-
ble. The second transition with rate A goes to state (T, j)
and corresponds to the the other case.

As was the case for the protocol combining the
Available Copy and the regeneration approaches, the
read and write availabilities of the replicated data are
identical and are given by

m n

1=1 j=O
A D V R (~ , n)=C CPij

where pij is the probability of the replicated object being in
state (i , j) . As the system has exactly 2m (n+ 1) states,
this expression can be represented as a quotient of two
polynomials of maximum degree 2m (n+ 1) in A, p and K.

\
\

\
‘. 1 \

\

‘\

\
8

\ \ 0
.75

I I I I I I
0 .I .2 .3 .4 .5

Failure to repair ratio

Figure 10: Availabilities for Dynamic Voting with
Regeneration and Various Numbers
of Spares

Regeneration only has the effect of accelerating
partial recoveries and does not modify quorum size. As a
result, our Dynamic Voting protocol with regeneration
requires a minimum of three replicas to operate effec-
tively. Figure 10 displays the availabilities of replicated
data with three replicas and various numbers of spares
between zero and infinity. As we have done before, we
assume that the regeneration rate K is equal to ten times
the site repair rate. In this case as well, the benefits of
regeneration are clearly visible: adding even one single
spare site to the three replicas has an immediate
beneficial effect on the availability of the replicated data.
Increasing the number of spares has a similar effect
although the benefit of adding one extra spare tapers off
more quickly than for our Available Copy protocol with
regeneration.

5. THE COST OF REGENERATION PROTOCOLS
An analysis of regeneration-based protocols cannot be
complete without a brief discussion of their operating
costs. Two types of costs need to be considered here,
namely, the costs of using the protocols under normal
operating conditions and the costs of regenerating failed
replicas.

In the absence of failures, Available Copy with
Regeneration and Dynamic Voting with Regeneration
operate exactly as conventional Available Copy or
Dynamic Voting protocols do. As a result, they incur the
same costs. Efficient implementations of Available Copy
[9] and Dynamic Voting Protocols [I41 have been pro-
posed. These implementations would require very few
changes to accommodate protocols with regeneration.

The perceived high costs of generating new repli-
cas probably constitute the greatest obstacle preventing a
wider use of regeneration-based protocols. It is indeed
true that frequent regenerations of large files can
unnecessarily slow writes while overtaxing the network
bandwidth. However, the true impact of this phenomenon
on the system performance must be assessed from a
realistic perspective. Regenerations can only occur after
one or more replicas have become inaccessible. In the
absence of network failures, a replicated object will never
regenerate at a higher rate than the combined failure
rates of its replicas. Therefore, regenerations will remain
infrequent events in most installations.

.96

A(3’ I
’. 1

0 .I .2 .3 .4 .5
Failure to repair ratio

Figure 11 : Availabilities for Three Available Copies
with Mitigated Regeneration

However, there are a significant number of comput-
ing environments experiencing a relatively high number of
site failures. It is often the case that most of these
failures result from software errors. Unlike failures result-
ing from hardware malfunctions, software failures only
require a system restart. This procedure can be per-
formed automatically in most installations and typically
requires from ten to twenty minutes [14]. A significant
number of regenerations can be avoided by waiting for a
fixed time interval in the same range before initiating the

544

regeneration of a replica that has just become unavail-
able. This temporization strategy would have very little
impact on the availability of the replicated data as long as
the rate at which failed replicas are regenerated continues
to remain higher than their overall repair rate.

Another possible approach is to wait until the
number of accessible replicas falls below some threshold
m” <m before initiating any regeneration. For instance,
such mitigated regeneration protocols would only regen-
erate when less than three of the five original replicas of
an object remain available. Figure 11 compares the avai-
lability of mitigated and unmitigated Available Copy proto-
cols with regeneration with three replicas. Dashed curves
reflect the availabilities obtained using unmitigated regen-
eration while continuous curves reflect the availabilities
obtained when one replica is regenerated every time a
single replica remains available. As one can see, the
mitigated protocol performs nearly as well as the protocol
attempting to maintain three available replicas under all
circumstances.

A third method for limiting the cost of regeneration
applies only to Dynamic Voting protocols with regenera-
tion. It consists of regenerating witnesses instead of full
replicas. Witnesses are inexpensive to regenerate as
they contain only state information [12]. A similar idea has
recently been proposed by van Rennesse and Tanen-
baum in the context of voting protocols that take into
account the topology of the network on which the replicas
reside [19].

6. CONCLUSIONS
Regeneration attempts to increase the reliability and avai-
lability of replicated data by generating new replicas when
one or more of the replicas are missing. We have
presented an availability analysis of the regeneration-
based consistency control protocol that has been pro-
posed by Pu [15-171. We have also presented two regen-
eration protocols overcoming some of the limitations of
that scheme. Our first protocol combines regeneration
and the Available Copies approach to improve on the
availability of replicated data. Like the original Regenera-
tion Algorithm, it applies to environments where network
partitions are impossible. Our second protocol combines
regeneration and the Dynamic Voting approach to
guarantee data consistency in the presence of network
partitions while maintaining high availability. The availa-
bilities of replicated data managed by both protocols were
derived and found to improve significantly on the write
availabilities provided by extant consistency protocols.
Several techniques to reduce the costs of frequently
regenerating large data objects were also discussed.

We found the Available Copy protocol with regen-
eration to perform better than Pu’s Regeneration Algo-
rithm and all Available Copy protocols not including
regeneration. We hope that architects of systems imple-
menting replicated objects will consider Available Copy
with regeneration as the consistency protocol of choice
for environments where network partitions are known to
be impossible. Dynamic Voting with regeneration extends
the benefits of regeneration to environments where net-
work partitions are possible; it should be a prime con-
tender in such environments.

Further work is still needed to assess the network
traffic overhead resulting from regeneration, to estimate
its additional storage costs, and to evaluate the perfor-

mance of mitigated protocols that would only regenerate a
fraction of the initial number of replicas. The applicability
of regeneration to other consistency protocols should also
be investigated; block-level protocols and protocols using
witnesses are prime candidates for regeneration since the
objects managed are small.

Acknowledgements
We wish to thank Walter A. Burkhard, Charles Bergan,
Alexander Glockner and all the other members of the
Gemini group for their help and their encouragement.
This work has been done with the aid of MACSYMA, a
large symbolic manipulation program developed at the
Massachusetts Institute of Technology Laboratory for
Computer Science. MACSYMA is a trademark of Sym-
bolics, Inc.

References
D. Barbara, H. Garcia-Molina and A. Spauster. “Policies
for Dynamic Vote Reassignment.” Proc. 6th ICDCS,

P.A. Bernstein and N. Goodman. “An Algorithm for Con-
currency Control and Recovery in Replicated Distributed
Databases.” ACM TODS, 9 (1984), 596-615.
D. Davcev and W.A. Burkhard. “Consistencz and
Recovery Control for Replicated Files.” Proc. 10 ACM

C.A. Ellis. “Consistency and Correctness of Duplicate
Database Systems.” Operating Systems Review, 1 1 , 1977.
D.K. Gifford. “Weighted Voting for Replicated Data.” Proc.
7” ACMSIGMOD, (1979), pp. 150-161.
N. Goodman, D. Skeen, A. Chan, U. Dayal, R. Fox and D.
Ries. “A Recove Algorithm for a Distributed Database

S. Jajodia. “Managing Replicated Files in Partitioned Distri-
buted Database Systems.” Proc. 3& Int. Conf. on Data
Engineering, (1987), pp. 412-418.
S. Jajodia and D. Mutchler. “Dynamic Voting.” Proc. ACM

D.D.E. Long and J.-F. Piris. “On ImDrovina the Availabilitv

(1986), pp. 37-44.

SOSP, (1 985), pp. 87-96.

System.” Proc. 2 3 ACMPODS, (1983), pp. 8-15.

SIGMOD, (1987), pp. 227-238.

of Replicatid Files.” Proc. 6” SRDS (1 984, pp. 77-83.
[lo] J.D. Noe and A. Andreassian. “Effectiveness of Replication

in Distributed Computing Networks.” Proc. 7fh ICDCS,

[l l] J.D. Noe, A.B. Proudfoot and C. Pu. “Replication in Distri-
buted Systems, The Eden Experience.” Proc. 1986 FJCC,

[12] J.-F. Piris. “Voting with Witnesses, A Consistency
Scheme for ReDlicated Files.” Proc. 6fh ICDCS. 11986).

(1 987), pp. 508-51 3.

(1986), pp. 1197-1209.

. . ,.
pp. 606-612.

[13] J.-F. Piris. “Voting with a Variable Number of Copies.”
Proc. 16th FTCS. (1986). DD. 50-55.

[14] J.-F. Paris and .D.D.E.’-Long. “Efficient Dynamic Voting
Algorithms.” Proc. 4” Int. Conf. on Data Engineering,

[15] C. Pu. “Replication and Nested Transactions in the Eden
Distributed System.” Ph.D. dissertation, Computer Science
Department, University of Washington (1986).

[IS] C. Pu, J.D. Noe and A. Proudfoot. “Regeneration of Repli-
cated Obects, A Technique and its Eden Implementation.”
Proc. 2“‘ Int. Conf. on Data Engineering, (1986), pp. 175
187.

[17] C. Pu, J.D. Noe and A.B. Proudfoot. “Regeneration of
Replicated Objects, A Technique and its Eden Implementa-
tion.” l€€€ TSE, SE-14, 7 (July 1988), 936-945.

[18] R.H. Thomas. “A Majority Consensus Approach to Con-
currency Control.” ACM TODS 4, (1979), 180-209.

[19] R. van Rennesse and A. S. Tanenbaum. “Voting with
Ghosts.” Proc. 8” ICDCS, (1988), pp. 456-461

(1 988). pp. 268-275.

545

