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Abstract—This paper explores the benefits and limitations of
in-storage processing on current Solid-State Disk (SSD) architec-
tures. While disk-based in-storage processing has not been widely
adopted, due to the characteristics of hard disks, modern SSDs
provide high performance on concurrent random writes, and
have powerful processors, memory, and multiple I/O channels
to flash memory, enabling in-storage processing with almost no
hardware changes. In addition, offloading I/O tasks allows a
host system to fully utilize devices’ internal parallelism without
knowing the details of their hardware configurations.

To leverage the enhanced data processing capabilities of
modern SSDs, we introduce the Smart SSD model, which pairs
in-device processing with a powerful host system capable of
handling data-oriented tasks without modifying operating system
code. By isolating the data traffic within the device, this model
promises low energy consumption, high parallelism, low host
memory footprint and better performance. To demonstrate these
capabilities, we constructed a prototype implementing this model
on a real SATA-based SSD. Our system uses an object-based
protocol for low-level communication with the host, and extends
the Hadoop MapReduce framework to support a Smart SSD.
Our experiments show that total energy consumption is reduced
by 50% due to the low-power processing inside a Smart SSD.
Moreover, a system with a Smart SSD can outperform host-side
processing by a factor of two or three by efficiently utilizing
internal parallelism when applications have light trafic to the
device DRAM under the current architecture.

I. INTRODUCTION

Rapid developments in non-volatile memory (NVRAM)

technology have challenged the assumption that I/O devices

in storage systems are slow. In contrast to hard drives, where

the performance is limited by the movement speed of me-

chanical parts, the performance of NVRAM devices can be

improved simply by adopting more powerful processors and

improving the internal bandwidth to the underlying storage

media. More specifically, modern high-performance Solid

State Disks (SSDs) have multiple powerful processors, large

battery-backed DRAMs, and 8–16 (or more) independent I/O

channels to provide high performance.

Despite the increasing hardware capability of SSDs, how-

ever, the performance at the application end is still limited

due to legacy hardware and software designed for hard drives.

Legacy storage subsystems typically throttle the number of

pending I/O requests to accommodate disks that do not support

concurrency; however, SSDs require a large number of con-

current I/O requests to maximize their performance. Equally

important, locking and interrupt mechanisms can introduce

more overhead than processing an I/O request [21], and block

interfaces such as SAS and SATA are neither fast nor rich

enough to leverage the potential of SSDs. The NVMe (Non-

Volatile Memory Extension) standard for PCI Express [7] is

designed to exploit the native performance of devices, but

it is not yet robust, and requires applications to understand

the characteristics of the underlying media to optimize their

performance.

In this paper, we introduce the Smart SSD model, allowing

host systems to fully exploit the performance of SSDs without

requiring operating systems and applications to understand

the particular characteristics of SSDs. This is achieved by

offloading data-intensive tasks from a host application to

the Smart SSD. Each Smart SSD has an internal execution

engine for processing locally-stored data, and the host machine

coordinates the sub-tasks as well as directly processing some

parts of the tasks. By isolating data traffic within a device,

the execution engine can schedule the I/O requests more

efficiently; it can decide to fully utilize the I/O channels when

the device is idle, or pause the data processing when there are

many pending requests from users. This model also enables

energy-efficient data processing, because power-hungry host-

system resources such as DRAMs and CPUs are not used.

In addition to enhancing the firmware, we also built a

prototype of the host infrastructure to leverage Smart SSDs.

The communication between a Smart SSD and its host system

is handled by an object-interface implemented on top of the

SATA protocol to provide a compatible and flexible API to

applications and operating systems. The Hadoop MapReduce

framework [1] is used as an application interface to utilize

Smart SSDs while hiding communication details.

The specific contributions of this paper include:

• A model that demonstrates the use of an SSD as a data

processing node that can achieve both higher performance

and energy savings through enabling efficient data flow

and consuming extremely small amounts of host system

resources.

• The first evaluation of in-storage processing (ISP) on a

real (not simulated) MLC (multi-level cell) SSD device.

• An end-to-end evaluation of performance and energy

covering the entire system.

This paper is organized as follows. In Section II, we survey

earlier approaches to leveraging in-storage processing and

relate it to our work. Then, we summarize the architecture

of modern SSDs in Section III and the implementation details

of our SmartSSD approach in Section IV. The methodology
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Fig. 1. Comparison of computing models: Smart SSD is designed to support generic and complex tasks, leveraging the parallelism not only within the device
but also between the host and devices.

for experiments, applications, and experimental results are

presented in Section V. We conclude the paper with a discus-

sion on future SSD architectures for ISP and future research

directions.

II. RELATED WORK

The idea of using disk-resident processing to delegate

system intelligence from host CPU to peripherals was first

introduced a few decades ago for database machines. Early

systems mainly focused on improving the performance of

hard disks through dedicating a processor per head, track,

or disk [15, 18]. However, they failed to survive because the

high manufacturing cost could not be justified for marginal

performance improvement. As computer systems were com-

moditized, the idea was resurrected in the late 1990s, when

so-called intelligent disks (with in-storage processing) were

investigated actively [10, 17]. The studies on intelligent disks

regard a disk as a complete computer system for efficient data

processing and assume that the aggregation of compute ca-

pacity of less powerful but scalable processors performs better

than the host-based approaches with dumb disks (Figure 1(a)).

However, realizing in-storage processing with hard disks has

been a difficult task, because it requires additional infrastruc-

ture. Keeton et al. introduced the concept of IDISK (intelligent

disk) for scalable decision support databases [10], in which

the data processing is offloaded from desktop processors to

lower-power processors to improve cost-performance. Thus,

IDISK is designed as a general purpose network node that can

replace costly cluster nodes. However, it was not able to be

realized at that time because of the physical space constraint

and the limited power and cooling supply issues. Riedel et al.

proposed a similar concept called Active Disk (Figure 1(b))

that combines on-drive processing and large memory to allow

disks to execute application level functions in the device [16,

17]. Another Active Disk paper by Acharya et al. focused on

the programming model and algorithms rather than the device

architecture [2]. They proposed a streaming programming

model for application development, a sandbox model for

secure task execution, and operating system support both at

the device level and at the host level. However, none of

the previous approaches were implemented on commercially-

available hardware. For example, Active Disk was designed

to exploit internal disk components, but the experiments had

to use an additional 64 MB bytes of RAM and an external

processor to simulate a 4 GB disk.

More recently, there has been a resurgence in interest in

in-storage processing, as exemplified by FAWN (Fast Array

of Wimpy Nodes) [3], which uses low-power processors and

flash to do data processing. However, FAWN is designed to

handle PUT-GET style requests rather than coordinating and

offloading arbitrary I/O processing tasks. In this architecture,

all data processing is offloaded to the flash nodes, requiring

each node to consider data placement. There is no central

coordination in the system, requiring distributed protocols

to spread work around. This model works for PUT-GET

requests, but is poorly suited to Hadoop-style processing.

In addition, since it requires raw accesses to flash, custom-

designed embedded hardware is needed, decreasing portability.

The concept of an intelligent disk was also adopted

in system-level incorporating more than a single device.

Mueller et al. introduced an external module (e. g., FPGA)

attached to a disk (Figure 1(c)) to implement the system

intelligence [12, 13]; IBM Netezza’s Blade server [5] is a

commercial version of this approach. In contrast, Oracle’s

Exadata is a commodity-based approach in which storage

servers reduce the amount of traffic by filtering data [19].

One of the main disadvantage of this approach is that it is

not easy for users to write their own processing logic. Given

the high costs of these systems, Smart SSD and its support

infrastructure can provide various kinds of functionality at

significantly lower cost with easier programming model.

Smart SSDs, as shown in Figure 1(e), use the host system

to coordinate the tasks between SSDs and a host, and support

executing arbitrary data processing functions within a drive.

The in-storage processing in the Smart SSD model exploits its

own components and also improves the I/O performance by

leveraging internal parallelism efficiently: multiple indepen-

dent I/O channels and embedded processors. Unlike intelligent

disks, the performance of in-storage processing is not as

affected by data fragmentation, and complex operations such



Fig. 2. The typical architecture of modern flash-based SSDs

as join and merge can be better handled due to powerful

processors and large memory. This model works better than

the device-only computing model because it can leverage a few

powerful general purpose processors as well as the embedded

processors in the SSDs.

Recently, several researchers have explored the potential

benefits of SSD-based in-storage processing. Kim et al. in-

vestigated the benefits of ISP on SSD with the database

scan operation [11]. They claimed that magnetic disk is

no longer the bottleneck for storage architecture on legacy

database machines because the fast storage medium and the

increased parallelism in SSDs make the other components—

embedded processors and memory—the bottleneck. Based on

this intuition, a FMC (Flash Management Controller) with a

scan function (Figure 1(d)) was simulated to filter data along

the flash data path. However, due to the limited processing

power, the limited amount of memory, and real-time contraints

in a FMC, its applications were limited to relatively simple

data processing such as filtering.

Boboila et al. proposed Active Flash to enable out-of-core

data analytics [4], providing an analytical model that shows

the performance-energy tradeoffs in moving data processing

to SSDs in a HPC (High Performance Computing) context.

Using an SSD simulator based on DiskSim, it shows that, with

careful job scheduling that considers both the garbage collec-

tion overheads and idleness of SSDs, a significant amount of

energy can be saved with only minor performance degradation.

While the results are well aligned with our measurements on

real SSDs, we found that the current SSD architecture is not

sufficient to support complex tasks, as shown in Section V-C.

We also provide the in-storage processing model, which de-

fines a host and application interface.

III. THE SMART SSD ARCHITECTURE

SSD architectures have evolved as the need for performance

and capacity has increased, but this evolution has typically

been limited by the need to avoid changes in the host hardware

and operating system. However, the performance of modern

SSDs has now reached the maximum bandwidth of the SATA

interface when large burst requests are given, requiring the host

system to generate more flash-optimized requests for further

performance improvements.

Adding in-storage processing capabilities to SSDs is one

way to reduce the demand on the data path from applications to

devices while minimizing the changes required to applications

and host systems. By offloading the application tasks and

reducing the use of host system resources, it enables energy-

efficient data processing that can fully utilize the internal

resources in SSDs. Harnessing more powerful processors and

interfaces with higher I/O bandwidth on a host can improve the

overall data processing performance. However, it is still not

easy to reduce energy consumption in a power-hungry host

environment without traffic control. The Smart SSD model

provides an efficient way not only to improve performance by

reducing the amount of data transfers from device but also to

save energy by utilizing low power processors in device. In this

section, we describe the hardware capability of modern SSDs,

the Smart SSD model exploiting the current architecture, and

the extended host-device communication.

A. Modern SSD Architecture

Figure 2 illustrates the general architecture of modern

SSDs [4, 11]. An SSD consists of three major components: the

SSD controller, DRAM, and the flash memory array. Further,

the SSD controller is composed of three subcomponents: the

host interface controller, the embedded processor, and the flash

memory controller.

The host interface controller implements a bus interface

protocol such as SATA, SAS, or PCIe. SATA 3.0 and SAS 2.0

support up to 6 Gbps of bandwidth while PCIe 3.0 can transfer

8 Gbps per lane. Typically, 32-bit RISC processors such as the

ARM series are used as embedded processors [8], providing

host command handling and a flash translation layer (FTL)

to map a Logical Block Address (LBA) to a physical page

number in the flash memory. The embedded processors and

associated SRAM (for executable code storage) require much

less energy to run the SSD firmware than would a standard

host CPU.

The flash memory controller (FMC) is in charge of reliable

data transfer between flash memory and DRAM, which is

used to cache user data and to store metadata for the FTL. Its

key functionality includes Error Correction Code (ECC) and

Direct Memory Access (DMA). The FMC is also responsible

for exploiting the parallelism in the flash memory by chip-

level and channel-level interleaving techniques to improve I/O

performance.

Finally, the flash memory array is the persistent storage

medium; NAND flash is the most popular choice. NAND flash

memory is composed of blocks, each of which consists of

pages. A block is the unit of erase while the page is the unit

of read and write. Flash memory arrays typically have multiple

channels, allowing for a high degree of parallelism.

B. In-Storage Processing Model for SSD

While providing comparable or even better I/O performance

and processing power than network-attached low-power cluster



nodes, host system support for SSDs is still very limited;

the TRIM command is the only standardized workaround to

resolve sub-optimal performance issues in SSDs. In contrast

to cluster nodes for which variable-length message passing is

possible, current SSDs cannot handle requests smaller than a

single sector, resulting in unnecessary data traffic and higher

energy consumption. Maximizing the performance of SSDs

is more difficult because operating systems are not designed

to deliver large burst requests to devices. The need to change

most of the low-level I/O subsystems makes it difficult for host

systems to adapt to handle new storage devices efficiently.

In-storage processing is one way to alleviate this compati-

bility issue. Without changing any of the I/O subsystems in the

operating systems, it allows SSDs to execute the I/O tasks in-

ternally, fully utilizing devices’ internal components and their

knowledge of the hardware and physical data organization.

The Smart SSD model proposed in this paper is designed to

support in-storage processing with minimal changes to the host

system, providing the same device interface regardless of the

underlying communication protocol. Instead, the details of the

additional communications and task handling are hidden by a

Hadoop framework, and the device exposes simple and flexible

APIs that can take any in-storage processes that may need an

arbitrary number of parameters to execute.

In the previous intelligent disk models depicted in Fig-

ure 1(b), a CPU in the disk component is used as the

main processing unit, executing the application tasks while

the host conducts minimal tasks such as coordination and

scheduling. In contrast, we use a CPU scavenging model

where the host and devices share the workloads considering

their computational and I/O processing power as illustrated

in Figure 1(e). Each compute node in this model runs one

or more tasklets, where a tasklet is a unit of an application

task that can be assigned and executed on either the host

or a device independently and in parallel. For example, if a

database table scan operation is conducted per segment, each

per-segment scan can be a tasklet, and the scan operation is

an application task. The unit of computation can be adjusted

based on computational complexity, resource availability in a

device, or other factors.

In this approach, the host system plays two roles: computing

unit and coordinator (or scheduler). The host can assign a

tasklet to a SSD based on its current utilization and the

execution cost, which depends on the complexity of the

algorithms, so highly complex tasklets can be performed at

a host leveraging the powerful processors and large memory.

For efficient scheduling, Smart SSDs can inform the host

system about the current load of the device upon request. The

mechanism for monitoring the load of each device depends

on the type of host-device interface being used. The host may

need to poll the devices in the SATA protocol, while additional

background call-back connections can be established in SAS,

and interrupts can be used for PCIe interfaces. In our proto-

type, which uses the SATA protocol, for example, the progress

of a tasklet execution is reported to the host system as part of

the return value of the read command to optimize the polling
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interval.

The host treats a Smart SSD as a single virtual processor,

so the detailed hardware configuration of the device is not

exposed to the host. If multiple embedded processors are

available for ISP, the aggregated computing power of all the

embedded processors is considered as the total computing

power of the virtual processor. Tasklets can be assigned to

one of the embedded processors of the virtual processor using

cycle stealing. However, it is also possible to use dedicated

processors for ISP for better performance. Regardless of the

implementation, tasklets are scheduled between the processors

considering priority and runtime execution costs.

C. Host-Device Communication

In-storage processing requires some additional I/O com-

mands to manage and execute tasklets. One of the criteria in

designing these low-level device command sets is that devices

should be able to provide a generic and flexible interface

to applications. It requires support for tasklet parameters

of arbitrary size such as input/output addresses and search

keywords to avoid adding a new command for each tasklet.

In addition, the interface needs to be independent from the

underlying disk interface similar to the way the virtual file

system layer is used for multiple different file systems.

To provide a clean and simple interface to meet those

requirements, Smart SSDs use an extended object-based in-

terface [9], which contains an execute object command, and

runs on top of the existing device interface such as SATA and

SAS. By doing so, applications can have the same sets of APIs

regardless of the underlying communication protocol. This

interface allows users to add or remove a tasklet, group the

logical addresses to be processed (input object), and store and

read the results of the execution. Depending on the support for

bidirectional communication, the host systems poll the results

or get notification from the device when the results become

ready. The detailed protocol implemented in our prototype is

depicted in Figure 5 and described in Section IV.

The Smart SSD model uses the MapReduce programming

model as an application interface because the MapReduce



model can provide independent sets of input data that can be

mapped to the tasklets directly, allowing them to be executed

in parallel without any message passing or locking problems.

Figure 3 depicts the extended MapReduce model for in-storage

processing. A typical MapReduce application consists of a pair

of map and reduce functions written by users. As illustrated in

Figure 3(a), the map function is invoked after the partitioned

data is read into the host memory, and the key and value pairs

for the data are generated. A map function takes the generated

input key-value pairs and produces a set of intermediate key-

value pairs. All intermediate values associated with the same

intermediate key are combined, shuffled, and sorted, then

passed to the reduce function. The reduce function accepts

intermediate key-value pairs, determines the set of values with

the same key, and merges the values together. This model

generates a large amount of disk and network traffic since

the input data needs to be read into the memory before being

processed, and the split data file needs to be sent over the

network to the remote map nodes.

Instead of reading the raw file data into the host, the

extended MapReduce model allows users to create an on-

device map function, which internally calls the tasklets in

the device, as shown in Figure 3(b). After splitting the data

files, the framework sends an execute command request to

the device to execute the corresponding tasklet using a given

range of LBAs; our on-device prototype re-uses read and write

functions of the FTL so storing LBAs are maintained by

our Hadoop file system and given to the device transparent

to applications. However, logical addresses can be object

IDs rather than simplely LBAs if a device manages them

on write object requests, thus the same object-interface can

be used with any types of physical transport layers. Each

on-device map function performs combine and local reduce,

before returning to the host system to minimize the disk traffic.

The host system will then shuffle and sort the results from the

on-device map functions, and invoke the reduce function. By

doing so, as the size of input data increases, this in-storage

processing model can save host CPU, I/O bandwidth, and

memory resources. Specifically, since the amount of memory

used to temporarily store input data files is dropped after the

map function, it can also reduce the cache pollution at a host

system.

D. Tasklet Programming

The SSD firmware does not usually provide general oper-

ating system features such as processes and dynamic memory

allocations due to the limited size of SRAM and the unneces-

sary overhead from virtualizing hardware components. Rather,

it directly accesses and manages the hardware resources.

Therefore, porting full virtual machine-based programming

languages such as Java or Python is not realistic, despite the

advantage of secure execution of tasklets using sandboxing.

Instead, cross-compiled C code is the most efficient way of

writing a tasklet, but it requires programmers to understand

the details of the firmware implementation and hardware

configuration. Moreover, the device can be exposed to many
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Fig. 4. In-storage processing architecture for Smart SSD

possible dangers such as overwriting of existing data and

crashes, since providing a sandbox for native applications is

difficult. Thus, only a small group of trusted people can write

a tasklet and publicly deploy it for the target device.

Similar to CUDA [14], when the standard API for in-storage

processing is defined, the tasklets can be programmed by a

simple script language where only the standard APIs provided

by the device can be used. The interpreter can verify illegal

accesses to protected resources and execute the tasklet at the

same time, or optionally compile the tasklet natively once

verified.

While in this work we focus on web-log analysis, as

discussed in Section V-C, any applications that extract infor-

mation from a large corpus of data can benefit from tasklets.

For example, a desktop indexing tasklet can automatically tag

incoming data, reducing the need for periodic crawling, and

provide only the data blocks that a host-side application is

interested in. As another example, multiple independent graphs

stored across Smart SSDs can be processed concurrently. Thus,

a host can collect only the matching leaf nodes from Smart

SSDs, removing the need for transferring internal nodes.

IV. IMPLEMENTATION

Figure 4 depicts the architecture of our Smart SSD proto-

type. It consists of the three major components: the ISP engine,

the Hadoop MapReduce framework, and the communication

layer. The Smart SSD implements an event-driven execution

engine for ISP, which can process the tasklets assigned by

the host. The Hadoop MapReduce framework is used as an

application framework. Finally, the communication layer im-

plements an ISP protocol between the application framework

and the Smart SSD. This section describes the implementation

details of each component.

A. In-Storage Processing (ISP) Engine

The ISP engine is an event-driven processing framework to

execute tasklets. It takes the C program cross-compiled for

the ARM processors. The tasklets are executed on a dedicated

processor in the device. Since dynamic memory allocation is

not supported by the firmware, the tasklets are preloaded into

the device, and memory space for input and output objects is

reserved. Each tasklet is an object from the user’s perspective,

and identified by an unique identifier called an object id. To
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invoke the tasklet, the host passes an object id assigned to the

tasklet at download time.

B. Extended Hadoop MapReduce Framework

Hadoop is an open-source project that provides a program-

ming framework for large-scale distributed batch processing.

Among various sub-components in this framework, we mod-

ified the Commons package of the framework to add an

object-based file system for low-level device handling and to

extend the MapReduce framework to support on-device map

functions.

The goal of the object-based file system is to manage

the raw SSD device by providing a resolution between an

object name and an object identifier while hiding the low-level

communications. Unlike the pure object-based file systems,

which offload the entire block management layer to the device,

it still manages the LBAs for reading and writing data blocks,

because the FTL in the underlying SSDs is used. Therefore,

while users can access data using an object identifier, the id

and offset are translated into block numbers and sent to the

device internally.

The extended MapReduce framework now supports De-

viceJob, which internally manages the tasklets in the device,

bypassing the file-read phase. Users can define a device job

similar to how a normal job is configured; instead of using

InputFormat and a host map function, applications can use De-

viceMapper and DeviceMapperFormat where DeviceMapper

represents one tasklet, and the DeviceMapperFormat converts

the output of the DeviceMapper to a set of key/value pairs,

which are then used by the reduce function.

C. Communication Layer

The communication layer is implemented on top of the

SATA protocol. At the host end, the object-based I/O library

handles the low-level requests and delivers the results to the

object-based file system. In the device, the SATA command

handler for the extended APIs is implemented in the SSD

firmware. It interprets the vendor commands from the host

and triggers the execution of appropriate tasklets stored in the

device.

1) Object-based I/O library: The logical block addresses,

encapsulated in an object request, are delivered to the device

driver through a Unix system call, i.e., ioctl with the

ATA_PASS_THROUGH command [6]. Each packet for vendor

commands has a header that contains information such as

command identifier, object id, data length, and others, followed

by a payload containing the metadata for the commands.

Since the ioctl operation is not supported in Java, this

library is written in C and delivers the results to the Hadoop

framework through the Java Native Interface (JNI), incurring

the argument passing and copying overheads between a Java

virtual machine and native C code. This interface interacts

with a Hadoop file system and MapReduce job trackers, so

it is not directly exposed to MapReduce applications. They

can use the functionality by defining a device job specifying

a type of in-storage processing and statis parameters for the

type without knowing the details of communications.

2) Object command handler: The object command handler

in the device firmware is responsible for handling create, exe-

cute, and read requests on tasklets. Internally, these commands

are implemented as vendor specific commands, reserved by

the SATA standard for extensibility. In our prototype, three

vendor-specific commands are implemented: create object,

execute object, and read object.

Figure 5 shows the protocol these vendor-specific com-

mands use to run tasklets. The create object command is

first called to create and initialize a target tasklet with static

parameters related to the tasklet such as the size of one key-

value entry. Then, another create object command is called

to create an output object, which contains the outputs of the

tasklet and also can deliver some runtime parameters such as

search keywords and the maximum number of outputs for the

tasklet. Once a tasklet object and the corresponding output

object are ready, the host can invoke execute object to start

the tasklet, and call read object to get the results.

While implementing the object command handler, we en-

countered several design issues because the SATA protocol

does not support bi-directional communication, which can read

and write data by sending one I/O request. When implement-

ing on top of the SATA protocol, any command that has

an output needs to be split into two steps under a global

lock for atomicity. For instance, the create object needs to

return an object ID after creating an object. So the actual

implementation of this command consists of two vendor-

specific commands: one for object creation and another for

the retrieval of the created object ID.



Similarly, since establishing two concurrent connections and

device-initiated connections are not possible in the SATA

protocol, polling is the only option to retrieve the outputs of

operation from a device. Each polling operation has slightly

less latency than a read request, but this operation is syn-

chronous, so frequent polling would reduce the I/O throughput

of an application. Therefore, we let the device return the

number of processed pages whenever a polling request comes

in, and the host dynamically adjusts the polling intervals to

avoid a flood of requests.

V. EXPERIMENTS

In this section, we explore the benefits and limitations of the

Smart SSD using several benchmarks and applications. Since

the benefits of Smart SSDs expect to come from the reduced

host system resource usages and data transfers between a host

and a device, the experiments are designed to characterize the

in-storage processing with Smart SSD and aid us in identify-

ing the classes of applications that can leverage the current

Smart SSD architecture. First, we run a micro-benchmark

that measures computing power and memory access latency

of a device. Then, we measure the overhead of the object-

based communication layer implemented on top of the SATA

interface, focusing on the energy efficiency, data processing

performance, and host resource usage. Based on the results,

we identify the hardware components that limit the range of

applications, and propose a future SSD architecture for in-

storage processing.

A. System Configuration

Smart SSD: The Samsung SSD used in this paper has a

3 Gb/s SATA interface, 16 I/O channels, and a capacity of

200 GB. This SSD is equipped with two ARM processors,

and its SLC flash memory arrays have an 8 KB page size.

We used a commodity SSD that is currently on the market,

and did not change any hardware components to support in-

storage processing. However, we extended the firmware of

the prototype to support the object command handlers and

application tasklets. An internal read operation for tasklets

is configured to fetch 128 pages at a time. Throughout the

experiments, all I/O requests are sent sequentially to the

device, and Native Command Queueing (NCQ) is turned off.

Host: Our experiments are conducted on a desktop machine

with one 3.3 GHz Intel i5-2500 processor with 4 cores and

4 GB of DDR3 DRAM. We use a single SSD connected to

a 3 Gb/s SATA HBA (Host Bus Adaptor) while a separate

HDD is dedicated to the operating system and the Hadoop

framework. The SSD and HDD do not share the HBA. This

system runs Ubuntu Linux 11.04 and a modified version of

Apache Hadoop 0.20.2 with default parameters.

B. Microbenchmark

Since the SSDs on the market do not target general purpose

computing at all, they have the minimal hardware specifi-

cations that meet the design performance requirements. The

devices have less computing power and higher DRAM access

Fig. 6. Performance of in-storage processing: for each memory access, Smart
SSD reads one 4 byte integer and performs one integer comparison. The
performance of the Smart SSD is normalized to the access time at the host
side.

latency than the hosts while multiple DMA controllers take

care of data transfers between host and device. The mini-

mal hardware specifications, however, make the application

tasklets more sensitive to the computation and memory access

patterns in the case of in-storage processing. For this reason,

understanding the performance characteristics of in-storage

processing with our SSD device is crucial to achieving not

only high energy efficiency but also high performance.

1) Read performance: By device specification, the internal

read bandwidth of our device is around 2.5× faster than

the I/O bandwidth between a host and a device. However,

when including firmware overhead, our internal measurement

shows the internal read performance is 1.8× faster than the

I/O bandwidth between a host and a device, even when the

16 I/O channels are fully utilized. This not only means that

SSDs can hide their firmware management latency from a

host system, but shows the potential performance benefits of

in-storage processing. When considering that it is difficult to

utilize the whole I/O bandwidth to process a certain I/O task,

there is a possibility that in-storage processing can improve

the performance of applications by more than a factor of two.

2) DRAM Access Latency: To measure the internal memory

access latency, we measure the read performance with 1 GB

of randomly generated data varying the number of DRAM

accesses and comparisons per 8 KB flash page. For each

memory access, the benchmark reads one 4 byte integer and

performs one integer comparison. For example, when the

number of memory accesses per page is 32, it reads 128 bytes

per 8 KB page, and performs 32 integer comparisons. As

shown in Figure 6, the overall trend is that the execution time

of the benchmark increases in proportion to the number of

memory DRAM accesses and comparison operations while

the performance of host is nearly constant. We measure the

same tendency when increasing the number of comparisons,

meaning that the DRAM access latency is high. This is mainly

due to the limitations of the current SSD architecture where



L1/L2 caches are not available and the bandwidth between

CPU and DRAM is not high enough. It is to be noted that

DRAMs inside the device are not designed to be accessed by

the embedded processors. Instead, there is a small amount

of SRAMs that contain the firmware and provide memory

space for request processing, and DRAMs are used as a cache

for read and write, whose contents are not directly accessed

by CPUs most of the time. Although this design decision is

natural for normal SSDs where processors are not involved

in transferring the contents in DRAM to a host during basic

read/write operations, it seems that hardware enhancements

are required for Smart SSDs in order to broaden their target

applications.

This tendency shows that under the current SSD architec-

ture, Smart SSD can only benefit when the number of accesses

per page is small (e. g., less then 128 for this device). The

requirement for a small number of DRAM accesses can be

interpreted in two ways. Applications that are interested in a

small portion of data out of a large entity (e. g., one field

out of large log entry or one column out of large tuple) can

benefit from Smart SSDs so most data in a page are skipped.

The pages transferred for such applications just pollute the

caches in the host and waste host resources. The second

group of applications have a small number of reads and a

large amount of accesses and processing, so the processor

can copy the data from DRAM to SRAM before processing.

These groups of applications can benefit from the high internal

read performance of SSD, amortizing the high DRAM latency

penalty over the amount of accessed pages. This limitation can

be easily alleviated by adopting CPU caches and increasing

the bandwidth between a tasklet processor and DRAM.

3) Interface Overhead: Our custom Smart SSD protocol is

designed and implemented on top of the SATA protocol so it

can be used without modifying the current interface and the OS

kernel. However our communication protocols add some over-

head over the standard SATA commands because they must

handle the polling interval and bi-directional communication

issues.

Figure 7 shows the overhead of the commands supported

in our prototype. We measure the turnaround time of each

function at two locations: the Hadoop framework and JNI

device communication module. Since the SATA protocol does

not support bi-directional communication and variable-size

requests, unlike object-based devices, a create command issues

two I/O requests of 512 bytes each. Compared to a normal read

command, which takes less than 215 us for one sector read,

our results show that the create function and create object

commands, each of which uses create object commands with

different metadata, take slightly more time. On the other hand,

execute object and read object exhibit latency similar to that

of a normal read command because the parameters for these

operations can be embedded in one SATA command.

Due to the memory allocation and copies between Java

and C, the JNI module adds 150–380µus of latency to

each function, depending on the amount of data passed to

the function. Compared to the other operations, read object

Fig. 7. Overhead of an object interface implemented on top of SATA protocol;
the raw I/O latency of the create command is higher than that in the execute
and read commands, because it requires two vendor-specific commands. The
JNI overhead of the read command is high due to the additional processing
for polling interval and memory copy overhead.

experiences a long latency in the JNI wrapper due to the output

data copied between C and Java and piggybacked information

processing such as the polling interval.

C. Applications

As discussed in the previous section, applications should

have high data selectivity and low computing complexity

to benefit from the use of our prototype Smart SSD. We

understand that this guideline, due to the hardware con-

straints of the current SSD architecture, limits the range of

applications. However, we expect that the applications that

can leverage Smart SSD will grow over time because the

computing capability of SSDs continues to increase. SSDs

need more computing power in terms of the number of cores or

clock rate and more DRAM space as the capacity and interface

bandwidth of SSDs increase.

This section focuses on the potential benefits that Smart

SSD can deliver with real applications. For this purpose,

we evaluate Smart SSD with two applications: a web-log

analyzer that uses a fixed size data structure, and a data

filter that returns the only page that contains valid data.

These applications include searches through a fixed size data

structure or accesses to a specific position within a flash page

to retrieve information. As a result, the ISP engine can avoid

a full page scan to find data of interest.

We use a real dataset named WorldCup98 which contains

the requests made to the 1998 World Cup website [20]. We

collected 7,000,000 distinct log entries combining the available

dataset, and generated four data sets by adding padding to each

log entry to create different sized log-entries; this changes the

size of the raw workloads that need to be read into either

a host DRAM or a device DRAM. In our example, the size

of the smallest log entry is 32 bytes, and that of the largest

entry is 256 bytes. The sizes of the data set with the smallest

log entries and the largest entries are 240 MB and 1.8 GB,

respectively.



(a) Number of accesses per geographical region (b) Top 5 file types accessed per geographical region

Fig. 8. Performance of log-analysis with two query scenarios. Smart SSD benefits from high internal bandwidth and no data transfer between a host and a
device, losing performance slowly as the dataset size increases. However, the host-only computing models suffer from large data movements on larger datasets,
decreasing performance.

We create two query scenarios that retrieve information

from the log. The first scenario is to keep track of the number

of accesses per geographical region, which requires one access

to a field in each entry and storing of intermediate results. This

query needs a reduce step to sum up the intermediate results

per region. In the second scenario, a tasklet keeps track of the

number of accesses per file type per region, and picks the top

N file types per region. During the processing, it accesses one

more field per entry (2 in total), and the results are not only

merged but also sorted. Therefore, the second query requires

more DRAM accesses than the first one.

1) Performance: To evaluate the performance of in-storage

and in-host data processing, we implement three versions

of Hadoop applications. Host-normal denotes a log analysis

MapReduce application that uses a normal SSD and the default

Hadoop protocol, and host-optimized is the modified version of

Hadoop that minimizes the overhead of merging and sorting by

storing intermediate results sorted and compacted only in in-

memory data structures designed for log-analysis. With Smart

SSD, the intermediate results of the Smart SSD application

are stored and sorted inside the device, and are not sent to the

host.

Figure 8 shows the performance of two scenarios with three

types of clients. It shows that the performance gap between

Smart SSD and the others becomes wider with larger log

entries. As the log entry size becomes larger, the number

of entries per page decreases, which reduces the number of

DRAM accesses accordingly. In addition, the amount of data

to be sent to the host increases with larger entries. The high

data transfer cost dominates the DRAM access penalty with

large log entries. These results are consistent with the results of

the micro-benchmark in the previous section. One interesting

observation in this experiment is the performance in the case

of the 32 byte entry. Host-optimized shows better performance

than the Smart SSD, because the Smart SSD suffers from

too many DRAM accesses, but receives little benefit from

traffic reduction; 256 DRAM accesses are made per page

while 240 MB of data are transferred through the 3 Gbps

channel. While the same amount of data is transfered in host-

normal and host-optimized, host-normal exhibits much lower

performance due to the large amount of intermediate data,

incurring frequently flushing of data, and high merging and

sorting overhead.

The second query (Figure 8 (b)) shows a similar perfor-

mance trend to the first query. One difference is that the

Smart SSD catches up with the host-optimized slowly, and

the performance gap is narrow due to the additional DRAM

access per entry and the sorting process. This sensitivity to the

number of DRAM accesses can be improved by instruction-

level optimizations, specifically considering the behavior of the

load operation. However, we believe that small upgrades of the

SSD architecture can alleviate this problem further, providing

more flexibility in determining the tasks to offload. In terms

of I/Os to flash, while both host-side clients need to read the

whole data set from the device, i. e., 1.8 GB with a log entry

size of 256 bytes, the Smart SSD client does not generate

any data traffic over the system bus. This allows other devices

in the host system to use the system bus while Smart SSD

processes data in parallel.

2) CPU Usage: To evaluate the CPU overhead on the host

side, we measure the CPU utilization of the host system while

the three versions of Hadoop applications are running as shown

in Figure 9. We illustrate the one with a log-entry of 256 bytes

since all configurations show a similar tendency. The kernel is

mostly waiting for the data from the device in the idle state,

and the user state indicates the CPU time spent on the Hadoop

application. The kernel is processing interrupts, and I/O and

process scheduling in the kernel state.

As shown in Figure 9, the system with the Smart SSD client

consumes very few host CPU cycles compared to the host-

only versions of the applications. Even though the host CPUs

occasionally wake up to check if the results from Smart SSD



Fig. 9. CPU usage (including all cores). The Smart SSD version of
the application uses almost no host resources while the host versions of
applications require kernel time to process I/Os and user time to process
map processes.

are available, they are mostly in the idle state waiting for a

job to be finished so the CPUs can process other computation

jobs or processes concurrently.

With a log-entry of 256 bytes, the host versions of the

application are in the idle and kernel state for three or four

times longer than the Smart SSD versions, waiting for the

data from the device and delivering it to an application. The

CPU time consumed in these periods increases in proportion

to the size of data to be transferred and the number of other

active process running in the background. Although large burst

requests are preferred to maximize the throughput of SSDs,

these requests may also increase the kernel and user time,

creating an interval between I/O requests and thus lowering

the utilization of devices’ internal parallelism. For the two

host versions, the large amount of intermediate data makes

host-normal experience more idle time due to I/O waits than

host-optimized.

While storage systems using SSDs can solve this problem

by redesigning the data layout, I/O scheduler, and applications

for SSDs, the Smart SSD model allows devices to handle

this throughput issue by merely rewriting the applications to

internally create I/O requests based on the number of available

internal bandwidth at the time of the execution. The minimized

use of the host CPUs further improves the overall energy

efficiency as will be described later.

3) Energy Efficiency: Since Smart SSD uses low power

processors and minimizes the use of host resources to process

a tasklet, it is expected to consume less power than the host-

based approaches. We plugged the host machine into a power

meter device to measure its entire power consumption so we

can measure the total energy consumed by the host system.

Then, we ran the first query scenario for three versions of the

application and measured the power consumption during the

run. In order to avoid effects from other applications or the

previous state of an execution, we injected a pause until the

system became idle before resuming the next step. As shown

in Figure 10, for each log-entry size, the corresponding dataset

is synchronously written to the device, and the contents in the

host page cache are flushed in the wr phase. Then, we force the

application to sleep for 5 seconds, and then start the tasklet in

the exec phase. When the tasklet terminates, we inject another

pause before resuming with the next dataset.

Figure 10 shows the power consumption of each version

of the log analyzer. In the idle state, the system consumes

around 44 watts. In the exec phase, however, the power

consumption of the host versions of applications increases by

around 35 watts, and host-optimized and host-normal versions

consume 75–82 watts in total. On the other hand, in-storage

processing only increases the total energy consumption by

0.5–0.8 watts, saving more than 50% of the energy that the

total host system spent. This is because the data movement is

minimized in the Smart SSD model, and thus the host CPUs

and I/O subsystem are not involved during the processing

phase. Note that the wr phase is not needed when a tasklet

works with existing data. In terms of energy consumption,

offloading data processing or filtering jobs to the device before

entering a big computation could be helpful even though the

actual performance of the tasklet in the device is slower than in

the host. This approach allows the combination of low-power

processing in the device, as done in FAWN [3], with host-

based processing for complex tasks to lower overall power

consumption.

4) Data Filtering: To mitigate the impact of slow DRAM

access in the current SSD architecture, Smart SSDs can be

used to conduct a simple data filtering when excessive DRAM

accesses are expected within a page. For instance, instead of

identifying all matches in the page, we can send the page with

the first match, and let the host do the complex computation

with the page. As a result, the device can reduce the number

of data transfers while the host processes less data. Since

these filtering jobs can be issued to the devices before the

host system starts long computations or processing other data,

this tasklet could improve the overall data processing rate in

a large storage system.

To show the effects of data filtering, we design a tasklet that

returns the logical block addresses (LBAs) that meet a certain

criteria given by a user application, instead of collecting and

returning the results. Although the tasklet can also return

the actual filtered data instead of the LBAs, we decided to

return LBAs in order to allow the host system to choose the

appropriate time to process these data. Once a match is found

during the search, this tasklet stores the LBA of the page

without looking at the values of other structures in the same

page. Performance-wise, it can still suffer from slow memory

accesses when data selectivity is very low but because this

tasklet is processed in parallel with the host tasklets, it can

improve the overall efficiency of the system by saving host

resources.

We simulate an application that reads and compares one

integer variable within a 32 byte data structure, just like the

case of 256 accesses in Figure 6. On a 1 GB dataset with

60% selectivity, the performance of the data filtering tasklet



Fig. 10. For each dataset, data to be processed is first written (wr phase)
before executing the tasklet (exec phase). In the exec phase, the system that
uses Smart SSD consumes less than 50% of the energy compared to the
system that uses host-side processing, including idle power consumption, due
to the internal, low-power processing.

becomes 40% faster than doing the comparisons for the entire

data on the device, but it was 18% slower than doing it on

the host. So, depending on the characteristics of data and

computation, data filtering can be used to compensate for the

low performance of the embedded processors while reducing

the total amount of data transferred to the host.

D. Future SSD Architecture for In-Storage Processing

While the current SSD architecture provides enough pro-

cessing power to support basic read and write operations, more

hardware components and software layers are required to fully

utilize the benefit of in-storage processing. Most importantly,

CPU caches and high bandwidth between CPUs and DRAM

need to be provided to avoid performance degradation due to

the memory accesses. Adopting an application processor (or

core) for tasklets would be helpful to avoid possible interfer-

ences between workloads generated by in-storage processing

and user applications. This allows device tasklets and host jobs

to work at the same time on the same device, thus making the

system more balanced in terms of resource usage.

VI. FUTURE WORK

We are exploring the use of Smart SSDs as a data processing

engine in a large distributed environment such as social-

network graph traversing or automatic replication management

leveraging the internal information about the reliability of each

flash cell. While the benefits from multiple Smart SSDs are

expected to be similar to the aggregation of the benefits from

individual Smart SSDs, one of the main issues in those systems

we want to look at is the scheduling policy across multiple

Smart SSDs and hosts. Since the performance of a job depends

on the complexity of a job and the current load of a host and

a device, we need to find a cost function for each job and

assign a job to the device or the host depending on the cost.

We are also looking at the use of Smart SSDs in large storage

systems as a more advanced cache that has a large capacity

and is capable of finding an entry quickly with extremely low

power.

There remain several other optimizations that could improve

the usability of Smart SSD. For example, the current object-

based I/O library can be implemented inside the storage stack

in the kernel, thus allowing the devices to access tasklets using

a standard POSIX interface, i. e. fadvise(). Once we find a

cost function for in-storage processing, this layer can provide

transparent job scheduling as well.

As for software, instead of using a cross-compiled C binary,

support for scripting language in writing tasklets would be

helpful in providing security mechanisms, such as sandboxing

and authentication, to prevent malicious tasklets from destroy-

ing data or even devices. However, we believe that adding

this feature to the current commodity SSDs is not practical

because the firmware is not a general operating system; it is

a state machine optimized for read and write requests, and

it does not support processes, virtual memory, or even dy-

namic memory allocation. Therefore, for sandboxing, running

a virtual machine based language, such as Java or Python, is

not possible. Developing a new compiler or an interpreter that

runs inside the firmware can cause high latencies in processing

normal read and write requests. Our current implementation

can check illegal parameters to the FTL functions, but cannot

check for illegal memory manipulation that can cause the

device to crash.

Having an application processor that can run a lightweight

operating system could be helpful to alleviate this problem,

allowing application processors to run interpreters and issue

I/O requests to the firmware processors. Then, an abstraction

layer of hardware components and FTL functions in the device

could be provided to tasklet developers so they can dynami-

cally add or remove their own tasklets without having specific

knowledge about the implementation of a SSD firmware.

VII. CONCLUSION

Modern datacenters face a common challenge that the power

supply limits their computing capacity. A trend to tackling this

challenge is to consolidate servers through system optimiza-

tion and low power technologies, releasing more space and

reducing operating cost. Smart SSDs can contribute to this

server consolidation by providing low power data processing

capability. The ARM processor employed by SSDs consumes a

fraction of power compared to the general purpose processors.

Even though new Intel processors such as Ivy Bridge-based

Intel Xeon processors and Atom-based Centerton processors



are expected to consume less power, servers are still power-

hungry in general. In this paper, we showed the potential of

Smart SSD to not only reduce power consumption but also

improve performance.

Unlike rotational hard drives where mechanical movement

determines the performance, the performance of SSDs has

improved with more powerful processors and increasing hard-

ware components such as channels and memory as well as

better FTL algorithms. Despite the functionality that makes it

a complete low-power computing system with CPUs, memory,

and storage, a host system still thinks of an SSD as a dumb I/O

device, passing up the chance of optimizing its data flow. To

address this shortcoming, we explored the potential benefits of

SSDs as data processing nodes and identified the limitations of

the current SSD architecture. We presented a multi-functional

storage device, Smart SSD, that harnesses the processing

power of a device using an object-based communication pro-

tocol. Smart SSDs rely upon tasklets: independent I/O tasks of

an application running inside the device. To allow applications

to better use SSDs, we developed a programming interface

to execute tasklets based on MapReduce. We implemented

the Smart SSD features in the firmware of a Samsung SSD

and modified the Hadoop Core and MapReduce framework

to use tasklets as a map or a reduce function. To evaluate

our prototype, we ran a microbenchmark and a log-analysis

application on 7,000,000 entries in both a device and a host.

We found that under the current SSD architecture, excessive

memory accesses will make the tasklet execution slower than

in the host due to the high memory latency and low processing

power. However, the results with a log-analysis example show

that our Smart SSD prototype consumes 2% of the energy

compared to the host versions of applications in processing

a given workload, saving more than 50% of the total energy

while providing up to 2–3× better performance, depending on

the entry size.
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