
Kgent: Kernel Extensions Large Language Model Agent
Yusheng Zheng∗

Imperial College London
London, United Kingdom

yusheng.zheng@imperial.ac.uk

Yiwei Yang∗
University of California, Santa Cruz

Santa Cruz, California, USA
yyang363@ucsc.edu

Maolin Chen
eunomia-bpf Community

Shanghai, China
agaaain.try@gmail.com

Andrew Quinn
University of California, Santa Cruz

Santa Cruz, California, USA
aquinn@ucsc.edu

Abstract
The extended Berkeley Packet Filters (eBPF) ecosystem allows for
the extension of Linux and Windows kernels, but writing eBPF pro-
grams is challenging due to the required knowledge of OS internals
and programming limitations enforced by the eBPF verifier. These
limitations ensure that only expert kernel developers can extend
their kernels, making it difficult for junior sys admins, patch makers,
and DevOps personnel to maintain extensions. This paper presents
Kgent, an alternative framework that alleviates the difficulty of writ-
ing an eBPF program by allowing Kernel Extensions to be written
in Natural language. Kgent uses recent advances in large language
models (LLMs) to synthesize an eBPF program given a user’s Eng-
lish language prompt. To ensure that LLM’s output is semantically
equivalent to the user’s prompt, Kgent employs a combination of
LLM-empowered program comprehension, symbolic execution, and
a series of feedback loops. Kgent’s key novelty is the combination of
these techniques. In particular, the system uses symbolic execution
in a novel structure that allows it to combine the results of program
synthesis and program comprehension and build on the recent suc-
cess that LLMs have shown for each of these tasks individually.

To evaluate Kgent, we develop a new corpus of natural language
prompts for eBPF programs. We show that Kgent produces correct
eBPF programs on 80%—which is an improvement of a factor of 2.67
compared to GPT-4 program synthesis baseline. Moreover, we find
that Kgent very rarely synthesizes “false positive” eBPF programs—
i.e., eBPF programs that Kgent verifies as correct but manual inspec-
tion reveals to be semantically incorrect for the input prompt. The
code for Kgent is publicly accessible at https://github.com/eunomia-
bpf/KEN.

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International 4.0 License.
eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0712-4/24/08
https://doi.org/10.1145/3672197.3673434

CCS Concepts
• Software and its engineering→ Formal software verification;
• Computing methodologies → Natural language processing.

Keywords
Large Language Model, eBPF, Symbolic Execution
ACM Reference Format:
Yusheng Zheng, Yiwei Yang, Maolin Chen, and Andrew Quinn. 2024. Kgent:
Kernel Extensions Large Language Model Agent. In Workshop on eBPF and
Kernel Extensions (eBPF ’24), August 4–8, 2024, Sydney, NSW, Australia. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3672197.3673434

1 Introduction
Developers are increasingly tasked with modifying and extending
operating system kernels to improve performance, security, and reli-
ability, or introduce new features to their systems. Extended Berke-
ley Packet Filters (eBPF) have emerged as the de facto method for
extending an operating system, with recent support for both Linux
and Windows [11]. eBPF programs inject new logic that is executed
before or after existing kernel logic to observe or modify the ker-
nel’s behavior. eBPF programs were originally used to trace network
traffic, but the ecosystem now provides sufficient power to imple-
ment a variety of features including performance monitoring perfor-
mance [17, 18], detecting intrusion detection [2, 21], and application-
specific logic [15, 22, 35, 37].

Unfortunately, eBPF programs are difficult to write correctly. Im-
plementing an eBPF program requires intimate knowledge of kernel
internals to identify where to inject logic [9]. Additionally, the eBPF
verifier, intended to prevent unsafe eBPF programs from executing
on a system, imposes a number of unfortunate programming con-
straints on eBPF programmers: programs can only use limited con-
trol flow (e.g., loops must have constant bounds) and limited data
accesses (e.g., the program cannot access arbitrary memory). Conse-
quently, eBPF is not even a Turing Complete language [23].

In this paper, we present Kgent, Kernel Extensions LLM Agent
that alleviates the difficulty of eBPF. A user can then extend their
kernel by injecting the eBPF program produced by Kgent without
having to understand eBPF or a kernel’s internals.

2 Background
This section describes background on the key techniques that Kgent
employs.

30

https://github.com/eunomia-bpf/KEN
https://github.com/eunomia-bpf/KEN
https://doi.org/10.1145/3672197.3673434
https://doi.org/10.1145/3672197.3673434
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3672197.3673434&domain=pdf&date_stamp=2024-08-04

eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia Yusheng Zheng, Yiwei Yang, Maolin Chen, and Andrew Quinn

Few-shot In-Context Learning: systems that employ in-context
Learning adapt an LLM to a new target area by adding minimal con-
textual data to an LLM (e.g., they prompt ”few shots” LLM with a
small corpus of particularly pertinent inputs) and carefully crafted
prompts rather than training a custom LLM on a large dataset. In-
context learning ismore cost-effective and can newdatamore quickly
than traditional alternatives. The key challenges in employing in-
context learning in a new synthesis domain involve identifying a cor-
pus of critical examples and crafting a prompt strategy that guides
the underlying LLM [4, 26].

Feedback Loops: many systems employ a feedback-driven ap-
proach to validate an LLM’s output against some specification and
pass feedback to the model to refine the output. For example, Har-
monyOS developers [33], and TPUv4 designers [29] use unit tests to
evaluate whether an LLM’s output is correct. The fundamental chal-
lenge in developing such ground truth unit tests—manually crafting
a set of unit tests that can sufficiently guide the LLM is likely as diffi-
cult as manually writing the ideal synthesized output. Developers in
the aforementioned examples were able to use unit tests that were
already created for their use cases. Additionally, Self-Debugging
includes a mechanism to provide feedback by using an LLM to ex-
plain the behavior of synthesized programs. The system refines its
output by iteratively synthesizing programs, explaining the synthe-
sized program checking its unit-test outputs, and then iteratively re-
synthesizing.

AutomatedProgramComprehension: automated program com-
prehension determines the properties of a program’s execution with-
out requiring developer effort. Earlywork [24] uses a counter-example-
driven approach, which observes a program under test and derives
invariants that hold over all executions. Recent works show that
LLMs are effective at program comprehension tasks [1, 12, 13, 25,
34, 38], but their output is typically an English description of the
program.

Symbolic Execution: automated programverification has emerged
to ensure that programs are correct without requiring a developer to
write a copious amount of tests. There is a wide range of existing so-
lutions including model checking [7, 28], fuzzing [14], and symbolic
execution (symbex) [3, 19]. Kgent uses symbex because symbolic ex-
ecution has been shown to be highly effective in finding issues both
in operating systems [6] and user-programs [3, 19].

A symbolic execution engine reasons the behavior of a function or
program to determine whether the program upholds specific prop-
erties (e.g., memory safety). A symbex engine associates a symbolic
value with each variable in the program. As the program executes,
the engine gathers constraints on the symbolic values (e.g., variable
x is less than 3). During execution, the engine uses an SMT solver
to determine if a given property (e.g., “this function will be executed
under this path condition?”) can be violated given the constraints
that the engine gathered.Thus, symbolic execution can reason about
large classes of inputs to a function or program without needing to
execute each input individually.

3 System Design
This section describes the design and implementation of Kgent; Fig-
ure 1 depicts the system’s key components and how they interact.

KGENT

Prompt
Prompter Synthesis

Engine

eBPF Candidate

Comprehension
Engine
Annotated

eBPF Candidate

Invalid or
Timeout

Symbolic
Verifier

Kill Processes that
Fork 20 times

eBPF Candidate

eBPF Verifier Invalid

eBPF Program Output

Figure 1: The Workflow of Kgent

Kgent consists of four main components: a Prompter (section 3.2),
responsible for constructing prompts that generate eBPF programs;
a Synthesis Engine (section 3.3), responsible for synthesizing a can-
didate eBPF program given a natural language prompt; a Compre-
hension Engine (section 3.4), responsible for annotating a candidate
eBPF program with accurate Hoare-logic conditions for each of the
kernel functions with which the candidate interacts; and the Sym-
bolic Verifier (section 3.5), responsible for ensuring that the candi-
date eBPF program upholds the Hoare-logic annotations.The system
also uses the existing eBPF verifier to ensure that the eBPF candidate
meets basic security criteria.

Kgent uses in-context learning (section 2) to augment existing
LLMs without requiring training of an entirely new model. This de-
sign allows Kgent to remain LLM agnostic. Supporting in-context
learning requires two technical contributions: prompting strategies
that guide the LLMs to produce correct output and new datasets for
the Synthesis and Comprehension Engines.

Kgent uses a feedback-driven approach to iteratively synthesize
a correct eBPF program. Kgent includes two such feedback loops.
First, if the Symbolic Verifier determines that a candidate eBPF pro-
gram from the Synthesis Engine does not uphold the Hoare-logic
conditions from the Comprehension Engine or if the Symbolic Ver-
ifier times out, then the Verifier will pass the failure back to the
Prompter.This feedback loop allows both Engines additional chances
to synthesize correct output. The second feedback is from the eBPF
verifier to the Prompter and is taken when the eBPF verifier does not
verify that the synthesized eBPF program is safe.

Each of Kgent’s components is an adoption of state-of-the-art
techniques to the problem of eBPF program synthesis. Kgent’s key
novelty lies in its combination of these techniques which empowers
a useful and efficient program synthesis tool. In particular, Kgent’s
use of symbolic execution to combine the results of program syn-
thesis and program comprehension is a novel structure that allows
Kgent to build on the power that LLMs have shown on both tasks
individually.

31

Kgent: Kernel Extensions Large Language Model Agent eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia

The rest of this section proceeds as follows. We first describe the
workflow of synthesizing an eBPF program for a user prompt (sec-
tion 3.1).Then, we discuss each of Kgent’s components (section 3.2–
section 3.6). Finally, we describe Kgent’s implementation details
(section 3.7).

3.1 Workflow
Thehigh-level workflow for synthesizing an eBPF program in Kgent
is as follows. The user issues a prompt to the Prompter, which for-
wards the user’s prompt to Kgent’s Synthesis Engine. The Synthe-
sis Engine consults an LLM to synthesize a candidate eBPF program
based upon the user’s input. Kgent passes the candidate eBPF pro-
gram to the Comprehension Engine, which consults an LLM to an-
notate the candidate eBPF program with Hoare-logic pre- and post-
conditions for each of the Kernel functions that is referenced in the
candidate eBPF program. Kgent passes this annotated eBPF candi-
date to its Symbolic Verifier, which validates that the synthesized
eBPF program satisfies the Hoare-logic properties. If the Symbolic
Verifier determines that the eBPF program does not uphold the se-
mantic properties, or if the Symbolic Verifier times out, then the Sym-
bolic Verifier passes its output to the Prompter to begin another iter-
ation of Kgent. If the Symbolic Verifier succeeds, it passes the eBPF
program to the eBPF verifier to validate the program’s safety prop-
erties. The eBPF verifier will pass its error message to the Prompter
to begin another iteration of Kgent if the eBPF program is deemed
unsafe.

If Kgent fails to synthesize a verified eBPF program after a con-
figured number of trials (3 is the default), the system will re-prompt
the user to include additional information. Anecdotally, we observe
that including small additional semantic hints (e.g., hinting at the ex-
pected size of some variables) can often resolve Kgent’s synthesis
issues.

3.2 Prompter
The Prompter takes the input prompt from the user and specially
formats it to pass to the synthesis engine. In particular, the Prompter
adds boilerplate text instructing Kgent to produce an eBPF program
written for bpftrace framework. Additionally, the Prompter appends
all error messages that it has received for the current synthesis task
by all feedback loops. For example, if the Symbolic Verifier failed in
a first iteration with message failure1 and the eBPF verifier failed
in a second iteration with message failure2, then the Prompter will
append both failure1 and failure2 to its message before sending it
to the Synthesis Engine.

3.3 Synthesis Engine
The Synthesis Engine takes a natural language prompt and consults
an LLM to generate a candidate eBPF program.The engine uses LangChain [20]
as a mechanism for interacting with an arbitrary LLM, which allows
Kgent to support a variety of privacy-cost-performance tradeoffs.

Like other systems [5], the Synthesis Engine uses a VectorDB (e.g.,
Milvus [31]) to enable in-context learning.The engine stores prompt-
eBPF pairs from the eBPFNLDataset dataset (see below) in its Vec-
torDB. On each query, the engine uses the VectorDB to identify the

prompt-eBPF pairs that are most similar to the user prompt and in-
cludes these pairs as examples of correct input-output pairs in its
query to the large language model. Thus, Kgent is similar to few-
shot learning [32]. Kgent also updates its VectorDB after each syn-
thesis, which allows the system to learn from its successful and failed
eBPF syntheses.

By specifying the desired syntax in the LLM prompt, we find that
the Synthesis Engine almost always synthesizes the correct syntax.
Our results show that it also often synthesizes correct semantics (sec-
tion 5).

eBPFNLDataset—an eBPF synthesis Dataset. TheSynthesis Engine
is empowered by eBPFNLDataset, a novel dataset of 145 natural
language prompts paired with corresponding eBPF programs, 79 of
which are bpftrace programs and 66 of which are libbpf programs.
eBPFNLDataset was gathered from two sources. First, 65 pairs (39
bpftrace, 26 libbpf) come from a popular eBPF developer blog [16].
The other 80 pairs (40 bpftrace, 40 libbpf) are hardwritten based upon
examples from well-known open-source eBPF project repositories,
such as bcc[27], bpftrace[30], ebpf-exporter[8], or bpftime[36].

3.4 Comprehension Engine
TheComprehension Engine annotates eBPF candidate programswith
Hoare-logic pre- and post-conditions using an LLM prompt that in-
cludes the eBPF function, developer prompt, and conditions from
the KeRnelCompDataset. This approach allows the engine to uti-
lize the developer’s prompt, smooth out inaccuracies in the automat-
ically generated KeRnelCompDataset, and learn from its mistakes
and successes by updating an internal VectorDB. Empirical evalua-
tionsection 5 shows that the Comprehension Engine does not nefar-
iously adjust pre-/post-conditions to tautologically verify all candi-
date programs, likely due to the slow learning of the VectorDB.

KeRnelCompDataset—a dataset of Hoare-logic contracts for ker-
nel functions. Manually creating a dataset of Hoare-logic contracts
for every eBPF instrumentable kernel function would be infeasible.
There are hundreds of such functions, and the functions themselves
change with each new kernel release. Thus, we chose to generate
KeRnelCompDataset using an automated approach that we can
then adapt to new kernel versions. We use a regular expression to
identify every function that has a symbol in the kernel. To approx-
imate the function’s semantics, we use a regular expression to find
any comments immediately before the function. We pass the func-
tion prototype, source code, and approximate semantics into an LLM
using a prompt that asks for Z3 compatible conditions for each of
the eBPF helpers. We store the approximate semantics, prototype,
and the output from the LLM in a JSON format in the KeRnelComp-
Dataset. If detected, developers could fix inaccuracies from the au-
tomated approach, although we have not needed to do so in Kgent.

3.5 Symbolic Verifier
The symbolic verifier uses symbolic execution to validate the anno-
tated eBPF candidate program produced the Comprehension Engine.
If the symbolic verifier determines that the program upholds the as-
sert statements, it removes the assert/assume statements and passes

32

eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia Yusheng Zheng, Yiwei Yang, Maolin Chen, and Andrew Quinn

Prompt: Write a bpftrace program to trace tcp_connect
events for both IPv4 and IPv6 connection attempts, display the
source and destination IP addresses and the source and
destination ports in host byte order.

Figure 2: A prompt passed into Kgent instructing it to print
basic connection information for all TCP connect attempts.

the candidate eBPF program to the eBPF verifier. If the symbolic veri-
fier finds an assertion statement that is not upheld or times out, then
it passes its error message to the Prompter.

3.6 eBPF Verifier
Kgent uses the existing eBPF Verifier from the operating system.
Namely, the eBPF Verifier validates that the eBPF candidate program
produced by the Symbolic Verifier contains no unbounded loops or
arbitrary memory accesses. If the eBPF verifier is unable to assure
that the candidate program is safe, it passes its error message back to
the Prompter. Otherwise, the eBPF verifier passes the eBPF candidate
program to the user as its final synthesized eBPF program.

3.7 Implementation
We implement Kgent, eBPFNLDataset, and KeRnelCompDataset
using 4244 LOC in Python, we add 51 LOC to the bpftrace compiler
to add support for assume and assert functions. Kgent uses SeaHorn
[19] as its Symbolic Verifier and Z3 [10] as its backend SMT solver.
SeaHorn symbolically executes LLMV IR; Kgent uses SeaHorn by
compiling the output of the Comprehension Engine to LLVM IR.

Kgent supports a multitude of LLM, but employs GPT-4 API by
default. Our current Kgent prototype only works on Linux. Kgent
can synthesize eBPF programs for both libbpf and bpftrace, but it
defaults to bpftrace because we found that Kgent is more effective
at synthesizing bpftrace programs (section 5).

4 Case Study
This section describes a case study of using Kgent to provide an
example of how each of Kgent’s steps works. We crafted this sce-
nario specifically to illustrate Kgent’s behavior; it is not a test from
eBPFNLDataset.

In this case study, a user wishes to display information to their
terminal about all of the TCP connections that are made to their
webserver so that they can detect denial of service attacks that are
made against it. Kernel extensions offer a good mechanism for per-
forming full system telemetry. However, since the developer is not
a Linux kernel expert, they turn to Kgent to help them build their
eBPF program. Figure 2 shows the developer’s prompt that the de-
veloper issues to Kgent. They ask the system to trace all IPv4 and
IPv6 tcp_connect events and specify their desired output including
the proper order for each port.

”kretprobe:tcp_connect_init”: {
”pre”: {

”sk”: ”!=null”,
}

}

Figure 3: JSON for the matching element in KeRnelComp-
Dataset for the kernel probe

1 kprobe:tcp_connect {
2 $sk = (struct sock *) arg0;
3 assume($sk != 0);
4 assume($sk->__sk_common.skc_rcv_saddr != 0);
5 assume($sk->__sk_common.skc_daddr != 0);
6 assume($sk->__sk_common.skc_num >= 0);
7 assume($sk->__sk_common.skc_dport >= 0);
8 assume(sizeof($sk->__sk_common.skc_rcv_saddr) == 4

|| sizeof($sk->__sk_common.skc_rcv_saddr) == 16);↩→
9 assume(sizeof($sk->__sk_common.skc_daddr) == 4 ||

sizeof($sk->__sk_common.skc_daddr) == 16);↩→
10 $saddr = ntop(2, $sk->__sk_common.skc_rcv_saddr);
11 $daddr = ntop(2, $sk->__sk_common.skc_daddr);
12 $sport = ($sk->__sk_common.skc_num);
13 $dport = ($sk->__sk_common.skc_dport);
14 printf(”TCP connect: %s:%d -> %s:%d\n”, $saddr, $sport,

$daddr, $dport);↩→
15 assert($dport ==

bswap($sk->__sk_common.skc_dport));↩→
16 assert($sport == bswap($sk->__sk_common.skc_num));
17 }

Figure 4: Annotated candidate eBPF program produced by
the Comprehension Engine for verification. The original syn-
thesized eBPF program is shown in gray. Pre-conditions in-
ferred from KeRnelCompDataset are shown in pink. Pre-
conditions inferred from the user prompt are shown in yel-
low. Finally, post-conditions inferred from the user’s prompt
are shown in blue.

kprobe:tcp_connect {
$saddr = ntop(2, $sk->__sk_common.skc_rcv_saddr);
$daddr = ntop(2, $sk->__sk_common.skc_daddr);
$sport = (bswap($sk->__sk_common.skc_num));
$dport = (bswap($sk->__sk_common.skc_dport));
printf(”TCP connect: %s:%d -> %s:%d\n”, $saddr, $sport,

$daddr, $dport);↩→
}

Figure 5: The output of the Synthesis Engine on the second
iteration for the prompt of fig. 2 and the error message for
the symbolic verification failure of fig. 4

5 Evaluation
Kgent employs GPT-4 API 2023 September version as its LLM. Addi-
tionally, unless otherwise specified, we train the system using KeR-
nelCompDataset and the set of prompt-eBPF program pairs from

33

Kgent: Kernel Extensions Large Language Model Agent eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia

C K
0

20

40

60

80

100
Case 1

C K
0

20

40

60

80

100
Case 2

C K
0

20

40

60

80

100
Case 3

C K
0

20

40

60

80

100
Case 4

C K
0

20

40

60

80

100
Case 5

C K
0

20

40

60

80

100
Case 6

C K
0

20

40

60

80

100
Case 7

C K
0

20

40

60

80

100
Case 8

C K
0

20

40

60

80

100
Case 9

C K
0

20

40

60

80

100
Case 10

C K
0

20

40

60

80

100
Case 11

C K
0

20

40

60

80

100
Case 12

C K
0

20

40

60

80

100
Case 13

C K
0

20

40

60

80

100
Case 14

C K
0

20

40

60

80

100
Case 15

C K
0

20

40

60

80

100
Case 16

C K
0

20

40

60

80

100
Case 17

C K
0

20

40

60

80

100
Case 18

C K
0

20

40

60

80

100
Case 19

C K
0

20

40

60

80

100
Case 20

C K
0

20

40

60

80

100
Case 21

C K
0

20

40

60

80

100
Case 22

C K
0

20

40

60

80

100
Case 23

C K
0

20

40

60

80

100
Case 24

C K
0

20

40

60

80

100
Case 25

C K
0

20

40

60

80

100
Case 26

C K
0

20

40

60

80

100
Case 27

C K
0

20

40

60

80

100
Case 28

C K
0

20

40

60

80

100
Case 29

C K
0

20

40

60

80

100
Case 30

C K
0

20

40

60

80

100
Case 31

C K
0

20

40

60

80

100
Case 32

C K
0

20

40

60

80

100
Case 33

C K
0

20

40

60

80

100
Case 34

C K
0

20

40

60

80

100
Case 35

C K
0

20

40

60

80

100
Case 36

C K
0

20

40

60

80

100
Case 37

C K
0

20

40

60

80

100
Case 38

C K
0

20

40

60

80

100
Case 39

C K
0

20

40

60

80

100
Case 40

Figure 6: The per-prompt effectiveness of Kgent (K) and
a GPT-4 (C). Each bar chart shows the percentage of time
that Kgent/GPT-4 synthesizes an accurate(red), false nega-
tive (pink), or false positive(grey) eBPF program for each
prompt over ten trials.

eBPFNLDataset that were scrapped from the popular web blog [16]
and test the system using the set of prompt-eBPF program pairs from
eBPFNLDataset that we created anew. We create a baseline that
synthesizes eBPF programs using a single prompting of GPT-4 and
verifies the output eBPF program by using the built-in eBPF verifier.

Since each prompt can be correctly implemented inmultiple ways,
we manually inspect Kgent’s synthesized eBPF program for each
prompt to determine if the output correctly implements the prompt.
We calculate the Accuracy (A) of Kgent for each experiment, which
is the fraction of prompts for which Kgent synthesized a correct
eBPF program.

To understand the consequence of Kgent’s incorrect outputs, we
split the prompts for which Kgent fails to correctly synthesize an
eBPF program into two categories: False Negative (FNs), which are
the percentage of prompts for which Kgent fails to synthesize a ver-
ified eBPF program, and False Positives (FPs), which are the percent-
age of prompts for which Kgent synthesizes a verified eBPF pro-
gram that does not correctly implement the prompt. Conceptually,
FPs represent a safety violation since a developer using Kgent may
extend their kernel incorrectly when Kgent produces a false posi-
tive. In contrast, FNs represent a liveness violation since a developer
is effectively unable to use Kgent for such prompts.

System A FP FN
GPT-4 few shot 30% 2.5% 67.5%
GPT-4+Feedback 60% 7.5% 32.5%
GPT-4+Feedback+Symbex 77.5% 5% 17.5%
Human Expertise 72.5% 2.5% 25%
Kgent 80% 2.5% 17.5%

Table 1: The Breakdown Accuracy Analysis of Kgent

5.1 Kgent Effectiveness
For each prompt in the eBPFNLDataset test set, fig. 6 shows a bar de-
picting the percentage of time that Kgent and the GPT-4 baseline are
accurate, produce a false positive, and produce false negative across
10 iterations of the prompt. Inspecting the results for each individ-
ual test case, we observe that Kgent generates a correct program
more often than the baseline in 37 of the 40 test cases. In 11 of 40
test cases, Kgent improves the accuracy rate by more than a factor
of 9 (i.e., the accuracy rate improves from at most 10% in the baseline
to at least 90% in Kgent). In addition, Kgent improves on the false
positive rate in 6 of the 9 test cases in which either system observes
a false positive.

5.2 The Effectiveness of Kgent’s Design
Decisions

We first evaluate the impact of each of Kgent’s high-level design de-
cisions, then describe an experiment showing the benefit of Kgent’s
comprehension and symbolic execution engines, and finally describe
the impact of synthesizing eBPF programs to use bpftrace instead of
libbpf.

5.2.1 Effectiveness of Kgent’s High-Level Design Decisions.
Table table 1 shows how each high-level design decision impacts
Kgent’s effectiveness. Each row in the table represents a different
configuration. We start from the GPT-4 few shot baseline and apply
Kgent’s design features in the the order of largest impact on accu-
racy. Namely, we first include Kgent’s model-guided feedback, then
Kgent’s comprehension and symbolic execution components (sym-
bex), and finally add training using the blog-gathered portion of the
eBPFNLDataset dataset. We note that it is not meaningful to sep-
arate Kgent’s comprehension engine from its symbolic execution
components.

The results indicate that model-guided feedback plays a large role
in improving the accuracy of Kgent, as it improves the accuracy by
a factor of 2 (from 30%to 60%). However, this increase in accuracy
comes with a factor of 3 increase in false positive rate (from 2.5%
to 7.5%). Including the comprehension engine and symbolic execu-
tion component also improves Kgent’s effectiveness substantially—
accuracy improves to 77.5%, while the false positive rate moves to 5%.
Including the eBPFNLDataset dataset in training comes with a rel-
atively small impact on Kgent’s accuracy—it only improves by 2.5%.
However, training using the eBPFNLDataset dataset does bring Kgent’s
false positive rate back down to the baseline of 2.5%

5.2.2 Effectiveness of Kgent’s Comprehension and Symbolic
Execution Engine. To identify the power of Kgent’s automated
reasoning, we create a baseline that replaces the comprehension and
symbolic execution engines with developer expertise. We augment

34

eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia Yusheng Zheng, Yiwei Yang, Maolin Chen, and Andrew Quinn

the eBPFNLDataset test set with correct kprobe and kretprobe lo-
cations for each prompt and use this augmented dataset as input
to the GPT-4 + feedback + dataset baseline, producing a human ex-
pertise baseline. Kgent demonstrates higher accuracy without ad-
ditional false positives compared to the human expertise baseline,
despite not directly passing the output of the comprehension and
symbolic execution engines into its synthesis engine. We hypoth-
esize that Kgent’s feedback loop, initiated on each symbolic execu-
tion failure, provides the synthesis engine with sufficient knowledge
to replace the human expertise from the baseline, revealing a pow-
erful synergy between Kgent’s feedback feature and its automated
reasoning features.

5.2.3 Effectiveness of using bpftrace instead of libbpf. We
compare the synthesis of eBPF programs using bpftrace and libbpf.
Although libbpf offers more flexibility, it also introduces more pro-
gramming complexity. Due to state explosion caused by frequent
helper function usage in libbpf programs, Kgent’s symbolic execu-
tion engine rarely terminates on them. When not using Kgent’s
comprehension and symbolic execution engines, the accuracy of libbpf
programs is 37.5%, while bpftrace programs achieve 60% accuracy.
Additionally, libbpf programs take an average of 2.16 seconds to syn-
thesize, compared to 1 second for bpftrace programs. We conclude
that bpftrace is a better synthesis target for our eBPF use cases.

6 Conclusion
In conclusion, we presented Kgent, a system that helps developers
extend their kernels with eBPF by using symbolic execution to in-
tegrate results from LLM-based program synthesis and comprehen-
sion. Additionally, we produce datasets valuable for building and
evaluating Kgent and future eBPF program synthesis work. Future
work involves enhancing Kgent’s performance and usability, ex-
panding its datasets, and exploring real-world applications to further
advance eBPF program synthesis.

References
[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-

fied Pre-training for Program Understanding and Generation. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. Association for Computational Linguis-
tics, Online, 2655–2668. https://doi.org/10.18653/v1/2021.naacl-main.211

[2] Maximilian Bachl, Joachim Fabini, and Tanja Zseby. 2021. A flow-based IDS using
Machine Learning in eBPF. CoRR abs/2102.09980 (2021). arXiv:2102.09980 https:
//arxiv.org/abs/2102.09980

[3] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs.. In
OSDI, Vol. 8. 209–224.

[4] Yiannis Charalambous, Norbert Tihanyi, Ridhi Jain, Youcheng Sun, Mo-
hamed Amine Ferrag, and Lucas C Cordeiro. 2023. A New Era in Software Security:
Towards Self-Healing Software via Large Language Models and Formal Verifica-
tion. arXiv preprint arXiv:2305.14752 (2023).

[5] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2023. Teaching
large language models to self-debug. arXiv preprint arXiv:2304.05128 (2023).

[6] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A Plat-
form for in-Vivo Multi-Path Analysis of Software Systems. In Proceedings of the
Sixteenth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Newport Beach, California, USA) (ASPLOS XVI).
Association for Computing Machinery, New York, NY, USA, 265–278. https:
//doi.org/10.1145/1950365.1950396

[7] Edmund M. Clarke and E. Allen Emerson. 1982. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. In Logics of Programs, Dex-
ter Kozen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 52–71.

[8] Cloudflare. 2023. ebpf_exporter: eBPF-based exporter for Prometheus. GitHub
repository. https://github.com/cloudflare/ebpf_exporter.

[9] Alibaba Cloud Native Community. 2023. Seven Core Issues about eBPF. https:
//www.alibabacloud.com/blog/seven-core-issues-about-ebpf_599668.

[10] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[11] eBPF for Windows Contributors. 2023. eBPF for Windows. https://github.com/
microsoft/ebpf-for-windows.

[12] Ahmed Elnaggar, Wei Ding, Llion Jones, Tom Gibbs, Tamas Feher, Christoph An-
gerer, Silvia Severini, Florian Matthes, and Burkhard Rost. 2021. CodeTrans: To-
wards Cracking the Language of Silicon’s Code Through Self-Supervised Deep
Learning and High Performance Computing. arXiv:2104.02443 [cs.SE]

[13] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming
Gong (YIMING), Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming
Zhou. 2020. CodeBERT: A Pre-Trained Model for Programming and Natu-
ral Languages. In Findings of EMNLP 2020. https://www.microsoft.com/en-
us/research/publication/codebert-a-pre-trained-model-for-programming-and-
natural-languages/

[14] fuzzing book author. [n. d.]. The fuzzing book: Concolic Fuzzing. https://www.
fuzzingbook.org/beta/html/SymbolicFuzzer.html.

[15] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin, and Gilles Muller. 2021.
{BMC}: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Pro-
cessing. In 18th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 21). 487–501.

[16] Brenden Gregg. 2001. Brenden Gregg’s Homepage. https://www.brendangregg.
com/.

[17] Brenden Gregg. 2016. Linux Extended BPF (eBPF) Tracing Tools. https://www.
brendangregg.com/ebpf.html.

[18] Brendan Gregg. 2021. Computing Performance. (2021).
[19] Arie Gurfinkel, Temesghen Kahsai, and Jorge A Navas. 2015. SeaHorn: A frame-

work for verifying C programs (competition contribution). In International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
447–450.

[20] Robusta Intellegence. [n. d.]. LangChain. https://www.langchain.com/.
[21] Jinghao Jia, Michael V Le, Salman Ahmed, Dan Williams, and Hani Jamjoom. 2023.

Practical and Flexible Kernel CFI Enforcement using eBPF. In Proceedings of the 1st
Workshop on eBPF and Kernel Extensions. 84–85.

[22] Jinghao Jia, YiFei Zhu, Dan Williams, Andrea Arcangeli, Claudio Canella, Hu-
bertus Franke, Tobin Feldman-Fitzthum, Dimitrios Skarlatos, Daniel Gruss, and
Tianyin Xu. 2023. Programmable System Call Security with eBPF. arXiv preprint
arXiv:2302.10366 (2023).

[23] Andrea Mayer, Pierpaolo Loreti, Lorenzo Bracciale, Paolo Lungaroni, Stefano Sal-
sano, and Clarence Filsfils. 2021. Performance Monitoring with Hˆ2: Hybrid Ker-
nel/eBPF data plane for SRv6 based Hybrid SDN. Computer Networks 185 (2021),
107705. https://doi.org/10.1016/j.comnet.2020.107705

[24] Jeff H. Perkins and Michael D. Ernst. 2004. Efficient Incremental Algorithms for
Dynamic Detection of Likely Invariants. In Proceedings of the 12th ACM SIGSOFT
Twelfth International Symposium on Foundations of Software Engineering (Newport
Beach, CA, USA) (SIGSOFT ’04/FSE-12). Association for Computing Machinery,
New York, NY, USA, 23–32. https://doi.org/10.1145/1029894.1029901

[25] Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James Anibal, Alec Peltekian, and
Yanfang Ye. 2021. Cotext: Multi-task learning with code-text transformer. arXiv
preprint arXiv:2105.08645 (2021).

[26] Gabriel Poesia, Kanishk Gandhi, Eric Zelikman, and Noah D Goodman. 2023. Cer-
tified Reasoning with Language Models. arXiv preprint arXiv:2306.04031 (2023).

[27] IO Visor Project. 2023. BPF Compiler Collection (bcc). Available: https://github.
com/iovisor/bcc.

[28] J. P. Queille and J. Sifakis. 1982. Specification and verification of concurrent sys-
tems in CESAR. In International Symposium on Programming, Mariangiola Dezani-
Ciancaglini and Ugo Montanari (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 337–351.

[29] Agam Shah. [n. d.]. Google TPU v5e AI Chip Debuts after Controversial Ori-
gins. https://www.enterpriseai.news/2023/08/31/google-tpu-v5e-ai-chip-debuts-
after-controversial-origins/.

[30] IO Visor. 2023. bpftrace: High-level tracing language for Linux eBPF. GitHub
repository. https://github.com/iovisor/bpftrace.

[31] JianguoWang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu
Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus: A purpose-
built vector data management system. In Proceedings of the 2021 International Con-
ference on Management of Data. 2614–2627.

[32] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Generalizing
from a few examples: A survey on few-shot learning. ACM computing surveys (csur)
53, 3 (2020), 1–34.

[33] Wikipedia. [n. d.]. The Wikipedia of HarmonyOS. https://en.wikipedia.org/wiki/
HarmonyOS.

35

https://doi.org/10.18653/v1/2021.naacl-main.211
https://arxiv.org/abs/2102.09980
https://arxiv.org/abs/2102.09980
https://arxiv.org/abs/2102.09980
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1145/1950365.1950396
https://github.com/cloudflare/ebpf_exporter
https://www.alibabacloud.com/blog/seven-core-issues-about-ebpf_599668
https://www.alibabacloud.com/blog/seven-core-issues-about-ebpf_599668
https://github.com/microsoft/ebpf-for-windows
https://github.com/microsoft/ebpf-for-windows
https://arxiv.org/abs/2104.02443
https://www.microsoft.com/en-us/research/publication/codebert-a-pre-trained-model-for-programming-and-natural-languages/
https://www.microsoft.com/en-us/research/publication/codebert-a-pre-trained-model-for-programming-and-natural-languages/
https://www.microsoft.com/en-us/research/publication/codebert-a-pre-trained-model-for-programming-and-natural-languages/
https://www.fuzzingbook.org/beta/html/SymbolicFuzzer.html
https://www.fuzzingbook.org/beta/html/SymbolicFuzzer.html
https://www.brendangregg.com/
https://www.brendangregg.com/
https://www.brendangregg.com/ebpf.html
https://www.brendangregg.com/ebpf.html
https://www.langchain.com/
https://doi.org/10.1016/j.comnet.2020.107705
https://doi.org/10.1145/1029894.1029901
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://www.enterpriseai.news/2023/08/31/google-tpu-v5e-ai-chip-debuts-after-controversial-origins/
https://www.enterpriseai.news/2023/08/31/google-tpu-v5e-ai-chip-debuts-after-controversial-origins/
https://github.com/iovisor/bpftrace
https://en.wikipedia.org/wiki/HarmonyOS
https://en.wikipedia.org/wiki/HarmonyOS

Kgent: Kernel Extensions Large Language Model Agent eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia

[34] HongqiuWu, Hai Zhao, andMin Zhang. 2020. Code summarization with structure-
induced transformer. arXiv preprint arXiv:2012.14710 (2020).

[35] Zhe Yang, Youyou Lu, Xiaojian Liao, Youmin Chen, Junru Li, Siyu He, and Jiwu Shu.
2023. {𝜆-IO}: A Unified {IO} Stack for Computational Storage. In 21st USENIX
Conference on File and Storage Technologies (FAST 23). 347–362.

[36] Yusheng Zheng, Tong Yu, Yiwei Yang, Yanpeng Hu, Xiaozheng Lai, and Andrew
Quinn. 2023. bpftime: userspace eBPF Runtime for Uprobe, Syscall and Kernel-User
Interactions. arXiv:2311.07923 [cs.OS]

[37] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao, Evan Mester-
hazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan Stutsman, and Asaf Cidon.
2022. XRP: In-Kernel Storage Functions with eBPF. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22). USENIX Association,
Carlsbad, CA, 375–393. https://www.usenix.org/conference/osdi22/presentation/
zhong

[38] Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and Stephan
Günnemann. 2021. Language-agnostic representation learning of source code from
structure and context. arXiv preprint arXiv:2103.11318 (2021).

36

https://arxiv.org/abs/2311.07923
https://www.usenix.org/conference/osdi22/presentation/zhong
https://www.usenix.org/conference/osdi22/presentation/zhong

	Abstract
	1 Introduction
	2 Background
	3 System Design
	3.1 Workflow
	3.2 Prompter
	3.3 Synthesis Engine
	3.4 Comprehension Engine
	3.5 Symbolic Verifier
	3.6 eBPF Verifier
	3.7 Implementation

	4 Case Study
	5 Evaluation
	5.1 Kgent Effectiveness
	5.2 The Effectiveness of Kgent's Design Decisions

	6 Conclusion
	References

