
490272-1732/00/$10.00 2000 IEEE

The need to access anything from
anywhere has increased the role of distributed
file servers in computing. Distributed file sys-
tems provide local file system semantics for
access to remote storage. This allows network
clients to incorporate the remote storage into
their local file system. File semantics are well
understood by users and applications, mak-
ing distributed file servers a convenient tool
in developing distributed applications.

As the role played by distributed file sys-
tems expands, problems with their design
become increasingly evident. Faster clients,
high-bandwidth connections, and larger drive
capacities increase the demand on file servers.
Although it would seem that the I/O capaci-
ty of the system storage devices would limit
network file server performance, in actuality,
file servers frequently are CPU bound. Riedel
and Gibson discovered that, even with low
overall CPU utilization, burst loads were suf-
ficiently intense to overuse the server.1

In addition to the performance problems
of distributed network file systems, security
also presents a problem. Applications that rely
on distributed file systems should not be com-
promised by security weaknesses of the file sys-
tems on which they are built. Local file
systems have a single kernel that restricts
access to file data, but because a distributed

file system involves multiple servers and
clients, it cannot rely on a single kernel to
restrict access. The security risk is even greater
since the network that connects servers and
clients may also pose a threat.

The authenticated network-attached disks
we present address these problems by provid-
ing an architecture based on one-way hash
functions that make available mutual authen-
tication of the network disks and the clients.
This architecture obviates the need for more
performance-intensive authentication meth-
ods such as public-key encryption and Ker-
beros,2 but does not preclude their use. The
authentication protocol used by the network
storage is very simple and flexible, and allows
keys to be created and managed using exist-
ing authentication systems.

Distributed file systems
In classical distributed file systems, all access-

es to the data store are through the file server.
The file server verifies the data’s accessibility
before carrying out the client request. The data
store is usually locally attached to the file serv-
er. Since the data storage is only attached to
the file server, it can simply carry out the
requests of the file server without having to
authenticate or check access permissions.

File systems such as Swift3 and Zebra4 as well

Benjamin C. Reed
Edward G. Chron
Randal C. Burns

IBM Almaden

Research Center

Darrell D.E. Long
University of California,

Santa Cruz

WE PRESENT AN ARCHITECTURE FOR NETWORK-AUTHENTICATED DISKS THAT

IMPLEMENTS DISTRIBUTED FILE SYSTEMS WITHOUT FILE SERVERS OR

ENCRYPTION. OUR SYSTEM PROVIDES NETWORK CLIENTS WITH DIRECT

NETWORK ACCESS TO REMOTE STORAGE.

AUTHENTICATING
NETWORK-ATTACHED STORAGE

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 18,2020 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

as the Network-Attached
Storage (NASD)5 prototypes,
separate the file server and the
data stores. The clients get file
system metadata from the file
server, but get file data direct-
ly from the data stores. One
complication of separating
data and metadata is deter-
mining client access privi-
leges. Both the file servers and
the data stores must verify that
the client has access permis-

sion to the data.
In file systems that separate the authentica-

tion and file serving components, such as
Andrew File System (AFS),6 an authentica-
tion server is generally present. The client
authenticates the user to the authentication
server by a password, ticket, or other method.
The authentication server gives the client new
tickets that are presented to the file server.
These tickets may grant access to specific files
on the file server or may simply authenticate
the identity of the user.

Serverless file systems
The serverless file system,7 developed in

conjunction with the Network of Worksta-
tions (NOW) project at the University of Cal-
ifornia, Berkeley, consists of a network of
trusted workstations that provide the func-
tionality normally provided by a network serv-
er. The result is a file system that has no central
repository of files. Instead, the file system data
and metadata is spread among the network of
trusted workstations.

By spreading the file system data and meta-
data across multiple machines, the aggregated
resources are much greater than that found on
a normal file server. These resources include
cache size, network bandwidth, and process-
ing power. Striping and logging is also used
to boost performance.

Network-attached storage devices
The NASD project at Carnegie Mellon

University keeps the file server, but allows
clients direct access to file data stored on net-
work-attached disks to boost performance.
Before network clients access files, their
requests must be authenticated and permis-
sions checked. The file servers generally per-

form this checking. However, if clients are
allowed to directly access the disks, the disks
must verify the authority of the client’s access
to the data.

In NASD, when a client wishes to access data
on the disk, the client obtains a capability from
the file server. The client then presents the capa-
bility with a request to the network disk, which
verifies that the capability allows the requested
action before carrying it out. NASD requires a
file server to serve the metadata and generate
capabilities for file system clients.

While the serverless file system yields dra-
matic performance improvements when com-
pared to a more centralized file system, these
enhancements can reduce security. The server-
less file system is designed to run in a trusted
environment, where the client and manager
kernel protect the file system from malicious
access. This kind of environment is found in
NOW and in networks where all machines
are administered and trusted equally.

SCARED
Our project extends the network-attached

storage model of NASD to enable directory
data as well as file data storage on the network.
We also allow the clients to share keys to access
the network storage. The end result is a net-
work-storage device we use to build a server-
less file system that can run in an untrusted
environment.

The SeCure Authentication for Remotely
Encrypted Devices (SCARED) protocols were
developed at IBM Research for use in net-
work-attached storage. One of the main
design requirements was minimizing the man-
agement overhead of the storage devices. File
servers require a substantial investment in
management resources. Pulling the storage
out of the servers and attaching them to the
network increases the number of managed
network devices. If the administrative require-
ment increases proportionally to the number
of devices, the system would quickly become
unmanageable. The management of network-
attached storage is further complicated due to
the lack of a management console. For these
reasons we push the administrative overhead
out to the clients, where the storage device
administration can occur along with the nor-
mal configuration of the client to use the net-
work storage.

50

NETWORK STORAGE

IEEE MICRO

SCARED’S end result is a

network-storage device we

use to build a serverless file

system that can run in an

untrusted environment.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 18,2020 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

Storage devices are deployed in environments
with a wide variety of existing authentication
systems such as Kerberos and public key-based
systems, so we did not make assumptions about
the deployment environments of the devices.
The authentication operations performed at the
storage device are simple and allow the device to
remain oblivious to the existing security envi-
ronment. Since the keys used to interact with
the storage devices are generated and exchanged
by users and administrators without commu-
nicating with the storage, the key exchanges can
take place within the existing systems.

SCARED addresses authentication
The confidentiality requirements of stor-

age devices are best solved by encrypting and
decrypting at the clients. Encrypting data is
expensive in terms of processing overhead and
introduces latency. Encryption and decryp-
tion at the client allows the data to be
encrypted over the network and on the stor-
age media itself without any overhead at the
server. Of course, SCARED does not pre-
clude link-level encryption.

In the SCARED environment there are
three roles: the client, the administrator, and
the storage device. The storage device shares
a key with the administrator. The adminis-
trator uses this key to generate other keys for
clients. Clients use the derived keys to access
the storage devices.

An important feature of the SCARED
protocol is that the administrator does not
need to be online with the disk when grant-
ing access to clients. Not only does this relax
the network topology requirements, but it
also allows the administrator to give access
keys to clients using offline methods such as
e-mail.

A client uses the keys received from the
administrator to generate message authenti-
cation codes (MACs)8 that are included in all
message exchanges between the client and
storage devices. A MAC function takes a
string and a secret key, and outputs a fixed-
length string. The MAC has some crypto-
graphic properties that allow either party to
verify if the message sender was in possession
of a specific key and whether the message was
changed in transit. Once the storage device
checks the MAC, it grants access to the client
based on the key used to generate the MAC.

Key distribution without key
exchange

Using MACs to authenti-
cate messages between the
clients and storage devices
requires that they share a key.
SCARED uses a key distrib-
ution scheme that does not
require any key exchange or
encryption.

We wanted to keep the
device from having to per-
form key management or
from involvement with dis-
tributing keys to clients, so
the storage device itself con-
tains only one key: the disk key. The storage
administrator and the storage device share this
key. All other keys are based on this key, which
is used to bootstrap the security of the disk.
We assume that the administrator receives the
disk key with the storage device. This may be
in the form of a smart card, disk, or paper that
comes with the device. Another method,
which is used by NASD, is to allow the
administrator to generate and send the disk
key to the disk at initial network connection.

SCARED uses the disk key to generate the
other keys needed by clients to generate and
verify the MACs used when communicating
with the storage device. The key derivation is
based on a keyed, one-way, hash function,
H(D,K) that takes a public value D and a secret
key K as input, and outputs a new secret.

For keys to be meaningful to the storage
device, they need to contain associated data that
conveys identity and capability. The hash func-
tion binds the data associated with a key to the
key itself. In general, a key K′ is the result of
H(D ′,K), where D′ is some public data associ-
ated with K′, and K is the key that is used to
derive K′. For example, the administrator can
use the disk key to derive a key and send it to the
client over a secure channel. When the client
sends a message to the disk, he or she will
include the public data associated with the key
in the message, then MAC the message using
the key obtained from the administrator. The
device can regenerate the client’s key using the
public data and the disk key to verify the MAC.

The public key data lets the storage device
not only derive the key that the client is using,
but also check the client’s access status to the

51JANUARY–FEBRUARY 2000

Encryption and decryption at

the client allows the data to be

encrypted over the network

and on the storage media itself

without any overhead at the

server.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 18,2020 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

device. Because the key is derived using a one-
way hash and the key data, when the client
uses a key, the client must also send the key
data associated with the key. The binding
between the key and key data allows the
administrator to put information in the key
data that the storage device uses to grant access
to the client. By including an expiration date
as part of the key data, the administrator can
limit the key’s lifetime.

Key types
The authentication needs of a client and

storage device differ, so the keys they use also
differ. The client needs to verify that respons-
es received from a storage device actually came
from a given device. The device needs to ver-
ify that the client has the authority to make a
request. When a client uses a key to send a
request to the storage device, we refer to the
key as an access key. A key used to verify the
origin of a response is called a response key.

Another way of classifying keys is by the
type of public data associated with them. If
the data is related to the type of operations
possible using the key and with the targets of
the operations, the key is called a capability
key. If the data is related to the identity of the
possessor or group membership, the key is
called an identity key.

Both capability and identity keys can be
used as access keys. If the objects have access
lists associated with them, the device will use
identity keys to check access. If access lists are
not used, the device must check access using

capability keys. Access lists imply fewer keys
managed at the clients, but more metadata
managed at the devices. Capability keys
require very little metadata managed at the
devices, but more keys managed by the clients.

Since clients are only interested in authen-
ticating the device that generated a response,
response keys are always identity keys. A client
receives a response key, generated specifically
for that client by the administrator, to authen-
ticate responses from a specific device.

Generating capability keys
A capability key allows performance of a

specific operation on a storage device. The
data used to generate the key govern the type
of operation permitted and the details of that
operation.

The capability key is generated by hashing
the disk key with the key data. The key and its
corresponding data are given to the client.
Note that the capability key must be kept
secret, requiring a secure channel to send the
key to the client.

A capability key can generate another capa-
bility key that is a restricted subset of the capa-
bilities of the first key. Anyone in possession
of a capability key can do this, not just the
administrator, which makes it convenient for
highly distributed file systems. When distrib-
uting the new capability key, the new key’s
corresponding data includes the data used to
compute the new key and the key data from
the original capability key.

For example, in Figure 1 if the administra-
tor wishes to grant Bob the ability to read and
write object 232 on the storage device, the
administrator would generate K1 with the
READ and WRITE attributes in data1 along
with object 232. Bob could then grant Bren-
da the ability to read object 232 by only
including the READ attribute and object 232
in data2. Brenda could generate another capa-
bility key to read object 232, but could not
generate a capability key to write to object 232,
since the WRITE attribute is not among the
capabilities of the key that Brenda possesses.

Generating identity keys
Identity keys allow a receiver to check a

sender’s identity by including an identifica-
tion string as part of the key data. Like capa-
bility keys, identity keys are generated by

52

NETWORK STORAGE

IEEE MICRO

K

Storage
Brenda

Bob Administrator

data1, data2, K2

 K2 = H(data1 + data2, K1)
 K

K1 = H(data1, K)

data1, K1

Figure 1. The administrator shares a key, K, with the storage device, which
generates keys for the clients. In this example the messages must be
exchanged over secure channels.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 18,2020 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

hashing the identification string as part of the
key data and the disk key. The client receives,
via a secure channel, the resulting identity key
and the corresponding key data.

As with capability keys, identity key own-
ers can generate other identity keys. When a
new identity key is generated, the possessor of
the original key vouches for the new key hold-
er’s identity. This lets a nonadministrative user
create a new identity key to access objects that
the original user can already access.

For example, in Figure 1 if the administra-
tor wishes to identify Bob to the storage device,
the administrator would include a string iden-
tifying Bob in data1. Bob could then create a
new key identifying Brenda to the disk by
including a string identifying Brenda in data2.
Note that the storage device would only rec-
ognize K2 as valid if Bob were authorized to
identify other users or if Brenda were only
accessing objects that Bob can access.

SCARED security protocol
SCARED addresses three aspects of securi-

ty: identity and capability, integrity, and fresh-
ness. When a message is received, the recipient
must validate who sent the message or at least
that the sender was authorized to send the
message. Next, the receiver needs to validate
the message’s integrity by verifying that the
message was not changed in transit. Since the
recipient can validate the sender, it would
seem to imply that the recipient could also
validate that the message is the one sent by the
sender. In practice, this integrity guarantee is
not always available. SCARED enables the
network storage to validate both the identity
of the sender and the message’s integrity.
Finally, the receiver must validate that the
message was sent recently (that the message is
fresh) or at least validate that the message is
not a replay of an older message.

The first phase of the SCARED protocol is
to establish a freshness guarantee. After a fresh-
ness guarantee is established, the clients and
storage use the message protocol to send
requests and receive replies. When presenting
the protocols, it is assumed that clients are in
possession of the keys needed for accessing the
storage, and that the storage is only in posses-
sion of the disk key. The access key used by the
client is denoted by Ka, and the key data cor-
responding to Ka is denoted by Da. The

response key is denoted by Kr

and its key data Dr.

Freshness guarantees
To guarantee the freshness

of messages, SCARED uses
timers, nonces (numbers gen-
erated in such a way that the
same number is not generat-
ed twice), and counters.
When using timers, all parties
involved in a transaction have
timers that are reasonably synchronized.
Nonces and counters do not require clocks,
but do require that the nonce and counters
never take on the same value. Counters must
be monotonically increasing.

The clients always use nonces to check the
freshness of a response, since a nonce is the
freshness guarantee with the fewest require-
ments. When illustrating the protocol
exchange, we denote the client nonce using Fc.

Storage devices require clients to include a
timer or counter in the request to check the
request’s freshness. Since the client must cal-
culate the freshness guarantee that the device
is using, nonces cannot be used. If the com-
munication with the device is session orient-
ed, the device can key a counter synchronized
with the device based on the number of mes-
sages sent, otherwise, a timer must be used.

We denote the storage counter or timer
using Fs. The FGRequest and FGResponse are
op codes used to request and receive the ini-
tial freshness guarantee. Before making
requests to the storage, the client must request
the storage counter or nonce using the fol-
lowing protocol:

C → S:M={FGRequest, Fc , Dr }, MACKr(M)
S → C:M={FGResponse, Fc ,Fs }, MACKr(M)

When the storage receives the request in the
first message, the storage generates Kr using
Dr, as shown previously. If MACKr(M) as cal-
culated by the storage device matches
MACKr(M) included in the request, the device
knows that M was generated by a client in
possession of Kr, so it will generate a response
using Kr. The storage device copies Fc

unchanged into the response.
When the client receives the second mes-

sage, it can check the MAC since it is in pos-

53JANUARY–FEBRUARY 2000

SCARED addresses three

aspects of security: identity

and capability, integrity, and

freshness.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 18,2020 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

session of Kr and thus knows
it came from the storage. The
presence of Fc in the response
lets the client know that the
message is in response to the
first message. After the mes-
sage exchange, the client has
Fs, the server freshness guar-
antee, to establish the fresh-
ness of future

communications with the server.

Verifying freshness using counters
If communication with the storage is session

oriented, counters are convenient to use for
checking the freshness of requests, since they do
not require clocks. At the beginning of the ses-
sion the client will obtain Fs, the initial session
counter. Each time the client transmits a pack-
et, it includes the counter in the request and
increments the counter for the next request.

The device can verify the freshness of the
request by ensuring that the request includes
a counter that is one greater than the previ-
ous request from the client. This means that
the storage device must maintain a counter
for each active session. The initial counter sent
to the client must be generated in such a way
that a counter used in a session with the device
was never used before.

Verifying freshness using timers
If the communication with the storage

device is not session oriented, timers are used
to let the device check freshness without keep-
ing freshness information about all clients. To
use timers, all clients intending to communi-
cate with a storage device must synchronize
their timers with those of the storage device.
This is done by setting Fs to the current device
timer in the first phase of communication
with the disk.

The client synchronizes its timer with the
storage device by saving the difference
between its timer and the storage device’s
timer. Since the client maintains a delta
between its timer and the device’s, the stor-
ages devices with which it communicates need
not, and in most cases will not, have syn-
chronized timers. The client includes the
device’s current timer in all requests to the
storage device. This enables the devices to
check that the message was sent recently.

Because of network latencies, clock drift,
and the latency of responses to requests,
checking time stamps alone does not provide
a strict guarantee of freshness. In particular,
an attacker could replay transactions in a small
time window. To thwart this recent-past replay
attack, the storage device keeps a list of mes-
sage authentication codes used in the recent
past and checks them with each message. If
the code exists in the list, the message is con-
sidered a replay.

To compensate for clock drift, the storage
device includes its current timer in all respons-
es. The clients can then resynchronize their
timers each time the storage device sends a
response.

The request protocol
Clients communicate with the storage

devices using a request and response protocol.
The client request has the form:

C → S: M =
{Operation, data, Da, Dr, Fc, Fs},
MACKa+Kr(M)

The operation requested and the data that
goes with the operation are followed by the key
data for the access and response keys used in
this communication with the network storage.
The device regenerates Ka and Kr using Da and
Dr, so that it can verify the MAC. Fs is includ-
ed to ensure the freshness of the message using
either the counter- or timer-based techniques.

If the MAC is valid, the device knows the
message arrived intact and that it was sent by
a client in possession of Ka, but it still must
verify the client’s ability to request the opera-
tion. The two approaches used by SCARED
to check access are identity and capability
based. In identity-based systems, the disk
checks access authority based on the
requester’s identity. In capability-based sys-
tems, the disk is only interested in the
requester’s ability to perform a transaction.

Since the administrator or a client in pos-
session of a capability grants capabilities by
generating access key Ka with the capabilities
contained in key data Da, the client in pos-
session of Ka also has the capabilities listed in
Da. Since Ka may be derived from other access
keys, the disk must ensure that the derived
key’s capabilities are a subset of the original

54

NETWORK STORAGE

IEEE MICRO

The two approaches used by

SCARED to check access are

identity and capability based.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 18,2020 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

key. To check if the client can carry out the
requested operation, the device checks that it
is listed as one of the capabilities.

If identities are used, Da will contain the
identity of the requester. In order for the disk
to check the requester’s ability to perform an
operation, the disk maintains access lists on
each object. When a request arrives, the disk
checks the identity in Da against the access list
of the requested object.

Response protocol
The authentication needs of the clients are

simpler than the needs of the disk. The client
only has to verify that the disk sent the
response in reply to the client’s request. The
device response has the form:

S → C: M =
{Response, data, Fc, Fs}, MACKr(M)

Kr is used in the MAC since it is the secret
shared by the client and disk. Different clients
may share the capability and identity keys, but
response key Kr is held by only one client.
After validating the MAC, the client knows
that the response arrived intact from the disk.
The presence of Fc allows the client to check
that the response is for the request containing
Fc. Fs is included to compensate for clock drifts
if the disk uses timers.

The key data are not included in the
response since the requester must already pos-
sess Kr.

Revocation
The best way to address the problem of key

revocation is to make the keys secure. Smart
cards and tamper-resistant chips provide key
security. However, the smart cards can be lost,
which would again necessitate the revocation
of the keys in the cards.

SCARED implements three ways of revok-
ing keys: keys have a limited lifetime; valid
keys are controlled at the target; and all keys
for the storage device can be revoked by
changing the disk key.

The storage device only revokes access keys,
since it isn’t necessary to revoke response keys.
Because the client uses response keys to
authenticate responses from the disk, the client
simply stops using a revoked key. The response
key does not have access rights associated with

it, so an attacker could not
gain access to a storage device
using a revoked response key.
No client would recognize
responses using the revoked
key, so an attack against a
client with a revoked key
would also be useless.

Key expiration. When giving
a key to a client, the administrator can include
an expiration time in the key data. Since a key
is only usable at one target, the expiration time
is relative to the timer on that target. Using
relative time removes the need for synchro-
nized clocks. The device checks whether an
access key is expired by comparing the expi-
ration time in the key data to its current timer.

Capability key revocation. To aid in capability
key revocation, we associate salt to the key.
Salt is a number, much like a nonce, that will
never change to a previously held value. It is
not considered secret and is stored with every
object or metadata entry. When a capability
key is generated for an object or entry, the salt
is included in the key data. When the key is
used, the salt in the key data must match the
salt in the object or entry for which an oper-
ation occurred.

When the salt is changed at an object or
entry, all keys that included the original salt
are invalidated since the salt in the keys won’t
match the new salt.

Identity key revocation. Identity key revocation
is possible in two ways. One method uses
revocation lists for unexpired and invalid iden-
tities. The other method is a simpler revoca-
tion scheme that requires the storage device
to know a priori the identity of clients with
whom it will communicate.

When key expiration information is present
in the key data, only keys that haven’t expired
need revocation. If it is assumed that most keys
that aren’t expired are valid, then an efficient
way of revoking keys is to give a list of key revo-
cations to the storage device. Based on the pre-
vious assumption, the revocation list should
be short so the identities present in requests to
the disk could be checked against the list before
accepting them as valid. Once a revoked key is
expired, it would be removed from the revo-

55JANUARY–FEBRUARY 2000

The best way to address the

problem of key revocation is to

make the keys secure.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 18,2020 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

cation list to keep the list size small.
The second way of identity-based authen-

tication is to include a counter in the identity
key calculation. The counter is stored in a table
on the storage device and indexed by the client
identifier. When a client makes a request, the
device verifies that the counter in the table is
less than or equal to the counter included in
the key data of the request. If the counter in
the table is less than the key data counter, the
device sets it to equal. To revoke a key, the stor-
age device generates a new key with a new
counter. When the new key is used, the table
is updated and the old keys become invalid.

What to do about encryption
A main feature of a secure distributed file

system is the confidentiality of file data. Cur-
rently, of the commercial distributed file sys-
tems, only DFS9 has the option of encrypting
data exchange between client and server.

A stronger level of data privacy is obtained
if the client encrypts the data before sending
it to the server for storage. The Cryptograph-
ic File System10 (CFS) performs this kind of
client-side encryption. CFS encrypts data
before it is stored in a shadow file system and
decrypts the data as it is read. Using CFS with
SCARED would keep the data confidential
and avoid the negative performance impact
of encrypting at the storage devices.

CFS has a key distribution problem, since
users must remember and distribute the
encryption keys. To overcome this problem,
we propose storing the encryption keys in the
metadata encrypted with group and user
encryption keys. This lets users obtain keys at
the moment they are needed.

One problem with storing the encryption
keys in the metadata is that if group or user
encryption keys are changed, all the metada-
ta must be updated by reencrypting the keys
using the new keys.

If the storage devices are trusted to keep
data confidential, encrypting and decrypting
at the storage devices avoids problems with
encryption key distribution. To encrypt the
data between the client and storage devices,
they must share an encryption key. They
already share a response key, so rehashing the
response key with a public constant generates
an encryption key. Requiring the storage
device to do link-level encryption increases

the processing requirements of the device.
Whether or not the network storage is

involved in ensuring the confidentiality of the
data, the SCARED protocol satisfies the
authentication requirements of network
storage.

The importance of distributed computing
as the pivotal approach to managing

computing resources and data is well recog-
nized. Scaling distributed computing solu-
tions is a challenge. Network-attached storage
provides a solution for creating scalable net-
work access to data, but requires reliable and
efficient authentication techniques to ensure
that while data is widely accessible, its con-
tent is secure from unauthorized access. The
SCARED architecture provides a mechanism
for efficient and reliable authentication to net-
work accessible storage. We are building a dis-
tributed file system on top of SCARED which
we call Brave. It is serverless in the sense that
there is no central file server, but it stores all
data and metadata on network-attached stor-
age unlike the serverless file system described
earlier. Currently, we have a prototype virtu-
al file system (VFS) for Linux and a SCARED
device written in Java. MICRO

Acknowledgments
We thank Ted Anderson of Transarc for his

invaluable comments while writing this article.

References
1. E. Riedel and G. Gibson, “Understanding

Customer Dissatisfaction with Underutilized
Distributed File Servers,” Proc. Fifth NASA
Goddard Space Flight Center Conf. on Mass
Storage Systems and Technologies, 1996,
h t t p : / / w w w . p d l . c s . c m u . e d u / P D L -
FTP/NASD/Goddard96.abstract.html.

2. C. Neumann and T. Ts’o, “Kerberos: An
Authentication Service for Computer Net-
works, IEEE Communications Magazine,
Sept. 1994, pp. 33-38.

3. L.-F. Cabrera and D.D.E. Long, “Swift: Using
Distributed Disk Striping to Provide High I/O
Data Rates,” Computing Systems, Vol. 4,
No. 4, 1991, pp. 405-436.

4. J.H. Hartman and J.K. Ousterhout, “The
Zebra Striped Network File System,” Proc.
14th Symp. on Operating Systems Principles,
ACM Press, New York, 1993. pp. 29-43.

56

NETWORK STORAGE

IEEE MICRO

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 18,2020 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

5. G.A. Gibson et al., “File Server Scaling with
Network-Attached Secure Disks,” Proc.
ACM Int’l. Conf. on Measurement and Mod-
eling of Computer Systems (Sigmetrics),
ACM Press, 1997, pp. 272-284.

6. J. Howard et al., “Scale and Performance in
a Distributed File System,” ACM Trans. on
Computer Systems, Vol. 6, No. 1, Feb. 1988,
pp. 51-81.

7. M. Dahlin, Serverless Network File Systems,
PhD dissertation, University of Calif. at
Berkeley, Computer Science Dept., 1995.

8. H. Krawczk, M. Bellare, and R. Canetti,
“Keyed-Hashing for Message Authentica-
tion,” Request for Comment (RFC) 2104,
Internet Engineering Task Force (IETF), Feb.
1997, http://www.ietf.org/.

9. C. Everhart, “Security Enhancements for
DCE DFS,” OSF RFC 90.0, Open Software
Foundation (OSF), Feb. 1996.

10. M. Blaze, “A Cryptographic File System for
Unix,” Proc. First ACM Conf. Communica-
tion and Computing Security, ACM Press,
1993, pp. 9-16.

Benjamin C. Reed is a software engineer in
the Computer Science Department at the
IBM Almaden Research Center working in
the area of networking and systems manage-
ment. He received his BA from Miami Uni-
versity, his MS from DePaul, and is currently
a doctoral candidate at the University of Cal-
ifornia Santa Cruz.

Edward G. Chron is a senior developer in the
Computer Science Department at the IBM
Almaden Research Center. He received his
BSEE from the University of Illinois at
Urbana-Champaign.

Randal C. Burns is research associate in the
Department of Computer Science at the IBM
Almaden Research Center. He is also a doc-
toral candidate at the University of Califor-
nia, Santa Cruz. He received his BS from
Stanford University and his MS from the Uni-
versity of California, Santa Cruz. His research
interests include storage systems, distributed
computing, fault tolerant computing, and
concurrency control.

Darrell D.E. Long is a professor of computer
science, and associate dean in the Jack Baskin

School of Engineering at the University of Cal-
ifornia, Santa Cruz. He is also a visiting scien-
tist at the IBM Almaden Research Center. He
received his BS degree from San Diego State
University, and his MS and PhD from the Uni-
versity of California, San Diego. His research
interests include storage systems, distributed
computing, security, and multimedia.

Direct questions about this article to Ben-
jamin C. Reed, IBM Almaden Research Cen-
ter, 650 Harry Rd., San Jose, CA 95120;
breed@almaden.ibm.com.

57JANUARY–FEBRUARY 2000

http://www.ieee.org/renewal

✔ 12 issues of
Computer

✔ Member discounts
on periodicals,
conferences,
books,
proceedings

✔ Free membership
in Technical
Committees

✔ Digital library
access at the
lowest prices

✔ Free e-mail alias
@computer.org

RENEWRENEW
your Computer Society
membership for

your Computer Society
membership for

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 18,2020 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

