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ABSTRACT

We present a document routing and index partitioning scheme
for scalable similarity-based search of documents in a large
corpus. We consider the case when similarity-based search is
performed by finding documents that have features in com-
mon with the query document. While it is possible to store
all the features of all the documents in one index, this suffers
from obvious scalability problems. Our approach is to par-
tition the feature index into multiple smaller partitions that
can be hosted on separate servers, enabling scalable and par-
allel search execution. When a document is ingested into the
repository, a small number of partitions are chosen to store
the features of the document. To perform similarity-based
search, also, only a small number of partitions are queried.
Our approach is stateless and incremental. The decision as
to which partitions the features of the document should be
routed to (for storing at ingestion time, and for similarity
based search at query time) is solely based on the features
of the document.

Our approach scales very well. We show that execut-
ing similarity-based searches over such a partitioned search
space has minimal impact on the precision and recall of
search results, even though every search consults less than
3% of the total number of partitions.
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1. INTRODUCTION

Finding textually similar files in large document reposito-
ries is a well researched problem, motivated by many practi-
cal applications. One motivation is the need to identify near
duplicate documents within the repository, to eliminate re-
dundant or outdated files and improve user experience [15].
Archival systems [26, 35] need to identify content overlap
between files to save storage space by using techniques such
as delta-compression [2, 11]. Other applications arise in in-
formation management: similarity based retrieval can be
used to find all versions of a given document, e.g. for com-
pliance, security, or plagiarism detection purposes. Notice
that in this paper we are concerned with textual document
similarity, where two documents are deemed to be similar if
they share significant stretches of text. This is in contrast
to natural language based approaches where the linguistic
structure of the document is taken into account.

The operation that is the object of our study is similarity
based retrieval. Here, a query document @) is presented to the
system. The aim is to find all the documents D1, Do, ..., D,
in the repository that are similar to @, the most similar
documents being presented first.

While finding textually similar documents can in princi-
ple be achieved by a pairwise comparison of the query doc-
ument with each one of the documents in the repository
using a program such as unix diff, this is clearly very inef-
ficient. To solve this problem, the following framework is
commonly used: from every document, a set of features are
extracted, such that if two documents are similar, their sets
of features overlap strongly, and if they are dissimilar, their
sets of features do not overlap. Thus, the problem of docu-
ment similarity is reduced to one of set similarity. Then, an
inverted index [30, 31] is created mapping features to doc-
uments. Upon the presentation of the query document @,
its features are extracted, and used to query the inverted
index. The result is a set of documents that share some
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features with @Q; these are then ranked with the document
sharing most features coming first. Various authors have de-
veloped techniques for extracting features from a document:
Manber [22], Broder et al. [5, 6], Kulkarni et al. [18] and For-
man et al. [15]. All these approaches generate very specific
features: when two documents share even a single feature,
they share a relatively large stretch of text (tens of char-
acters). As a result, when the inverted index is consulted,
relatively few documents are returned. This is in contrast
with techniques such as bag of words analysis, where most
documents are expected to share at least a few words.

A single feature index becomes a bottleneck as the size of
the repository gets very large, and the index needs to simul-
taneously handle a large number of updates and queries.
Such a situation is typical of document management sys-
tems for large enterprises, as well as archival systems deal-
ing with large, continuous streams of documents. One solu-
tion is to partition the feature index into a number of sub-
indices, placing each partition on a different server, so that
the servers can be updated and queried in parallel. The par-
titioning scheme used must be such that only a small frac-
tion of the partitions need to be accessed for each update
and query. Here, the most obvious schemes, such as using a
Distributed Hash Table (DHT) [28, 29, 33, 36] to store the
(feature, Document) pairs fail. In this scheme, the parti-
tioning of the index is based on the hash of the individual
features. For example, given 2* servers, each hosting a hash
table, and the pair (feature, Document) that needs to be
added to the index, the first k& bits of the hash of the fea-
ture are used for identifying the server that this particular
pair needs to be added to. The problem is that there is no
locality of reference for the individual feature hashes: each
one of the document features is routed independently, most
likely to a different server. As a result, a large number of
servers will need to be accessed for each document update
and query.

In this paper we present an alternative index partition-
ing and document routing scheme; one that does not route
each individual feature of every document independently,
but rather routes all the features in a document together.
The outline of our scheme is as follows:

e At ingestion time, i.e. when a document is being
added to the repository, the document’s features are
extracted using a feature extraction algorithm. Based
on these features, a fraction of the index partitions are
chosen, and the document is routed to these partitions,
i.e. the document’s features are sent to these partitions
and added to the index there. We call the algorithm by
which the partitions are chosen the document routing
algorithm.

e At query time, the same same feature extraction and
document routing algorithms are used for choosing
the partitions to query. The chosen partitions are
queried with the document’s features, and the results
are merged.

This situation has been depicted in Figure 1. Notice that
the choice of which servers to contact, both at ingestion and
query time, is entirely based on the contents of the docu-
ment; at no time do we have to have an interaction with the
partitions to determine which one should be chosen. This
sets us apart from approaches which apply a clustering al-
gorithm [16, 25, 32] to all the documents in the repository;
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Figure 1: Our solution for document routing

these approaches need to use knowledge of the existing clus-
ters to route the new document. Our approach, by contrast,
is incremental and stateless: only the contents of the docu-
ment are used to decide which partitions it should be routed
to. As aresult, we have a very lightweight, client based rout-
ing capability.

2. BACKGROUND

As stated above, our work assumes the existence of a
mechanism to extract features from documents, such that
document similarity is reduced to set similarity. We use
the Jaccard index as a measure of set similarity. Let H be
an algorithm for extracting features from documents, where
H(f) stands for the set of features extracted by H from doc-
ument f. Then, the similarity measure of two documents f;
and fo according to Jaccard index is

[H(f1) N H(f2)|
|H(f1) U H(f2)]

There are a number of feature extraction algorithms in
the literature that satisfy the requirements above. Shin-
gling [4] is a technique developed by Broder for near du-
plicate detection in web pages. Manber [22], Brin etal. [3]
and Forman et al. [15] have also developed feature extraction
methods for similarity detection in large file repositories.

For the experiments reported in this paper, we used a
modified version of the chunk based feature extractor de-
scribed by Forman etal. [15]. This algorithm is described
below.

2.1 Chunk Based Feature Extraction

Content-based chunking, as introduced in [24], is a way
of breaking a file into a sequence of chunks so that chunk
boundaries are determined by the local contents of the file.
The Basic Sliding Window Algorithm is the prototypical
content-based chunking algorithm. This algorithm is as fol-
lows: an integer, A, is chosen as the desired average chunk
size. A fixed width sliding window is moved across the file,
and at every position k, the fingerprint, F}, of the contents
of this window is computed. This fingerprint is calculated
using a technique known as Rabin’s fingerprinting by ran-
dom polynomials [27]. The position k is deemed to be a
chunk boundary if F, mod A = 0. We actually use the
TTTD chunking algorithm [13], a variant of the basic algo-
rithm that works better. See [15] for details.

The rationale for using content-based chunking for simi-
larity detection is that if two files share a stretch of content
larger than the average chunk size, it is likely that they will



share at least one chunk. This is in contrast to using fixed
size chunks, where inserting a single byte at the beginning
would change every chunk due to boundary shifting.

We use the characteristic fingerprints of chunks (see be-
low) as the features of the file. Again, the intuition is that
if two files are similar, they share a large number of chunks,
and thus their feature sets overlap strongly; if they are dis-
similar, they will not share any chunks, and thus their fea-
ture sets will be disjoint.

Here is the feature extraction algorithm in more detail.
This algorithm uses a hash function, A, which is an approx-
imation of a min-wise independent permutation (see sec-
tion 3.2 below). There are three steps in our feature extrac-
tion algorithm:

1. The given file is first parsed by a format specific parser.
We handle a range of file formats, including PDF,
HTML, Microsoft Word and text. The output of the
parser is the text in the document.

2. The document text is divided into chunks using the
TTTD chunking algorithm [13]. The average chunk
size chosen for these experiments was 100 bytes.

3. For each chunk, a characteristic fingerprint is com-
puted, as follows: let {s1, s2,...sn} be the overlapping
g-grams in the chunk, i.e. the set of all subsequences of
length ¢ in the chunk. Then the characteristic finger-
print of the chunk is the minimum element in the set
{h(s1),h(s2),...h(sn)}, where h is the hash function
described above. For the experiments in this paper we
chose ¢ to be 20.

To summarize, the features of the document are the char-
acteristic fingerprints of the chunks of the document. This
algorithm has been demonstrated to produce good features
for document similarity. We will not discuss its properties
further here, since it is not the subject of this paper.

2.2 The Structure of Feature Indices

In this section, we describe the structure of the feature
indices, be they a monolithic feature index for all the docu-
ments in the repository, or one of the indices corresponding
to a partition of the bigger index.

Figure 2 depicts one of the possible designs of a feature in-
dex. The index key is the feature itself. Each feature points
to the list of files that it occurs in. This design is analogous
to that of an inverted keyword index [30, 31] used com-
monly in Information Retrieval Systems. This index con-
tains lookup information for every file that has been routed
to it at ingestion time.

hl - f25f3>f4

_h2—>f11,f2

hg — f100

Figure 2: Feature Index
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2.3 Building the Feature Indices

When a new file, f,, needs to be added to the repository
an entry for each feature in H(f,) must be added to the fea-
ture index. For every feature in H(f,), if an entry already
exists in the feature index, then the detail for that entry is
appended with f,. If no entry is found then a new entry
for that feature is inserted. If f,, is routed to multiple parti-
tions this process is repeated at every one of the destination
partitions.

2.4 Querying Feature Indices

When a feature index needs to be accessed to find files in
the repository similar to a query file, f;, then the index is
queried using each feature in H(fq). The set of files similar
to fq is the set

U

0<i<|H(fq)l

(I(hi))

where I(h;) is the set of all the files that h; points to in the
feature index I. Each file in the result set is ranked based
on its Jaccard similarity index with respect to f;.

If multiple partitions need to be queried for f; then the
above querying process is carried out for every partition.
The results obtained from each partition are collated such
that the set of all the files similar to f, is given by

Ui U

1ER \0<j<|H(fq)l

(Li(hy))

where the set R is the set of all the partition numbers that
were queried for fj.

3. PARTITIONING THE FEATURE INDEX

As mentioned before, our main interest in this paper is to
partition the index I into a number of sub-indices I1, I2, ..., [k
while preserving the following properties:

e Each one of the partitions has the structure described
in section 2.2, i.e. it is a reverse map from features to
files.

e At ingestion time, the features of each file, f,, are
used to choose m partitions to which the file will be
routed. We call m the routing factor and m < K. The
chosen partitions receive all the features of the file, 7. e.
H(f,) is added to each one of the chosen partitions.
This algorithm is the document routing algorithm.

e At query time, given the query document f,, the same
document routing algorithm is used to choose which
partitions to query. The query process for each parti-
tion is as described in section 2.2. The chosen parti-
tions are queried in parallel and independently; there
is no background communication among them. The
results of the queries from the chosen partitions are
merged to form the answer to the query.

e Even though we query only a small subset of the parti-
tions (7. e. m is much smaller than K') there is minimal
loss of recall compared to the case where there is one
global index.

We first describe the document routing algorithm and
then provide the justification for why it works.
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3.1 The Document Routing Algorithm
The input to the algorithm is

e H(fn), the set of features of the document f,
e an integer K, the number of partitions

e an integer m, the routing factor

We assume that m < K, and |H(fn)| > m. The fea-
ture extraction algorithm, H, extracts features using a min-
wise independent hash function as explained in section 2.1.
The routing algorithm computes a set of integers R =
{ro,m1,...,"m—1} where 0<i<m. ro,71,...,7m—1 are the
partitions to which the document will be routed. The doc-
ument routing algorithm is as follows:

1. Compute bot., (H(fr)) where bot,, is a function that
picks the m smallest integers in a set. In other words,
for a set of integers S where |S| > m, bot,(S) C S,
|bot,, (S)| =m , and = € bot,, (S) ANy € S =z < y.

2. For every hash h in bot,, (H (f»)) compute (h mod K).
R is the set of the resulting integers, R = {h mod K|h €
botm (H(fr))}. The document is now routed to all the
partitions indicated by R.

Chunk m

File | based bot., bottom | mod K Target
feature features features partitions
extraction

Figure 3: Document Routing Algorithm

The routing algorithm has been depicted in Figure 3.
3.2 Why It Works

The routing algorithm is based on a generalization of
Broder’s theorem [5]. Broder’s theorem relies on the no-
tion of a min-wise independent family of permutations. The
following definition and theorem are from [5].

DEFINITION 1. Let S, be the set of all permutations of
[n]. The family of permutations F C Sy, is min-wise inde-
pendent if for any set X C [n] and any x € X, when p is
chosen uniformly and at random from F we have

1

Pr(min{p(X)} = p(x)) = X

In practice, truly min-wise independent permutation are
expensive to implement. Practical systems use hash func-
tions that approximate min-wise independent permutations.

THEOREM 1. Consider two sets S1 and Sz, with H(S1)
and H(S2) being the corresponding sets of the hashes of the
elements of S1 and S2 respectively, where H is chosen uni-
formly and at random from a min-wise independent family
of permutations. Let min(S) denote the smallest element of
the set of integers S.
10|

P(min(H(51)) = min(H(52))) |S1 U Saf
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Broder’s theorem states that the probability that the two
sets S and S2 have the same minimum hash element is the
same as their Jaccard similarity measure.

Now, consider two files f; and f;, and let m =1, i.e. we
route each file to only one partition. According to the theo-
rem above, and the definition of similarity measure between
two files, the probability that H(f1) and H(f2) have the
same minimum element is the same as the similarity mea-
sure of the two files. In other words, if the two files are very
similar, the minimum elements of H(f1) and H(f2) are the
same with high probability. But if the minimum elements
are the same, the two files will be routed to the same parti-
tion, since the partition number to which they are routed is
the minimum element modulo K, the number of partitions.

While the probability of being routed to the same parti-
tion is high when the two files are very similar, the probabil-
ity drops significantly when the degree of overlap between
the two files goes down. For example, if half the features of
the two files are the same, and the two files have the same
number of features, the Jaccard similarity measure of the
two files is 1/3, i.e. there is only one third chance that they
would be routed to the same partition.

To overcome this problem, we route the files to more than
one partition, i.e. we choose m > 1. The intuitive justifica-
tion for using the bottom m features for routing is that if
by chance a section of a file changes such that the minimum
feature is no longer in the set of features, the second least
feature will now become the minimum feature with good
probability. Our experiments and the theorem below show
that with m a modest number (less than 5), we have a very
good chance that two files with a fair degree of similarity
will be routed to at least one common partition.

To formalize our intuition, we can generalize the Broder
theorem as follows:

LEMMA 1. Let S1 and Sa be two sets. Let I = |S1 N Sa|
and U = |S1 U S2|. Let By = botym(H(S1)) and Ba
bot,, (H (S2)), where H is a min-wise independent hash func-
tion. Then

U-DU-T-1)...(U-T—m—1)
UU-1)...(U—-m—1)
Let s =1/U, i.e. s isthe Jaccard similarity measure between

S1 and S2. A good approximation of the above, when m is
small and U is large, is

P(BlﬂBgzw)g(l—S)m-‘rE

P(BlmBQZQ))S

€ is a small error factor in the order of 1/U.

When we translate this lemma to the case of documents,
we get the following;:

COROLLARY 1. Let f1 and f2 be two documents with sim-
ilarity measure s. When they are each routed to m partitions
using the algorithm above, the probability that there will be
at least one partition to which both of them are routed is at
least 1 — (1 —s)™

Now, consider the case where the document f; has been
ingested into the system, and we now wish to use f2 as the
query document to do similarity based retrieval. Let us say
that the similarity measure of fi and f2 is 1/3, and m, the
routing factor, is 4. Since the same routing algorithm is
used for ingestion and query processes, and for the query



to succeed it suffices that at least one partition be in com-
mon between the two files, the probability that we find the
document f; when we query with fo is better than 80%.
Contrast this with the case where m = 1, when the proba-
bility of finding fi is only 33%.

The following sections discuss the experimental setup and
results.

4. EXPERIMENTAL SETUP

The experimental data set consisted of 179874 files. These
were Hewlett Packard’s internal support documents in HTML
format. There were 1504984 unique features extracted from
this set. A randomly selected subset, Fy, of 332 files was
chosen from the original corpus to be used as query files.
The rest of the files, the set Fy, was our document repos-
itory. Our goal was to find for every file f, € Fy the files
in Fy that were highly similar to f;. The similarity mea-
sure between two files was calculated using their features as
explained in section 2.

Since Fy was our document repository every file fy € Fy
was used to build the partitions using the document routing
algorithm as explained in section 2.3. Every file in F, was
then used to query the partitions as explained in section 2.4
to find similar files to itself in F,;. The number of partitions,
K, were varied from 1 through 128. The routing factor, m,
used to route every file in Fy (for building the partitions)
and in Fy (for querying the partitions) was also varied from
1 through 10.

The result set for every query in F, using a single non-
partitioned index was then used as a standard to judge the
quality of results produced when the index was partitioned.

S. RESULTS
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Figure 4: Effect of the routing factor on the average
similarity measure

In the first set of experiments we have compared the qual-
ity of results obtained when using a single monolithic feature
index (K =1) to search for similar files with those obtained
when we had multiple partitions (K > 1). First, a mono-
lithic feature index was built using every file in Fjy. Next,
for every query file f; € Fy the set of files similar to it were
identified by querying the monolithic feature index. Each
file, fr, in the result set for every query f; was then ranked
based on its Jaccard similarity index with f,. The file with
the highest similarity measure was the file that was most
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similar to the query file and hence, the best result. The
best result, thus calculated, was recorded for every query
file. The average similarity measure, calculated as the aver-
age of the best results for all fq, was then calculated for the
entire query set Fy.

The next round of experiments was conducted with in-
creasing number of partitions, K >1. For every value of K,
the routing factor, m for every file in Fy and Fj, was varied
from 1 through 10. Once again, the first step was to build
the partitions using Fy for the appropriate values of K and
m. Using the same values for K and m files in F, were
used to query the partitions. The results obtained from the
respective partitions were collated and the best result was
recorded for every fq, € Fy;. The average similarity measure,
for every K and m combination, was then calculated for F,.

Figure 4 shows the effect of increasing the number of parti-
tions, K, and the routing factor, m, on the average similarity
measure of F,. In the figure, the data point corresponding
to K =1 and m =1 corresponds to the average similarity
measure for F, with one monolithic index. This value is
0.342. We can see that for K =128 and m =1 this value
is less than 0.27. This is because with increasing number of
partitions while using only the minimum feature (m=1) to
route the query file it is possible to not find the best match,
or the file with the highest similarity measure. When m=1
even a single change that affects the minimum feature of the
query file can prevent us from finding the best match as has
been explained in section 3.2. The overall average similarity
measure for Fy, thus, reduces. However, as we increase m,
we improve our chances of finding the best result because
we now route every file fq € Fy and f; € F, to multiple
partitions. We can see that even with m =3 there is a sig-
nificant improvement in the average similarity measure of
Fy for all values of K. For K =128, m =3 this value is more
than 0.33. This means that for a large percentage of query
files we are being able to find the file in Fy that shares the
highest content overlap with them. For m > 4 the average
similarity measure for all values of K is 0.342 which means
that for every query file we were able to find the best match.

1
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0.1 4 —&- K=128, overall recall r
o L —<— K=128, top-20 recall
1 2 3 4 5 & 7 8 9 10
Routing Factor(m)
Figure 5: Effect of the number of partitions on the

overall recall

Figure 5 depicts the average recall obtained for all the
queries for increasing values of m and for K = 128. The
recall for every query was calculated as the fraction of the
size of the result set obtained when K >1 with respect to the
original size of results with K =1. The ideal recall, thus, is 1.
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Figure 6: Identical and disjoint top-2 lists, 128 par-
titions

The graph in figure 5 depicts the average recall for K =128
for increasing values of m in two forms. The first form is the
overall recall which takes into account the complete result
set obtained for every query. The second form is the recall
for only a subset of the result set — specifically the top-20
results in the result set. In this case we retained only the
top-20 results for every query. We can see that for m =3 the
overall recall is 24% whereas the recall for the corresponding
top-20 results is 73%. This result shows us that though with
K =128 and m = 3 we were able to fetch only 24% of the
total result set on an average, this subset contained most
of the highest ranking results. This means that we were
able to retain and produce the strong resemblances between
documents.

We may have lost some of the weak similarity relation-
ships but this loss is acceptable given the gain in scalability.
Moreover, for many applications, only the documents with
the strongest similarity to the query are of interest, and the
low-similarity hits may not be of interest or get filtered out.
For example, in the case of a standard search engine users
are interested in only the the top few results of their query
or the first page of results returned by the search engine. In
such a situation the recall achieved by our routing algorithm
with respect to the top-20 results is sufficient. However, if an
application requires that every similar document to a query
be found, then one can easily adopt a policy of querying
each and every partition instead of just m out of K. Such
a scheme will preserve the original recall of every query as
was the case when there existed just one index(K = 1).

Figure 6 shows us exactly how many of the top-2 results
with K = 128 were identical or disjoint when compared
to those with K = 1. This data was obtained using tech-
niques developed by Fagin [14]. Identical results were those
in which the contents of results were preserved with K =128.
Disjoint results were those in which none of the contents of
the original top-2 results with K =1 were preserved when
K =128. The rest of the top-2 results for K =128 contained
at least one of the original top-2 results. We can see that as
m increases, even with m =3, more than 70% of the top-2
lists were identical and less than 10% were disjoint. This
means that overall more than 90% of the queries returned
at least one of their top results.

Figure 7 depicts the average partition sizes as compared
with the size of the monolithic index for increasing values
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Figure 7: %Average partition sizes for increasing
values of the routing factor

of m. The average partition sizes have been shown as a
percentage of the size of the monolithic index. The partition
size is the number of keys in the partition — the number of
features indexed at every partition. This size does not take
into account the list of files that every feature occurs in.
Even if we had accounted for it we would observe the same
trend as has been shown in the figure. We can see that with
K =128 and m =3 the average partition size is less than 3%
of the size of the monolithic index.

We have already seen from our previous results that with
K =128 and m =3 we obtain very good average similarity
for our queries (Figure 4) more than 70% of the queries re-
turned their top-2 results identical to when K = 1 and more
than 90% of the top-2 results contained at least one of the
original top-2 results. We can clearly see that our routing
algorithm has performed very well while reducing the in-
dividual partitions to more manageable sizes, enabling the
parallel execution of similarity based searches while at the
same time has not compromised the quality of our results.

6. RELATED WORK

Routing keyword queries to promising sources of informa-
tion has been an active area of research in the field of dis-
tributed information retrieval and peer-to-peer networks [7,
8, 10, 21]. Cooper [8] and Lu et al. [21] use past information
about query results to guide queries to promising sources
in peer-to-peer and federated information systems. Dis-
tributed Hashing has also been studied widely. Litwin et al. [20]
proposed Scalable Distributed Data Structures based on lin-
ear hash tables for parallel and distributed computing. Dis-
tributed Hash Tables(DHT) have also been widely used in
the area of peer-to-peer systems to distribute and locate
content without having to flood every node in the system
with content and queries. Content Addressable Network
(CAN) [28], Chord [33], Pastry [29] and Tapestry [36] are
some of the DHT implementations used in a distributed en-
vironment. Manku [23] has categorized the DHT routing
methods into deterministic and randomized. Oceanstore [17]
is an infrastructure that provides access to data stored across
a large-scale globally distributed system and uses the Tapestry
DHT protocol to route queries and place objects close to
their access points with the objective of minimizing latency,
preserving reliability and maximizing the network bandwidth



utilization. PAST [12] is an internet scale global storage util-
ity that uses Pastry’s routing scheme. PAST routes a file to
be stored to k nodes within the network such that those node
identifiers are numerically closest to the file identifier. Pas-
tiche [9] is a peer-to-peer data backup facility that aims to
reduce the storage overhead by identifying nodes that share
common data at a sub-file granularity. Pastiche aims to con-
serve storage space by identifying overlapping content using
techniques introduced in the Low-Bandwidth Network File
System [24]. In order to route data to appropriate nodes,
Pastiche needs to access and maintain an abstract of the file
system’s contents.

7. DISCUSSION AND FUTURE WORK

The document routing algorithm is an effective method
for scalable and parallel similarity-based searches. The doc-
uments are routed based solely on their contents to only a
small fraction of the total partitions while still being able to
preserve the precision of the results. We conclude that this
algorithm is a good scalable solution.

Similarity-based searches in large scale repositories is only
one of the applications for our document routing algorithm.
Besides archival systems our document routing algorithm
can be used to distribute and locate content in peer-to-peer
cooperative storage and backup systems [9, 12, 19] and dis-
tributed storage systems [1, 17]. Such systems can save stor-
age space by routing documents to nodes that are expected
to store similar content. The recipe for a document [34] con-
sisting of the feature hashes can be used to locate it without
having to consult a large number of indices.

The future work in this direction would consist of evalu-
ating schemes that allow the dynamic growth in the number
of partitions. We will investigate methods to divide those
partitions that become overloaded and the effects of such a
scheme on the quality of our results. We will also investigate
the efficacy of our partitioning scheme for large scale archival
systems that need to identify similar files within their repos-
itories with the intention of conserving storage space. What
we gain by partitioning the feature indices, used primarily
for the de-duplication of archival data, and using our parti-
tioning method may cost us some storage space as we miss
identifying the files with high similarity. Future work will
consist of quantifying our losses in the form of storage space
and finding out if our gain, in the form of better bandwidth
utilization and throughput, outweighs this loss.
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