
Deduplication on Virtual Machine Disk
Images

Technical Report UCSC-SSRC-10-01
September 2010

Keren Jin
kjin@cs.ucsc.edu

Storage Systems Research Center
Baskin School of Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064

http://www.ssrc.ucsc.edu/

Filed as a masters thesis in the Computer Science Department of the University of
California, Santa Cruz in September 2010. Some of the material in this thesis was
published in SYSTOR 2009.

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

DEDUPLICATION ON VIRTUAL MACHINE DISK IMAGES

A thesis submitted in partial satisfaction of the
requirements for the degree of

Master of Science

in

COMPUTER SCIENCE

by

Keren Jin

September 2010

The Thesis of Keren Jin
is approved:

Professor Ethan L. Miller, Chair

Professor Darrell D. E. Long

Doctor Mark W. Storer

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright c© by

Keren Jin

2010

Table of Contents

List of Figures v

List of Tables viii

Abstract ix

Dedication xi

Acknowledgments xii

1 Introduction 1

2 Related Work 4
2.1 Virtual Machines . 4
2.2 Deduplication . 5
2.3 Delta encoding . 8

3 Deduplication 11
3.1 Chunking . 12
3.2 Deduplication . 15
3.3 Experiments . 18

3.3.1 Overall Impacts . 22
3.3.2 Impact of Specific Factors . 26
3.3.3 Impact of Package Management 33
3.3.4 Chunk Compression . 40

4 Delta Encoding 42
4.1 Similarity detection . 43
4.2 Experiments . 48

4.2.1 Overall Effectiveness . 48
4.2.2 Effectiveness of Specific Parameters 51
4.2.3 Time consumption . 54

iii

5 Future work 57
5.1 User generated data . 57

5.1.1 Identical instances . 57
5.1.2 Homogeneous instances . 58
5.1.3 Heterogeneous instances . 59

5.2 Security . 60

6 Conclusion 61

A Duplicate chunk sequences 64
A.1 Motivation . 65
A.2 Design . 66
A.3 Discussions on the greedy algorithm . 73

A.3.1 Postprocessing or inline deduplication 73
A.3.2 Minimum unit (postprocessing dedup only) 75
A.3.3 Detection order . 76
A.3.4 Multi-threading . 77

Bibliography 79

iv

List of Figures

3.1 Chunking a file with size 0xF300 bytes. 13
3.2 Share categories of chunks. Chunks seen for the first time must be stored;

subsequent occurrences need not be stored. 16
3.3 Growth of data in different categories for 14 different Ubuntu 8.04 LTS

instances. Stored data grows very slowly after the second VM is inte-
grated. In these figures, stored data includes the first instance of each
chunk, regardless of how it is shared. The sharp increase in size at the
5th VM is due to the use of a flat disk image, in which there are a large
number of zero-filled (empty) sectors. 21

3.4 Growth of category data for 13 Unix and Linux virtual machines, using
variable-size chunking, with an average chunk size of 1 KB. Unique data
grows significantly as each disk image is added. As in Figure 3.3, the
sharp increase in size at the 3rd VM is due to a large number of empty,
zero-filled sectors in a flat disk image. 23

3.5 Effects of varying operating system type on deduplication. All experi-
ments used 512 B variable-size chunks, except for the Linux experiment
that uses 4 KB variable-size chunks. There is more intra-inter sharing in
Linux than in BSD, indicating that the former is more homogeneous. . . 24

3.6 Cumulative distribution of chunks by count and total size. The upper line
shows the cumulative number of chunks with total count of n or less, and
the lower line shows the total space that would be consumed by chunks
with count n or less. The data is from the Linux chunk store with chunk
size 512 B. As the graph shows, most chunks occur fewer than 14 times,
and few non-zero chunks appear more than 50 times in the set of disk
images. 25

3.7 Effects of chunk size and fixed versus variable-size chunking on deduplica-
tion for a set of disk images including Ubuntu Server 6.10, 7.04, 7.10 and
8.04. In each group of two bars, the left bar measures fixed-size chunking
and the right bar indicates variable-size chunking. The graph shows that
smaller chunk sizes result in more effective deduplication. 26

v

3.8 Deduplication on different releases of a single Linux distribution. The
left bar in each pair is fixed-size chunking and right bar is variable-size
chunking; chunk size is 512 B. Consecutive releases have only slightly
lower deduplication ratio than non-consecutive releases. 28

3.9 Locale versions (variable-size chunking, chunk size 512 B). The left bar in
each pair only measures the English version and the right bar measures
both English and French versions. Storing different locale versions of
same distribution produces high deduplication. 29

3.10 Distribution lineage. Debian series comprises Debian, Ubuntu and Knop-
pix. Red Hat series comprises Fedora, CentOS and Mandriva. Variable-
size chunking, chunk size 512 B. Despite the common lineages, there is a
relatively low level of deduplication. 30

3.11 Deduplication of Web appliance VMs (variable-size chunking, chunk size
512 B). AMP stands for Apache, MySQL and PHP. Since the deduplica-
tion ratios for both cases are low when zero chunks are excluded, we can
conclude that diverse operating systems with similar goals do not have
many identical chunks of code. 30

3.12 Virtual machines created by different VMMs deduplicate well. The bar
on the left measures fixed-size chunking, and the right-hand bar measures
variable-size chunking. 32

3.13 Differing package installation orders. p1a denotes package set 1, ascend-
ing order, and others follow the same naming rule. Variable-size chunk-
ing, chunk size 512 B. Different package installation orders generate nearly
identical disk images. 36

3.14 Package systems comparison on Ubuntu Server 8.04 (U), CentOS 5.2,
no desktop (C) and Fedora 9, no desktop (F). Both install package set
1 in ascending order. Variable-size chunking, chunk size 512 B. Package
system’s contribution to deduplication is outweighed by OS heterogeneity. 37

3.15 Package removal orders. Variable-size chunking, chunk size 512 B. rp de-
notes removing only target packages. rr denotes removing target pack-
ages and all dependencies (revert to original). ori denotes the original
disk image before package installation. Data of the removed packages
are not erased from disk image, which still resemble the image with the
installed packages. 39

3.16 Chunk-wise compression. Variable-size chunking, chunk size 512 B, ex-
cept the rightmost bar for 4 KB. Chunk-wise compression is effective, but
limited by small window size. 41

vi

4.1 Example of delta encoding on two different chunk sequences. The window
size is 3. A, B, C and D are data blocks in chunks. Each chunk is formed
by concatenating two data blocks. The duplicate chunk AA acts as the
center of the locality. The head of the arrows indicate the target of
encoding, while the tail indicate the source. Chunks CA, CB and CD
are similar as they sharing the common C data block. Chunks such as
BD are not encoded because their group signatures are unique in the
locality. 46

4.2 Effects of varying operating system type on delta encoding. In each group
of two bars, the left bar measures the window size of 4 chunks and the
right bar measures the window size of 8 chunks. 49

4.3 Effectiveness of delta encoding for varying the number of groups, number
of signatures and number of candidates. All experiments are taken on
the Ubuntu Server 6.10 through 8.04 chunk store. The size of signature
blocks is fixed to 64 bytes. The pattern is similar to Difference Engine,
except less distinctive. 51

4.4 Effectiveness of delta encoding for varying window sizes and size of signa-
ture blocks. The rest of the three parameters are fixed at (2, 1), 1. Small
block size does not decrease space saving. 53

4.5 Relative ratios of the time consumption in the deduplication and delta
encoding phases. Three chunk stores are experimented, regarding the
block size and window size combinations in the parentheses on the X-axis.
The rest parameters are fixed at (2, 1), 1. The letter before parentheses
abbreviates the name of the chunk store: l for linux, u for ubuntu6778
and t for ubuntuLTS. 55

A.1 Examples of level one locality. 69
A.2 Illustration of the progressive strategy. The longest sequence group has

length 3. 70
A.3 Detection result of the first sequence group with the greedy strategy. In

the second extending, 1:48:80 hits the implicit boundary, and becomes a
sequence subgroup. 74

vii

List of Tables

3.1 Parameters for variable-size chunking. 14
3.2 Virtual machine disk images used in the study. Under disk type, M is a

monolithic disk image file, X is a disk image file split into 2 GB chunks, S
is a sparse image file, and F is a flat image file. For example, MS would
correspond to a single monolithic disk image formatted as a sparse image. 20

3.3 Package installation and removal sets. “asc” and “desc” refer to the order
in which packages are installed. Image size is post-installation / removal.
All sizes are in megabytes; the “before” and “after” columns reflect the
number of installed packages before and after the installation / removal
action. 33

3.4 Two package sets. 35
3.5 Compression parameters. 40

4.1 Meaning of the scheme parameters in our similarity detection method. . 46

viii

Abstract

Deduplication on Virtual Machine Disk Images

by

Keren Jin

Virtual machines are becoming widely used in both desktop and variable

servers to efficiently provide many logically separate execution environments while re-

ducing the need for physical machines. While this approach utilizes free physical CPU

resources, it still consumes large amounts of storage because each virtual machine (VM)

instance requires its own multi-gigabyte disk image. Moreover, existing systems do not

support ad hoc block sharing between disk images, instead relying on techniques such

as overlays to build multiple VMs from a single “base” image.

Deduplication is a commonly used technique in archival storage systems and

virtualization architectures. The concept of deduplication is similar to data compression,

that finds identical instances of data blocks in a storage repository, and removes all such

instances but one. Indexing is also employed to enable high-performance global identity

detection. In an archival storage system, deduplication is an ideal approach to save

disk I/O as well as storage space. In virtual machine host centers, deduplication causes

homogeneous operating systems to share not only file system data, but also common

memory pages. Furthermore, by identifying duplicate data within a spatial locality of

each chunk, extra space saving can be achieved without much extra time invested.

To test the effectiveness of deduplication, we conducted extensive evaluations

on different sets of virtual machine disk images with different chunking strategies. Our

experiments found that the amount of stored data grows very slowly after the first

few virtual disk images if only the locale or software configuration is changed, with

the rate of compression suffering when different versions of an operating system or

different operating systems are included. We also show that fixed-length chunks work

well, achieving nearly the same compression rate as variable-length chunks. We also

show that simply identifying zero-filled blocks, even in ready-to-use virtual machine disk

images available online, can provide significant savings in storage. Finally, we propose an

approach to incorporate delta encoding into regular deduplication as a post-processing

step. Experimental results indicate as much space savings from delta encoding as from

deduplication for certain virtual machines, while the extra time consumption is low.

To my beloved mother

xi

Acknowledgments

First, I thank my dear mother for raising and supporting me through all the

adventures of my life. She is always the first one to share the joys whenever I achieve

even a tiny success, the first one to relieve me from depression whenever I’m stuck, and

the first one to give me advices that help me get over difficulties. She is the mother of

this thesis.

Second, I thank professor Ethan Miller and professor Darrell Long for their

priceless advices in my academic field. Not only have they enlightened me while morph-

ing from an inexperienced Bachelor of Science to a qualified computer science researcher,

but also they imbued me with the knowledge that empowers me with the ability to make

discoveries in the past, present and future.

Third, I thank Mark Storer, Kevin Greenan, Andrew Leung and all the col-

leagues from SSRC. Whenever Whenever discussed my work, their questions, answers

and suggestions always inspired me to think differently and to explore a new way to

solve problems. The creative atmosphere of the group was one of the essentials of the

work.

Last, I thank my other friends, first, Peggy Pollard, who helped greatly with

proofreading to the thesis. I thank Carl Bocchini, one of the my friends who introduced

me both the American way of life and the American way of thinking. And I thank all

the other friends I’ve met in this most important part of my study life.

xii

Chapter 1

Introduction

In modern server farms, virtualization is being used to provide ever-increasing

numbers of servers on virtual machines (VMs), reducing the number of physical machines

required while preserving isolation between the machines. This approach better utilizes

server resources, allowing many different operating system instances to run on a small

number of servers, saving both hardware acquisition costs and operational costs such as

energy, management and cooling. Individual VM instances can be separately managed,

allowing them to serve a wide variety of purposes and preserving the level of control

that many users want. However, this flexibility comes at a price: the storage required

to hold hundreds or thousands of multi-gigabyte VM disk images and the inability to

share identical data pages between VM instances.

One approach to saving disk space when running multiple instances of oper-

ating systems on multiple servers, whether physical or virtual, is to share files between

them; i. e., sharing a single instance of the /usr/local/ files via network mount. This

1

approach is incompatible with VM disk images, however, since they are usually mono-

lithic space hogs, constantly changing, and their internal file structures are invisible to

the underlying file system. Standard compression such as that provided by the Lempel-

Ziv compression used in gzip [47], is ineffective because, while it can reduce the storage

space used by a single disk image, it cannot eliminate commonalities between files.

Instead, others have proposed the use of deduplication to reduce the storage

space required by the many different VM disk images that must be stored in a medium

to large scale VM hosting facility [30]. While it seems clear that deduplication is a good

approach to this problem, our research quantifies the benefits of using deduplication to

reduce the storage space needed for multiple VM disk images. Our experiments also

investigate which factors impact the level of deduplication available in different sets of

VM disk images, some of which are under system control (e. g., fixed versus variable-

sized chunking and average chunk size) and some of which are dependent on the usage

environment (e. g., operating system version and VM target use). By quantifying the

effects of these factors, our results provide guidelines for both system implementers and

sites that host large numbers of virtual machines, showing which factors are important

to consider and the costs of making design choices at both the system and usage level.

In reality, the chunk size is usually large enough to fit multiples of the block

size of the underlying operating system. This can be a major threat to the overall space

saving as deduplication occurs in granularity of chunks. We investigate the possibility of

combining conventional compression and deduplication by doing delta encoding within

a spatial locality of duplicate chunks, thereby identifying the duplicate sub-chunk data

2

in “distinct” chunks. As the delta encoding is limited within short chunk sequences,

real-time update has lower overhead, and the scheme could be further optimized per

VM by bookkeeping statistical data. We also care about the extra-saving / extra-time

ratio for the delta encoding. It is not worth investing so much time for small saving.

The paper is organized as follows: Chapter 2 reviews related work and back-

ground material on deduplication and virtual machines. Chapter 3 introduces our

chunking and deduplication approaches to analyze VM disk images as well as evaluation

of deduplication on sets of VM disk images for different purposes. Chapter 4 discusses

and evaluates the delta encoding approach. Chapter 5 possible discusses directions for

possible future work, and Chapter 6 summarizes our conclusions.

3

Chapter 2

Related Work

Our research studies the effectiveness of applying deduplication to virtual ma-

chine environments. In this section, we provide some background on both technologies.

2.1 Virtual Machines

Virtual machine monitors provide a mechanism to run multiple operating sys-

tem instances on a single computer system. Systems such as Xen [7], VMware [41], and

QEMU [8] provide a full execution environment to “guest” operating systems, using

many techniques to convince each guest operating system that it has control of a full

computer system.

One technique used by virtual machine monitors is the use of a file in the

underlying “host” operating system to hold the contents of the guest’s disk. These

virtual disk images, whose sizes are specified when the virtual machine is created, can

be either flat or sparse. Flat images are fixed-size files, with one block for each block

4

in the guest’s disk. Initially, unused blocks are zero-filled; thus, flat disk images tend

to have a lot of zero-filled blocks, particularly if they are relatively large to allow the

guest operating system space in which to store additional data. Sparse images, unlike

flat images, only contain virtual disk blocks that have been written to at least once.

Thus, sparse images can occupy relatively little space when created, and only grow as

the guest operating system uses more and more of its virtual disk. Note, however, that

sparse images can contain zero-filled blocks, since the guest operating system may write

a block containing all zeros; such a block would be stored by the virtual machine in

the disk image file. While there is no global standard for virtual machine disk images,

specifications for one file format is available from VMware [42].

2.2 Deduplication

Deduplication is a technology that can be used to reduce the amount of storage

required for a set of files by identifying duplicate “chunks” of data in a set of files and

storing only one copy of each chunk [28, 31]. Subsequent requests to store a chunk that

already exists in the chunk store are done by simply recording the identity of the chunk

in the file’s inode or block list; by not storing the chunk a second time, the system stores

less data, thus reducing cost.

Different implementations of deduplication use different techniques to break

files into chunks. Fixed-size chunking, such as that used in Venti [32] simply divides

files at block boundaries. Variable-size chunking, used in systems such as LBFS [28]

5

and Deep Store [45], computes a Rabin fingerprint [33] or similar function across a

sliding window to place chunk boundaries, resulting in blocks that may have different

lengths. This approach typically provides better deduplication, since it is more resistant

to insertion or deletion of a few bytes in the middle of a file; however, it may negatively

impact performance by requiring non-block aligned I/O requests.

While their approaches to identifying chunks differ, both fixed-size and variable-

size chunking use cryptographically-secure content hashes such as MD5 or SHA1 [3]

to identify chunks, thus allowing the system to quickly discover that newly-generated

chunks already have stored instances. Even for a 128 bit MD5 hash, the chance of

a single collision among 1015 chunks—1018 bytes, assuming an average chunk size of

1 KB—is about 10−9 [24]. By using a 160 bit hash such as SHA1, we can reduce the

probability of a single collision in an exabyte-scale chunk store to about 7 × 10−18.

Collisions in SHA1 have been reported [43], and intentionally forging different but still

equivalently meaningful independent chunks is a potential security breach, though it is

not yet practical [15].

While these two issues might prevent a system implementer from using SHA1 [23],

we chose SHA1 to name chunks in our experiments because these issues clearly do not

impact the statistical results gathered from our experiments—one or two “false colli-

sions” would not significantly alter our findings.

Deduplication and similar technologies have already been used to reduce band-

width and storage demands for network file systems [28, 2, 18], reduce the storage de-

mands created by VM checkpoints [30], store less data in backup environments [14, 46,

6

32], and reduce storage demands in archival storage [45, 44]. Using deduplication in an

online system requires fast identification of duplicate chunks; techniques such as those

developed by Bhagwat, et al. [9] and Zhu, et al. [46] can help alleviate this problem.

Moreover, Nath, et al. found that deduplication was sufficiently fast for storing check-

points of VM images [30] and the Difference Engine [21] used deduplication to share

in-memory pages between different virtual machine instances. While these uses are not

identical to read-write sharing of VM disk image chunks, the relatively low performance

overhead for other uses of deduplication in VM images suggests that a file system for

VM disk images should be sufficiently fast to use in a production environment.

Several projects have investigated the use of deduplication in virtualization en-

vironments. Nath, et al. used content-addressable storage to store multiple checkpoints

from a hosting center running multiple virtual machines [30]. Their experiments covered

817 checkins across 23 users and 36 virtual machines. However, this study created “gold

images” for each operating system (Windows XP and Linux) upon which each VM was

based; while the gold images received security patches, users did not have a choice of

which Linux distribution to run. Our research explores a much wider range of Linux

configurations, exposing the factors that affect deduplication. The Difference Engine

project [21] used deduplication to allow multiple virtual machines to share in-memory

pages. This approach proved effective, though the level of deduplication was lower for

memory page deduplication than for storage deduplication. Moreover, the VMs were

limited in sample size; in contrast, the virtual disks we studied showed a large amount of

variation. Liguori and Van Hensbergen explored the use of content addressable storage

7

(CAS) with virtual machines [4]. They examined overlap between pairs of VM disk

images for both Linux and Windows XP, measuring the amount of deduplication possi-

ble between them. They then experimented with an implementation of CAS in Qemu,

showing that Venti, a content-addressable store, performs worse than “vanilla” systems,

though this may be due to Venti’s inefficiency. Their deduplication results confirm

some of our findings, but they do not exhaustively study different operating system

characteristics and their impact on deduplication effectiveness. DeDe [10] exhibits a

deduplication system in SAN, which is integrated into the VMware ESX Server [41]

atop VMware VMFS. While files and index data are managed independently on each

host on regular basis, the index data are synchronized on schedule. The overall eval-

uation shows high deduplication ratio for 113 Windows XP VMs. Similar to previous

findings [30], these VMs are originated from a small set of standardized images.

2.3 Delta encoding

Delta encoding [1] is a widely-used technology for minimizing the data stored

and transmitted in various cases. Unlike the normal applications that handle data at

the granularity of complete objects, delta encoding processes data in the form of states

and differences. It is mainly based on the following assumption: when modifying a data

object, the size of the difference between the original state and the current state is less

than the size of the data object itself. Therefore, when the new states of the object

need to be stored or transmitted, it is beneficial to represent them with the original

8

state and the corresponding differencing data rather than storing them in full. The new

states can be restored by applying the differencing data to the original state.

Delta encoding is particularly useful for situations where data is being updated

across a network with limited bandwidth [28]. Web sites and email servers are good

examples to illustrate its usage. Web sites are regularly replicated in different web

servers both for high performance and availability. These web servers may be physically

located in different spots, even separated by continents. It is crucial to minimize the

synchronization data transmitted from any source server to any target server for keeping

every visitor updated. Email system users often replicate their email messages locally.

Many email softwares store all the messages of each user in single file. When these

files grow large, or the users connect to the email servers with a slow link, the size of

transmitted data is desired to be minimized.

The most accessible implementation of delta encoding is probably the “diff”

utility available in the Unix systems. It takes two file names as input and generates the

differencing data as output. The size of the output should be mathematically minimal.

Users could use the “patch” utility to make restorations. Alternatively, Myers [29]

described a fast algorithm to find such differencing data, which was based on the concept

of “edit script.” An edit script is an ordered set of insertion and deletion instructions

that transforms sequence A to B. [26] defines VCDIFF as a generic format for the

differencing data. Xdelta and open-vcdiff [38, 39] are two implementation libraries of

the VCDIFF format.

Since the concept of delta encoding is common in conventional compression

9

such as 7-zip and bzip2 [12, 13], people are motivated to adopt it in the deduplication

area. Difference Engine [21] was implemented to identify and compress memory pages

in virtual machines. The authors proposed a parameterized scheme to discover similar

chunk candidates, and make patches for the best compressed chunk pairs. The delta

encoding implementation they used is Xdelta. In this paper we use a modified version

of the Difference Engine algorithm to find encoding candidates. We are also interested

in comparing the effect of scheme parameters on the VM disk image case to the memory

page sharing case. The system designed by Aronovich et al. [5] was built with a similarity

based deduplication that also uses the signature mechanism to identify similar chunks.

However, the signature generation algorithm they chose was different, and the authors

provided mathematical discussions to support their choice. The two systems both have

good results in saving storage space.

10

Chapter 3

Deduplication

Since our experiments were focused on the amount of deduplication possible

from sets of VM disk images, we first broke VM disk images into chunks, and then

analyzed different sets of chunks to determine both the amount of deduplication possible

and the source of chunk similarity. Section 3.1 discusses the techniques we used to

generate chunks from VM disk images, and Section 3.2 discusses the approach we used

to measure deduplication effectiveness.

We use the term disk image to denote the logical abstraction containing all of

the data in a VM, while image files refers to the actual files that make up a disk image.

A disk image is always associated with a single VM; a monolithic disk image consists of

a single image file, and a spanning disk image has one or more image files, each limited

to a particular size, typically 2 GB. When we refer to “disk images,” we are referring

to multiple VM disk image files that belong to multiple distinct VMs. Finally, we use

the term chunk store to refer to the system that stores the chunks that make up one or

11

more disk images.

3.1 Chunking

In order to locate identical parts of disk images, we divide the image files

into chunks to reduce their granularities. This is done by treating each image file as a

byte stream and identifying boundaries using either a “constant” function (for fixed-size

chunking) or a Rabin fingerprint (for variable-sized chunking). A chunk is simply the

data between two boundaries; there are implicit boundaries at the start and end of each

image file. Chunks are identified by their SHA1 hash, which is calculated by running

SHA1 over the contents of the chunk. We assume that chunks with the same chunk ID

are identical; we do not do a byte-by-byte comparison to ensure that the chunks are

identical [22].

We implemented both fixed-size and variable-size chunking to test the efficiency

of each approach in deduplicating disk images. Fixed-size chunking was done by reading

an image file from its start and setting chunk boundaries every N bytes, where N is the

chunk size. For variable-size chunking, we calculated a 64-bit Rabin fingerprint using the

irreducible polynomial from Table 3.1 for a fixed-size sliding window, slid the window

one byte at a time and updated the fingerprint until the modulo of the fingerprint and

the divisor became equal to the residual; at this point a boundary was created at the

start of the window, as shown in Figure 3.1. Of course, this approach resulted in chunks

that may have greatly varying sizes, so we imposed minimum and maximum chunk sizes

12

(a) Fixed-size chunking with chunk size 512 B. (b) Variable-size chunking with expected aver-

age chunk size 512 B.

Figure 3.1: Chunking a file with size 0xF300 bytes.

on the function to reduce the variability, as is usually done in real-world systems [45].

The specific parameters we used in variable-size chunking are shown in Table 3.1; These

parameters were chosen to ensure that the chunking algorithm generates chunks with

the desired average chunk size. We conducted experiments for average chunk sizes of

512, 1024, 2048, and 4096 bytes for both fixed-size and variable-size chunking.

We chunked each image file separately because fixed-size chunking exhibits the

“avalanche effect:” although altering bytes in the file only changes the corresponding

chunk IDs, inserting or removing bytes before the end of an image file changes all of

the remaining chunk IDs, unless the length of insertion or deletion is a multiple of the

chunk size for fixed-size chunking. Thus, if image file sizes are not multiples of the chunk

size, the result of chunking across files is different than that of chunking each separately.

13

Name Value

divisor 512, 1024, 2048, 4096 (bytes)

maximum chunk size divisor × 2

minimum chunk size divisor / 16

irreducible polynomial 0x91407E3C7A67DF6D

residual 0

sliding window size minimum chunk size / 2

Table 3.1: Parameters for variable-size chunking.

Also, because both monolithic and spanning image files have a header specific to the VM

instance, chunking sequentially across the spanning files does not restore the original

guest file system because the last chunk of each file could be shorter than the specified

chunk size.

Zero-filled chunks are common in VM disk images, and come from three

sources. One source is VM-specific: disk images can contain zero blocks corresponding

to space not yet used by the virtual machine. Another source is runs of zeroes in the file

system, caused by space that has been zeroed by the operating system running in the

VM. The third source is application-generated zero-filled blocks, as are sometimes gen-

erated by databases and other applications. The relative frequency of the three sources

of zeroed blocks varies in different VMs. While the first source is VM-generated, differ-

ent types of disk images (flat versus sparse) can have different numbers of zero blocks

in them. Decisions such as the maximum disk image size can influence this number

14

as well. The other two sources of zero blocks are due to the guest operating system

and applications, which are less affected by the choice of virtual disk size. In fixed-size

chunking, all zero-filled chunks are identical. In the variable-size chunking experiments,

runs of zeros do not generate boundaries, and thus result in chunks of the maximum

chunk size. Since all zero-filled chunks are the same (maximal) size (except perhaps for

a run at the end of an image file), they are all identical to one another.

To further reduce space, we compress each chunk using zip after hashing it

to generate the chunk ID. Since the zip compression is deterministic, additional space

saving can be achieved with no loss of fidelity. It is a trade off between time, space

saving and the size of chunks.

3.2 Deduplication

The deduplication process is simple: for each chunk being stored, we attempt

to locate an existing instance in the chunk store. If none is found, the new chunk is

added to the chunk store; otherwise, the new chunk is a shared chunk. As described in

Section 3.1, nearly all zero chunks are identical, except for a non-maximal length zero

chunk at the end of an image file. Since even large spanning disk images have relatively

few files, most of which end with non-zero chunks, an optimization that recognizes such

non-maximal length zero chunks would provide little benefit.

The chunk ID, which is generated from the SHA1 hash of the chunk’s content,

is the only value used to look up existing chunks. Even for an exabyte-scale chunk

15

Figure 3.2: Share categories of chunks. Chunks seen for the first time must be stored;
subsequent occurrences need not be stored.

store, collisions would be highly unlikely; for the multi-terabyte chunk store in our

experiments, the chances of collision are even smaller. The maximum number of possible

distinct chunks in an exabyte file is 254, with fixed-size chunking and 8 byte chunk size

employed; this is far more less than the 1/280 collision likelihood of SHA-1.

We calculate the deduplication ratio for a given chunk store and chunking

method by:

1− Stored bytes of all disk images

Original bytes of all disk images

The deduplication ratio is a fraction in [0, 1), since there is at least one stored chunk

in a chunk store, and the worst possible case is that there are no duplicate chunks. We

exclude per-chunk overhead in our studies, which is 20 bytes for SHA-1 hash and varied

size of implementation-specific bookkeeping information.

We classify each occurrence of a chunk into one of four categories, shown in

Figure 3.2. When a chunk appears exactly once in the entire set of VM disk images, it

is called an unshared chunk, labeled “none” in Figure 3.2. Chunks that appear in more

16

than one disk image are termed inter-image shared chunks, and chunks that appear

multiple times, within a single disk image but not elsewhere, are called intra-image

shared chunks. Chunks that appear in multiple disk images and appear more than once

in at least one of those images are inter-intra-image shared chunks. Zero-filled chunks

are tracked separately; however, they are typically inter-intra-image shared chunks in

sets with more than one disk image because zero-filled chunks appear in every disk

image that we examined.

As Figure 3.2 shows, all chunks must be stored the first time they are seen.

Subsequent occurrences of each chunk are not stored, reducing the total storage space

required to store the set of disk images. All stored chunks are grouped together for our

experiments, while non-stored chunks are classified by the disk images in which other

occurrences of the chunks are found. Thus, a chunk c that occurs one time in disk

image A and then two times in disk image B would result in one stored chunk and

two inter-intra shared chunks because there are occurrences of chunk c in two separate

disk images, and multiple occurrences of chunk c in at least one disk image. The total

size of a chunk store before deduplication is thus the sum of the sizes of the stored

chunks and three shared categories. This notation differs from the metrics used by

another study [4], which only concentrates on “duplicate” chunks. In their study, two

identical disk images would be 100% similar, and half (only inter-share) or less (inter-

and intra-share) chunks would typically need storage.

Changing the processing order for a set of disk images can produce different

intermediate results for the number and type of shared chunks and the deduplication

17

ration, but the final result will always be the same for a given set of disk images. For

example, processing disk images in the order 〈A1, A2, B〉 would result in a high level of

inter-image sharing after the second disk image was added, assuming that images A1

and A2 are very similar and both are dissimilar to image B. However, processing the

files in the order 〈A1, B,A2〉 would result in a much lower deduplication ratio after the

second disk image was added, but the final result would be the same as for the first

processing order.

3.3 Experiments

To determine which factors affect deduplication ratios for sets of disk images,

we obtain the pre-made disk images listed in Table 3.2 from Internet web sites as data

source, including VMware’s Virtual Appliance Marketplace [40], Thoughtpolice [37],

and bagvapp’s Virtual Appliances [6] site. Most of the VMs were created in VMware’s

format, and were compatible with VMware Server 2.0. The VirtualBox VMs were

compatible with VirtualBox 2.0 and onward.

For the figures in this section, stored chunks are counted the first time they

are seen during the deduplication process, each of which must be stored. Each of the

other chunk categories is reduced in size by its remaining instances. Zero chunks are

isolated as a separate chunk class, not part of the inter-intra shared chunk.

18

Index Name and version Kernel File system Desktop Image size Disk type

1 Arch Linux 2008.06 Linux 2.6.25-ARCH ext3 GNOME 3.5G XS

2 CentOS 5.0 Linux 2.6.18-8.el5 ext3 None 1.2G XS

3 CentOS 5.2 Linux 2.6.18-92.1.10.el5 ext3 GNOME 3.3G MS

4 DAMP Dragonfly 1.6.2-RELEASE ufs None 1.1G MF

5 Darwin 8.0.1 Darwin 8.0.1 HFS+ None 1.5G MF

6 Debian 4.0.r4 Linux 2.6.18-6-486 ext3 None 817M XS

7 Debian 4.0 Linux 2.6.18-6-686 ext3 GNOME 2.5G MS

8 DesktopBSD 1.6 FreeBSD 6.3-RC2 ufs KDE 8.1G XF

9 Fedora 7 Linux 2.6.21-1.3194.fc7 ext3 GNOME 2.9G XS

10 Fedora 8 Linux 2.6.23.1-42.fc8 ext3 GNOME 3.4G XS

11 Fedora 9 en-US Linux 2.6.25-14.fc9.i686 ext3 GNOME 3.4G XS

12 Fedora 9 fr Linux 2.6.25-14.fc9.i686 ext3 GNOME 3.6G XS

13 FreeBSD 7.0 FreeBSD 7.0-RELEASE ufs None 1.2G XS

14 Gentoo 2008.0 Linux 2.6.24-gentoo-r8 ext3 Xfce 5.5G XS

15 Gentoo 2008.0 with LAMP Linux 2.6.25-gentoo-r7 ext3 None 8.1G XF

16 Knoppix 5.3.1 Linux 2.6.24.4 ext3 KDE 13G XS

17 Kubuntu 8.04.1 Linux 2.6.24-19-generic ext3 KDE 2.6G MS

18 Mandriva 2009.0 Linux 2.6.26.2-desktop-2mnb ext3 GNOME 3.3G XS

19 NAMP NetBSD 3.1 (GENERIC) ffs None 1.1G MF

20 OAMP OpenBSD 4.0 ffs None 804M MS

21 OpenBSD 4.3 OpenBSD 4.3 ffs None 558M MS

22 OpenSolaris 2008.5 SunOS 5.11 ZFS GNOME 3.8G XS

23 openSUSE 11.0 Linux 2.6.25-1.1-pae ext3 KDE 8.1G MF

24 PC-BSD 1.5 FreeBSD 6.3-RELEASE-p1 ufs KDE 2.2G MS

25 Slackware 12.1 Linux 2.6.24.5-smp ext3 KDE 3.5G MS

26 Ubuntu 8.04 en-US Linux 2.6.24-19-generic ext3 GNOME 3.5G MS

27 Ubuntu 8.04 fr Linux 2.6.24-19-generic ext3 GNOME 2.5G XS

28 Ubuntu 8.04 JeOS Linux 2.6.24-16-virtual ext3 None 293M MS

19

Index Name and version Kernel File system Desktop Image size Disk type

29 Ubuntu 6.10 Server Linux 2.6.17-10-server ext3 None 520M XS

30 Ubuntu 7.04 Server Linux 2.6.20-15-server ext3 None 557M XS

31 Ubuntu 7.10 Server Linux 2.6.22-14-server ext3 None 543M XS

32 Ubuntu 8.04 Server Linux 2.6.24-16-server ext3 None 547M XS

33 Ubuntu 8.04 LTS (1) Linux 2.6.24-16-server ext3 GNOME 3.0G XS

34 Ubuntu 8.04 LTS (2) Linux 2.6.24-16-server ext3 GNOME 2.9G MS

35 Ubuntu 8.04 LTS (3) Linux 2.6.24-16-server ext3 GNOME 2.2G XS

36 Ubuntu 8.04 LTS (4) Linux 2.6.24-16-server ext3 GNOME 2.9G MS

37 Ubuntu 8.04 LTS (5) Linux 2.6.24-16-server ext3 GNOME 2.9G MS

38 Ubuntu 8.04 LTS (6) Linux 2.6.24-16-server ext3 None 547M XS

39 Ubuntu 8.04 LTS (7) Linux 2.6.24-16-server ext3 GNOME 2.1G XS

40 Ubuntu 8.04 LTS (8) Linux 2.6.24-16-server ext3 None 1.1G MS

41 Ubuntu 8.04 LTS (9) Linux 2.6.24-16-server ext3 None 559G MS

42 Ubuntu 8.04 LTS (10) Linux 2.6.24-16-server ext3 GNOME 3.2G MS

43 Ubuntu 8.04 LTS (11) Linux 2.6.24-16-server ext3 None 604M MS

44 Ubuntu 8.04.1 LTS (12) Linux 2.6.24-16-server ext3 GNOME 2.4G MS

45 Ubuntu 8.04.1 LTS (13) Linux 2.6.24-16-server ext3 GNOME 8.1G XF

46 Ubuntu 8.04.1 LTS (14) Linux 2.6.24-16-server ext3 None 1011M XS

47 Xubuntu 8.04 Linux 2.6.24-16-generic ext3 Xfce 2.3G XS

48 Zenwalk 5.2b Linux 2.6.25.4 ext3 Xfce 2.5G XS

49 Ubuntu 8.04 Server on VMware Linux 2.6.24-16-server ext3 None 1011M MS

50 Ubuntu 8.04 Server on VirtualBox Linux 2.6.24-16-server ext3 None 969M MS

51 Ubuntu 8.04 Server on VMware Linux 2.6.24-16-server ext3 None 4.1G XF

52 Ubuntu 8.04 Server on VirtualBox Linux 2.6.24-16-server ext3 None 4.1G MF

Table 3.2: Virtual machine disk images used in the study. Under disk type, M is a
monolithic disk image file, X is a disk image file split into 2 GB chunks, S is a sparse
image file, and F is a flat image file. For example, MS would correspond to a single
monolithic disk image formatted as a sparse image.

20

(a) Average chunk size = 1 KB.

(b) Average chunk size = 4 KB.

Figure 3.3: Growth of data in different categories for 14 different Ubuntu 8.04 LTS
instances. Stored data grows very slowly after the second VM is integrated. In these
figures, stored data includes the first instance of each chunk, regardless of how it is
shared. The sharp increase in size at the 5th VM is due to the use of a flat disk image,
in which there are a large number of zero-filled (empty) sectors.

21

3.3.1 Overall Impacts

Before going into detail on how much specific factors impact deduplication, we

evaluated deduplication for closely related disk images—a set of images all based on

Ubuntu 8.04 LTS—whose result was then compared against a set of disk images from

widely divergent installations, including BSD, Linux, and OpenSolaris VMs. The results

are shown in Figures 3.3 and 3.4. As these figures show, operating systems with similar

kernel versions and packaging systems deduplicate extremely well, with the system able

to reduce storage for the 14 disk images by over 78% and 71% for 1 KB and 4 KB chunk

size, respectively. Of the 22% of the chunks that are stored, 12% are chunks that occur

exactly once and 10% are chunks that occur more than once, with only a single instance

stored.

Given this trend, it is likely that additional Ubuntu 8.04 disk images would

add little additional operating system data. It is important to note that these images

were pre-compiled and gathered from various sources; they were not created by a single

coordinated entity, as was done by Nath, et al. [30], suggesting that hosting centers

can allow users to install their own VMs and still gain significant savings by using

deduplication. Since it takes more time and storage overhead to generate smaller chunks,

4 KB chunk size might be a good idea if space allows.

On the other hand, a set of disk images consisting of 13 operating system

images including various versions of BSD, OpenSolaris, and Linux did not fare as well, as

Figure 3.4 shows. In such a case, unique data is the largest category, and deduplication

22

Figure 3.4: Growth of category data for 13 Unix and Linux virtual machines, using
variable-size chunking, with an average chunk size of 1 KB. Unique data grows signifi-
cantly as each disk image is added. As in Figure 3.3, the sharp increase in size at the
3rd VM is due to a large number of empty, zero-filled sectors in a flat disk image.

saves less than half of the total space, with zero-filled blocks second. This is close to the

worst-case scenario for deduplication, since the disk images differed in every possible

way, including operating system and binary format. That this approach was able to

achieve a space savings of close to 50% is encouraging, suggesting that adding further

VMs will result in more space savings, though not as much as for the case in which all

VMs are highly similar.

In our next experiment, we compared deduplication levels for chunk stores

consisting only of VMs with a single operating system—BSD or Linux—to that of two

more heterogeneous chunk stores: one with BSD, OpenSolaris, and Darwin (labeled

“Unix”), and another with all types of operating systems (labeled “All”). The All chunk

23

Figure 3.5: Effects of varying operating system type on deduplication. All experiments
used 512 B variable-size chunks, except for the Linux experiment that uses 4 KB variable-
size chunks. There is more intra-inter sharing in Linux than in BSD, indicating that
the former is more homogeneous.

store is a super set of the other three chunk stores, and contains more flat disk images. As

Figure 3.5 shows, the All chunk store achieved the best deduplication ratio, indicating

that, even for operating systems of different lineage, there is redundancy available to be

removed by deduplication. This seemingly contradictory high deduplication level comes

from two sources. The first is zero chunks, as the All chunk store includes more flat

disk images than any other chunk stores. The second is additional inter chunks, as they

appeared only once in BSD or Linux chunk stores and were considered as stored chunks.

Nevertheless, the higher levels of sharing for non-zero chunks in the Linux chunk store

indicates that the Linux disk images were more homogeneous than the BSD images and

All images.

24

Figure 3.6: Cumulative distribution of chunks by count and total size. The upper line
shows the cumulative number of chunks with total count of n or less, and the lower line
shows the total space that would be consumed by chunks with count n or less. The data
is from the Linux chunk store with chunk size 512 B. As the graph shows, most chunks
occur fewer than 14 times, and few non-zero chunks appear more than 50 times in the
set of disk images.

Another notable feature in Figure 3.5 is that the fraction of zero chunks de-

creases markedly from the 512 B Linux case to the 4 KB Linux case. While the overall

number of chunks decreases by a factor of 8 (4096/512), the fraction of chunks that

contain all zeros shrinks, with a corresponding increase in unique chunks, indicating

that most of the zero chunks are 2 KB or less in length. The figure also shows that,

while the relative fractions of zero chunks and unique chunks changes from 512 B chunks

to 4 KB chunks, the amount of sharing changes little, indicating that chunk size may

have relatively little impact on the relative frequency of shared chunks.

Figure 3.6 shows the cumulative distribution of chunks by both count and total

size in the Linux chunk store. Chunks that appear only once are unique chunks and

25

Figure 3.7: Effects of chunk size and fixed versus variable-size chunking on deduplication
for a set of disk images including Ubuntu Server 6.10, 7.04, 7.10 and 8.04. In each
group of two bars, the left bar measures fixed-size chunking and the right bar indicates
variable-size chunking. The graph shows that smaller chunk sizes result in more effective
deduplication.

must be stored; for other chunks, the chunk store need only contain one copy of the

chunk. As the figure shows, over 70% of chunks occur exactly once, and these chunks

make up about 35% of the undeduplicated storage. The rest 20% storage is occupied

by zero-filled chunks, as shown in Figure 3.5; they are particularly common in flat disk

images.

3.3.2 Impact of Specific Factors

The next set of experiments focus on many factors that might affect dedu-

plication, identifying those that are most critical and quantifying their effects on the

deduplication ratio.

26

We first examined the effect of chunk size and boundary creation technique on

deduplication ratio. Figure 3.7 shows the effect of deduplicating a set of disk images for

different versions of Ubuntu Server using fixed and variable-size chunking for different

average chunk sizes. As expected, smaller chunk sizes result in better deduplication

ratios; this is done by converting unique chunks into shared chunks and zero chunks.

Interestingly, the number of zero chunks grows significantly as chunk size decreases,

indicating that zero chunks are more likely to be generated by the operating system

or applications than by the VM software writing out the virtual disk, since zeros in

the virtual disk would likely be 4 KB or larger. It is also important to note that fixed-

size chunking is even more effective than variable-size chunking in this experiment,

suggesting that fixed-size chunking may be appropriate for VM disk images.

We next examined the effects of different releases on deduplication effective-

ness. Figure 3.8 shows the deduplication ratios for consecutive and non-consecutive

releases of Ubuntu and Fedora. Ubuntu7-8 is the product of deduplicating Ubuntu

7.10 against Ubuntu 8.04, and Ubuntu6-8 is built with Ubuntu 6.10 and Ubuntu 8.04.

Fedora8-9 is the result generated from Fedora 8 and Fedora 9, while Fedora7-9 is the

story of Fedora 7 and Fedora 9. Deduplication patterns between consecutive and non-

consecutive releases of a single distribution appear similar, and deduplication is only

slightly less effective when skipping a release. This experiment shows that when a ma-

ture operating system such as Ubuntu updates its major version, most of the data,

e. g., base system or software architecture, remains unchanged. Another interesting

point from Figure 3.8 is that variable-size chunking does much better on Fedora than

27

Figure 3.8: Deduplication on different releases of a single Linux distribution. The left
bar in each pair is fixed-size chunking and right bar is variable-size chunking; chunk
size is 512 B. Consecutive releases have only slightly lower deduplication ratio than
non-consecutive releases.

does fixed-size chunking, in large part because it is able to convert unique blocks into

inter-intra shared blocks. We do not know why this is; however, it is one of the only

cases in which variable-size chunking significantly outperforms fixed-size chunking in

our experiments, confirming that deduplication for VMs should use fixed-size chunking

rather than adding the complexity of variable-size chunking.

Figure 3.9 shows the impact of OS locale upon deduplication. We deduplicated

English and French versions of Ubuntu Server 8.04 and Fedora 9 separately; the only

differences between the two versions were a few files relating to software interfaces

and keyboard layouts. As the figure shows, deduplicating the French version of each

OS against its English version adds few stored chunks, indicating that changing the

28

Figure 3.9: Locale versions (variable-size chunking, chunk size 512 B). The left bar in
each pair only measures the English version and the right bar measures both English
and French versions. Storing different locale versions of same distribution produces high
deduplication.

localization of an operating system introduces very few unique blocks.

We next evaluated the effect of deduplicating Linux versions that derive from

a common root. Ubuntu and Knoppix are both based on Debian, and Fedora, CentOS,

and Mandriva descend from Red Hat Linux. The result, shown in Figure 3.10, is sur-

prising: despite their common lineage, Linux versions derived from a single root do not

deduplicate well against each other. While mature releases do not change much, as Fig-

ure 3.8 showed, there are significant changes when a new Linux distribution “forks off.”

Thus, it is necessary to consider these distributions as distinct ones when considering

deduplication effectiveness.

We next evaluated the effects of varying the operating system while keeping

29

Figure 3.10: Distribution lineage. Debian series comprises Debian, Ubuntu and Knop-
pix. Red Hat series comprises Fedora, CentOS and Mandriva. Variable-size chunk-
ing, chunk size 512 B. Despite the common lineages, there is a relatively low level of
deduplication.

Figure 3.11: Deduplication of Web appliance VMs (variable-size chunking, chunk size
512 B). AMP stands for Apache, MySQL and PHP. Since the deduplication ratios for
both cases are low when zero chunks are excluded, we can conclude that diverse oper-
ating systems with similar goals do not have many identical chunks of code.

30

the purpose of the distribution—in this case, serving Web pages—constant. We built a

chunk store from disk images of DragonflyBSD, NetBSD and OpenBSD with Apache,

MySQL, PHP and all dependent packages, as described in Section 3.3.3. We then added

similar configurations of CentOS, Gentoo and Ubuntu into the chunk store; the results

are shown in Figure 3.11. Excluding the large number of zero chunks, the deduplication

ratios are not high, showing that the common purpose of the systems does not improve

the deduplication ratio. While it may appear that diversifying the chunk store with

Linux distributions helps, this is an illusion caused by the large number of zero chunks;

the levels of sharing remain low.

The choice of virtual machine monitor (VMM) does not significantly change

the virtual disk image, as Figure 3.12 shows. The same virtual machine, Ubuntu

Server 8.04.1, on VirtualBox 2.0 and VMware 2.0 deduplicates extremely well, saving

about half of the space, as long as variable-size chunking is used. The large variation

in deduplication effectiveness for fixed-size chunking is due to different offsets in the

disk image for the actual disk blocks (the first part of the file is occupied by the VMM-

specific header). Since the offset of the actual virtual disk data in the two disk images

files have the same value modulo 512 but not modulo 1024, fixed-size chunking is only

effective for 512 B chunks. Figure 3.12(b) shows that, not surprisingly, pre-allocated

disk images contain a lot of zeros. Since most modern file systems support sparse files,

the VMMs which only support flat disk images may utilize the functionality to simulate

sparse disk images, thus eliminate space requirement dramatically.

31

(a) Ubuntu Server 8.04.1 on VMware and VirtualBox (sparse disk image,

4 GB maximum)

(b) Ubuntu Server 8.04.1 on VMware and VirtualBox (flat disk image,

pre-allocate 4 GB space)

Figure 3.12: Virtual machines created by different VMMs deduplicate well. The bar
on the left measures fixed-size chunking, and the right-hand bar measures variable-size
chunking.

32

Name Image Packages

size Size # Before # After

Ubuntu, package set 1, asc, instance1 879 332 255 391

Ubuntu, package set 1, asc instance 2 883 336 255 391

Ubuntu, package set 1, desc 885 338 255 392

Ubuntu, package set 2, asc 873 326 255 397

Ubuntu, package set 2, desc 867 320 255 402

Ubuntu, remove no dependency 885 - 391 377

Ubuntu, remove all dependencies 881 - 391 256

CentOS, package set 1, asc 1435 387 359 443

Fedora, package set 1, asc 1307 405 194 306

Table 3.3: Package installation and removal sets. “asc” and “desc” refer to the order in
which packages are installed. Image size is post-installation / removal. All sizes are in
megabytes; the “before” and “after” columns reflect the number of installed packages
before and after the installation / removal action.

3.3.3 Impact of Package Management

Users of modern Unix-like operating systems can modify their functionality by

installing and removing software packages as well as by storing user-related data. In this

section, we experimented with the impact on deduplication effectiveness of adding and

removing packages. The packages used in the experiments are described in Table 3.4; all

experiments were conducted on a fresh Ubuntu Server 8.04 and CentOS 5.2 installation,

which use aptitude and yum, respectively, for package management. Table 3.3 lists the

sizes of the VMs and the packages.

Figure 3.13 shows the deduplication effectiveness for different sets of disk im-

33

(a) Package set 1. Some packages only have a deb version or an rpm version.

Index Package name Software Application

Ubuntu CentOS detail

1
apache2

apache2-doc

httpd

httpd-

manual

Apache 2.2 web server

2

php5

libapache2-mod-

php5

php PHP 5.2.4 language

3
mysql-server

mysql-doc-5.0
mysql-server MySQL Server 5.0 database

4 exim4 exim Exim MTA 4.69 email service

5
mediawiki

php5-gd
mediawiki MediaWiki 1.11.2 wiki

6 vsftpd vsftpd Very Secure FTP 2.0.6 FTP server

7
subversion

libapache2-svn
subversion Subversion 1.4.6 version control system

8 bacula

bacula-client

bacula-console

bacula-director

bacula-storage

Bacula 2.2.8 backup

9 rpm - RPM 4.4.2.1 package manager

34

(b) Package set 2

Index Package name Software detail Application area

1
lighttpd

lighttpd-doc

lighttpd 1.4.19 Web Server

2 rails Ruby on Rails 2.0.2 Language

3

postgresql

postgresql-contrib

postgresql-doc

PostgreSQL 8.3.1 database

4 postfix Postfix 2.5.1 Email service

5 python-moinmoin Moin Moin 1.5.8 Wiki Application

6 cupsys CUPS 1.3.7 Print Server

7
cvs

xinetd

CVS 1.12.13 Version Control System

8 backuppc BackupPC 3.0.0 Backup

9 yum Yum 2.4.0 Package Management

Table 3.4: Two package sets.

35

Figure 3.13: Differing package installation orders. p1a denotes package set 1, ascending
order, and others follow the same naming rule. Variable-size chunking, chunk size 512 B.
Different package installation orders generate nearly identical disk images.

ages with differing installation orders. Deduplication tests on these images show two

important facts. First, installation order is relatively unimportant for deduplication;

all cases have very high deduplication ratios, indicating that each disk image in a pair

is nearly identical to the other. Second, increasing the number of packages installed

reduces the level of deduplication but, again, installation order is relatively unimpor-

tant. This is an important finding for hosting centers; it shows that hosting centers can

allow users to install their own packages without fear that it will negatively impact the

effectiveness of deduplication. Again, this shows that it is not necessary to base disk

images on a “gold” image; it suffices to use deduplication to detect identical disk blocks

in the images.

When we calculated the deduplication ratio for the second case, we found that

36

Figure 3.14: Package systems comparison on Ubuntu Server 8.04 (U), CentOS 5.2, no
desktop (C) and Fedora 9, no desktop (F). Both install package set 1 in ascending order.
Variable-size chunking, chunk size 512 B. Package system’s contribution to deduplication
is outweighed by OS heterogeneity.

the amount of newly introduced unique data is far less than the absolute size of the

package sets. Applications in the same interest areas usually share common dependen-

cies. For example, both apache2 and lighttpd depend on mime-support, a commonly

used MIME [19] support library for web server and email service. Although there is

no common package in the two sets, the common dependent packages in each area

outnumber the listed packages, allowing the potential of high deduplication; moreover,

from Table 3.3 we see the total package numbers after installation are approximately

equal for both package sets, implying that the dependency package numbers of are also

approximately equal.

We also experimented with installing the same packages in the same order on

37

different operating systems. The Debian distribution uses deb packages and manages

them using aptitude. Red Hat distributions use the RPM package system, which uses

yum to install and update packages. Some packages are system related, either with

different binary or different library and dependencies. Figure 3.14 shows the result of

installing package set 1 on Ubuntu, CentOS and Fedora, revealing two points. First, by

installing the same set of packages, the deduplication ratio for different package systems

drops. This is not surprising—the binary data for exactly the same software packages in

deb and rpm format are different. Second, the deduplication ratio for the same package

system also drops. This indicates software packages are primarily OS dependent, not

package system dependent. The conclusion is that packaging system has little effect

on deduplication ratio, particularly when compared to the diversity of the underlying

operating systems.

The final factor we examined was the effect of removing packages. We com-

pared the resulting disk images with the original and dirty disk images from earlier

experiments. “Removing” was done by executing the apt-get purge command; as a re-

sult, the package name is removed from the list generated by dpkg --get-selections.

We can see from Figure 3.15 that, as expected, removed packages are not actually wiped

off the disk; rather, the files are marked as deleted. This is evident from the high dedu-

plication ratio between the installed and removed images and lower ratio for the other

two pairs. We can also see that the removal order is relatively unimportant as well.

In order to preserve a high deduplication ratio, there should be as little difference in

package installation as possible because it is only package installation, not removal, that

38

Figure 3.15: Package removal orders. Variable-size chunking, chunk size 512 B. rp de-
notes removing only target packages. rr denotes removing target packages and all
dependencies (revert to original). ori denotes the original disk image before package
installation. Data of the removed packages are not erased from disk image, which still
resemble the image with the installed packages.

39

Method Size

tar+gzip, level 9 21152781050 (19.7 GB)

7-zip, level 9 15008385189 (14.0 GB)

var, chunk size 512 B, level 9 29664832343 (27.6 GB)

var, chunk size 4 KB, level 9 23994815029 (22.3 GB)

Table 3.5: Compression parameters.

alters the disk image significantly. It is a good idea to leave all dependencies (orphan or

not) installed rather than removed because the file system will allocate different regions

for these dependencies when reinstalling them. Moreover, on a deduplicated system,

unused packages require no additional space, so there is no reason to remove them.

3.3.4 Chunk Compression

In this section, we discuss the impact of compressing chunks on space reduction.

We employed the zlib compression method, using the DEFLATE algorithm [17]), which

is essentially the same as that used in Linux’s zip and gzip code. As a good comparison

group, we used 7-zip (LZMA algorithm) to archive and compress the original disk

images, because various benchmarks [11, 25] have shown that 7-zip is capable of higher

compression than zip. We used the Linux chunk store from Section 3.3.1 for our

compression experiments. The final sizes of the chunk store are shown in Table 3.5.

Figure 3.16 tells us three things. First, chunk-wise compression can reduce the

40

Figure 3.16: Chunk-wise compression. Variable-size chunking, chunk size 512 B, except
the rightmost bar for 4 KB. Chunk-wise compression is effective, but limited by small
window size.

size of the stored chunks by 40%. Most of the saving is contributed by chunks that

occur exactly once; shared chunks are unlikely to be further compressed. Since we only

store a single instance of zero chunks, the saving from such chunks is no more than

1 KB. Second, for 512 B chunks, increasing compression level yields negligible benefit

because the 512 B chunks do not fully utilize zip’s 32 KB sliding window. Third, while

larger chunk size yields better compression, this effect does not counteract the lower

deduplication ratio generated by using larger chunks, and may deteriorate real-time

performance for spending more time on decompression.

41

Chapter 4

Delta Encoding

The duplicate detections discussed in Chapter 3 are all based on an assumption

that the minimum processing unit is measured as a chunk. If two chunks have exactly

the same size and data but vary by only several bytes, they are considered distinct. This

scenario usually happens when several characters are inserted into one of two identical

files. While this granularity is acceptable in some cases, when large chunk sizes are

employed for higher system throughput, or the subject virtual machines differ slightly

in most portions (e. g. branched from a golden base virtual machine), the deduplication

ratio would not be optimal. We are especially interested to know what is the cause of

the low deduplication ratio exhibited in figure 3.7: are these Ubuntu VMs really differ

in large scale, or seemingly different because few bytes such as version numbers in the

guest file systems are changed.

Delta encoding is an ideal way to solve the dilemma between chunk size and

deduplication ratio. When doing delta encoding on two “distinct” chunks, the outcome

42

space saving is determined only by their relative entropy, not by the layout of the bytes in

the chunks. However, delta encoding usually takes more time than content hashing, and

blindly selecting candidate chunks from the whole chunk store is unwise. In this chapter,

we propose one should only do delta encoding in a spatial locality of similar chunks to

achieve space saving. The locality is defined as the range of n sequential chunks, where

n is usually small. We call the sequential chunks ordered chunk sequences, or sequence

in short. The fixed-sized or variable-sized chunks forming a sequence must be next to

each other in the image file and any skip within the image files is not allowed. Similar

as chunk, sequences do not span image files. Therefore chunks from different image

files never form sequences. Two sequences are duplicate if their order, the numbers of

chunks, and the corresponding chunk data are exactly the same, but appear at different

locations.

4.1 Similarity detection

We use the same heurisitic as used in Difference Engine and the system de-

signed by Aronovich et al. [21, 5] to identify similar chunks: if the same portions of

data in two chunks are identical, then the two chunks are likely to be similar to each

other, and worth delta encoding to find out the actual duplicate data. For memory

similarity detection, the authors of Difference Engine introduce a parameterized scheme

with four parameters. Divide the page-byte memory pages into page/block blocks, each

with block bytes. Randomly select k × s unique blocks from a page, and evenly dis-

43

tribute to k sample groups. Hash all s blocks in each sample group and concatenate the

digests as the sample group signature. Use all the k signatures as the entries into a hash

table with chaining. All the memory pages in a same chain are comparison candidates.

Difference Engine chooses the best scheme to make delta encoding between the current

chunk and the first c candidates. In Difference Engine, the page size is 4 KB and the

block size is fixed to 64 bytes; the number of groups, number of signatures and number

of candidates fully explain a scheme pattern.

We do not adopt the implementation of memory similarity detector directly

into the VM locality detection, instead, we modify it to better fit the VM disk image

use cases. The first change in our implementation is, while Difference Engine compares

the group signatures in the global scope, we do the comparisons only in local scope,

thus introduce the scope window size w in the unit of chunk. The group signatures

of the chunks inside the window are kept and compared, while the group signatures of

the chunks outside the window are abandoned. There is no logical or physical evidence

showing that arbitrary nearby data are likely to be related or similar. On the other

hand, the neighborhood of duplicate chunks could be good candidates for delta encoding.

Viewing the neighborhood as whole, it is likely that the relative entropy of these chunks

is lower than arbitrary ones. Given a set of duplicate chunks, we do similarity detection

on the two sides of each chunk, with the range from 1 to w + 1. The nearby chunks on

the different sides are not compared. Thus, the spatial locality size is 2w + 1.

The reason of this change is because candidate chunk data must be in memory

before the delta encoding takes place. In Difference Engine, chunk data are always

44

available in memory. In VM disk image deduplication, chunk data are on disk. Large

chunk store and/or big c value could result in numerous disk read and cache opera-

tions, thus dramatically deteriorate system performance. Moreover, memory pages are

usually allocated randomly to different applications with varied usage patterns. Nearby

memory pages do not necessarily have spatial relationships. On the contrary, studies

show that internal fragmentation in some file systems is relatively rare [35] and the

mean fragmentation path length is small [16]. Data in disk images are mostly allocated

sequentially and accessed by applications with certain purposes.

The second change is, we introduce the sample block size b into the scheme

parameters. Smaller block size increases detection performance which would be critical

in real-time use cases. Bigger block size increases the likelihood of two “similar” chunks

being actually similar and saves more data. Unlike memory pages, chunk sizes in disk-

based deduplication could vary from 1 KB to as high as 64 KB, and the fixed 64-byte

sample block size may not be optimal for all cases. The question naturally arises as

to whether it is beneficial to save time on detection by cutting block size in half which

would result in numerous 64 KB chunks with average similarity of only 10%? Since delta

encoding takes much more time than generating signatures, the answer is usually “no.”

Our modified scheme pattern is (k, s), c, b, w. Table 4.1 summarizes the meaning of each

parameter, and Figure 4.1 shows an example of delta encoding on similar chunks.

Because of the extra scope parameter, and because the chunk sizes in variable-

size chunking are content based and could vary dramatically within a sequence, we only

do research of delta encoding on fixed-size chunking. In fact, Chapter 3 shows that

45

Parameter Meaning

k Number of sample groups for each chunk

s Number of data blocks for each sample group whose hash values are concatenated as the group signature

c Number of candidates where the best one is chosen when comparing the group signatures

b Size of the hashed data blocks for each sample group

w Size of the adjacency of duplicate chunks where delta encoding is applied

Table 4.1: Meaning of the scheme parameters in our similarity detection method.

Figure 4.1: Example of delta encoding on two different chunk sequences. The win-
dow size is 3. A, B, C and D are data blocks in chunks. Each chunk is formed by
concatenating two data blocks. The duplicate chunk AA acts as the center of the lo-
cality. The head of the arrows indicate the target of encoding, while the tail indicate
the source. Chunks CA, CB and CD are similar as they sharing the common C data
block. Chunks such as BD are not encoded because their group signatures are unique
in the locality.

46

fixed-size chunking works well for virtual machine disk images. As a result, we initialize

the random block numbers for each sample group before the detection begins, since all

scheme parameters are determined then, and we use the block numbers throughout the

detection.

As the indexing of group signatures is restricted within sequences, even the

extreme schemes like (4, 1), 8, 1024, 64 limit the number of input strings of the block

hash function up to 215. To optimize performance, we use the SuperFastHash [34] as

the block hash function, which produces 32-bit digests. The input strings in the worst

case are in length of 64× 8 = 512 bits, and 215 is far less than 2512; the lower bound of

the probability having no collision is

pnc =

215−1∏
i=0

(1− i

232
) ≈ 0.8825

Although the probability decreases sharply as a small digest length is chosen, unlike

chunk deduplication, false positives are merely candidates and will be additionally com-

pared. It is beneficial if the time wasted on comparing false positives is less than the

extra time SHA-1 hash takes.

Unlike the chunk compression discussed in Section 3.3.4 that all chunks are

self-compressed, the result of delta encoded chunks depend on not only themselves, but

also the source chunk of each encoding operation. Since the source is required to be

loaded prior to any request to its dependants, the main penalty of the extra space saving

shifts from CPU to I/O cost, which is a function of both the chunk size and the window

size w. The the VM hypervisor may want to cache the source chunk more often than

47

other chunks. Once the source chunk is updated, all the encodings for its dependent

chunks must be recalculated.

4.2 Experiments

In this section, our goal is to evaluate the effectiveness of the delta encoding

applied on the similar chunks. For the consideration of maintaining comparability to

the last section, we still use the same set of VMs listed in Table 3.2. For the delta

encoding algorithm, we use the open-vcdiff library [39]. All experiments are taken on

chunk stores with 4 KB fixed-size chunking, and all zero-filled chunks are excluded in

all time.

4.2.1 Overall Effectiveness

Again, we evaluate the overall effectiveness of delta encoding in locality before

going into detail on specific factors. The subject VMs in the experiments are the 14

Ubuntu 8.04 LTS (ubuntuLTS), Ubuntu Server 6.10 through 8.04 (ubuntu6778) and

the mixture of various Linux distributions (linux). The first 3 parameters in the used

scheme pattern are (2, 1), 1. We compare both the window size of 4 chunks and 8 chunks

for each subject. The signature block size is 64 bytes. Note that if a chunk is identified

as duplicate, it is not further been processed by the delta encoding library. The results

are shown in figure 4.2(a). As the figure shows, compared to the significant savings

that deduplication has in the homogeneous Ubuntu LTS distributions, delta encoding’s

effect is almost negligible. In contrast, the Ubuntu Server chunk store has as much

48

(a) Space saving

(b) Average saving per chunk

Figure 4.2: Effects of varying operating system type on delta encoding. In each group of
two bars, the left bar measures the window size of 4 chunks and the right bar measures
the window size of 8 chunks.

49

space saving from delta encoding as from deduplication. There are two possible ways to

explain the differences in the results. Firstly, the Ubuntu Server chunk store has lower

intra relative entropy than the Ubuntu LTS chunk store. To prove or disprove this, we

compare the average size of savings per chunk, as shown in figure 4.2(b). Clearly, both

chunk stores have almost the same average per-chunk saving for either scheme pattern,

indicating that the average impact of delta encoding is equal. This fact disproves the

first hypothesis. Secondly, the saving ratio from delta encoding is connected to the

deduplication ratio. Since the Ubuntu LTS chunk store is highly duplicated, there are

not many distinct chunks left for delta encoding to compress. If a length-w sequence is

duplicate, none of its chunks is subjected to be delta encoded. On the other hand, the

deduplication ratio of the Ubuntu Server chunk store is significantly smaller. Slightly

changed chunks, which are not captured by deduplication, have more opportunities to

be delta encoded. In short, the delta encoding saving ratio has negative correlation to

the deduplication ratio. It is advised to conduct delta encoding in chunk stores where

deduplication is ineffective.

Also, while the average per-chunk saving for 4-chunk windows is constantly

higher than 8-chunk windows, the corresponding total saving has the opposite results.

This pattern proves one of our hypotheses in Section 4.1 that the closer distance between

the candidate chunks and duplicate chunk, the more similarity they have, therefore the

delta encoding is more effective on average. However, in the larger window sizes, there

are more opportunities to do delta encoding, and this becomes the dominating factor

in the overall results. The Linux mixture shows the lowest average per-chunk saving,

50

Figure 4.3: Effectiveness of delta encoding for varying the number of groups, number of
signatures and number of candidates. All experiments are taken on the Ubuntu Server
6.10 through 8.04 chunk store. The size of signature blocks is fixed to 64 bytes. The
pattern is similar to Difference Engine, except less distinctive.

as it is the most heterogeneous one among the three chunk stores. This heterogeneity

applies to not only its deduplication ratio, as shown in figure 3.5, but also to the delta

encoding approach.

4.2.2 Effectiveness of Specific Parameters

In the next experiments, we focus our attention on specific parameters, and

examine which are the most critical ones in affecting the delta encoding.

Figure 4.3 shows the results of delta encoding on the Ubuntu Server 6.10, 7.04,

7.10 and 8.04 chunk store. In these experiments, we fix the size of signature blocks to 64

bytes, and vary the rest of the parameters. At the first glance, the presented pattern is

similar to its counterpart in Difference Engine. More signature groups yield a noticeably

51

higher saving ratio, while larger candidates numbers affect the saving ratio to the least

scale. If, instead of one, two or more signature groups are independently generated

and compared, this will help the similarity detector filter the false positive chunks.

More candidates will definitely help increase the saving ratio; however, considering the

extra encoding time it consumes, compared with the little gain it brings, it may not

be recommended to increase this number in most cases. The parameters with 1 sample

group per chunk and 2 sample data blocks per group produce the lowest saving ratio both

in memory page sharing and VM disk image deduplication. The effectiveness pattern

of the parameter combinations is preserved between different window sizes, meaning

our modification of the similarity detector is compatible and independent to Difference

Engine’s original algorithm.

Examining the absolute values of the saving ratio, the difference between each

parameter set is less distinctive than Difference Engine. Possibly it is a result of this

specific chunk store, meaning the VMs are so highly similar that even bad parameters

are capable of producing high saving ratios. It is also possible that the small distinction

is a characteristic of delta encoding on VM disk images. As mentioned before, memory

pages are allocated randomly and serve for varied applications and usage patterns.

There is no obvious spatial relationship between adjacent memory pages. On the other

hand, the sizes of VM disk images are generally much larger than the sizes of installed

memory. Same sets of data blocks are more probable to be copied and modified by

multiple applications. Considering that memory is temporary while the disk images are

permanent, such similarities can be preserved and accumulated.

52

Figure 4.4: Effectiveness of delta encoding for varying window sizes and size of signature
blocks. The rest of the three parameters are fixed at (2, 1), 1. Small block size does not
decrease space saving.

Alternatively, we fix the number of sample groups, sample data blocks and

group candidates in the next experiments, and vary the size of signature blocks. For

each experiment, two variations with different window sizes are done for reference. The

results are presented in figure 4.4. The pattern in the figure is obvious: small signature

block size neither decreases the saving ratio with a same window size applied nor affects

the saving ratio when the window size is changed. The size of signature block controls

the likelihood of the captured similarity for each chunk. When the block size is 128

bytes, the two chunks with identical signature groups are more likely to be similar

than the ones when the block size is 32 bytes. However, since the signature groups are

selected randomly, large block size may also increase false negative rate. When using

a fast hash function like SuperFastHash, the overhead of hashing the extra 96 bytes

53

is trivial comparing to the total delta encoding time. When using a canonical hash

function like SHA-512, such overhead may become noticeable.

4.2.3 Time consumption

Although delta encoding is capable of producing significant extra space saving

for certain virtual machine groups, the overhead of such operations is not yet clear. It

is not economical to gain less saving with delta encoding than with deduplication given

that the time consumption of the former is even more than the latter, except when

deduplication is ineffective or in limited storage environments. During the experiments

in the last sections, we count the time consumed in the deduplication and delta en-

coding phases, and show the results in Figure 4.5. Because the absolute numbers are

highly dependent on the hardware and software configurations, as well as the algorithm

implementation and run-time system state (CPU load, memory and I/O usage), we only

show the relative ratio of each phase for better comparability.

The pattern from the figure is analogous to what we have observed in Fig-

ure 4.2(a); The chunk store with higher saving ratio takes less time to finish delta

encoding, while the chunk stores with lower saving ratio consumes more. As the roster

of duplicate chunks is prerequisite of our delta encoding algorithm, all the chunks in the

chunk store have to be traversed, thus the time consumption is proportional to the total

number of chunks. On the other hand, since our algorithm only make patches for the

chunks near duplicate chunks, mathematically the number of delta encoding operations

is 2×w×n, where n is the number of duplicate chunks discovered in the deduplication

54

Figure 4.5: Relative ratios of the time consumption in the deduplication and delta
encoding phases. Three chunk stores are experimented, regarding the block size and
window size combinations in the parentheses on the X-axis. The rest parameters are
fixed at (2, 1), 1. The letter before parentheses abbreviates the name of the chunk store:
l for linux, u for ubuntu6778 and t for ubuntuLTS.

55

phase, and the time consumption is approximately proportional to n. It can be inferred

that the time consumption goes up when the deduplication ratio is high. Also, it is

not surprising that one delta encoding operation is more costly than one deduplication

operation on an average basis. The overhead can be accumulated to a noticeable level

if such operations are massive. This could be the explanation of the significant time

consumption for the linux chunk store, since the size of this chunk store is far bigger

than the other two.

Specifically, the time consumption is approximately proportional to the recip-

rocal of the signature block size. This occurs not because the larger signature blocks

take more time to hash, but narrow down the similar chunk candidates. As we have seen,

smaller size does not necessarily generate higher saving ratio, it is crucial to carefully

choose an appropriate size before doing encoding. Generally, the larger the window

size is, the more time it consumes. The counter-examples in the ubuntuLTS chunk

store can be explained by content-based characteristics or simply by variances of the

experiments.

56

Chapter 5

Future work

5.1 User generated data

Beside the areas of deduplication we investigated in the previous chapters,

another important factor for deduplication is user generated data. While all the VMs

in our experiments were not used by real users, involving user data in VMs may im-

pact deduplication ratios [30, 31]. Different results may be discovered when identical,

homogeneous or heterogeneous VMs are used and deduplicated.

5.1.1 Identical instances

Prepare n identical copies of a single base virtual machine and distribute to

n users. In these VMs, users may be granted the super-user privileges, thus be able to

install softwares on per-machine basis. Collect the deduplication ratio of such instances

over time and examine the trend of ratio change. This is an experiment to reveal whether

57

or not user-related data have correlations and similarities, and how would user-related

actions change the original virtual machine data. This is the ideal case for deduplication,

though not quite practical for real host centers.

Although it has been shown that package installation order has neglible effect

on deduplication ratio, the packages were carefully chosen. It is also good to know if

there is an impact on the ratio when users install their own favorite packages. Pre-

dictably, popular packages might be installed on almost all the instances while cold

packages might appear only once. One can expect to have the deduplication from those

popular ones between user and user, especially if they are large.

Apart from package, users may install software, which are not obtained as

distribution packages. In this case, users configure the development environment, gen-

erate Makefile to compile and install. Since all virtual machines are from the same

configuration, it may be expected that the compiled binary are highly duplicated.

Because users have super-user privileges, they may make some changes on

system configurations. It will be useful to know if such changes will propagate and

accumulate. For example, suppose the base virtual machine is equipped with an X

window environment. If the user disables the X window environment, all subsequent

software installations may not compile X related files.

5.1.2 Homogeneous instances

Instead of n copies from a same base virtual machine, prepare copies from n

homogeneous virtual machines with the same distribution. This might be all Ubuntu

58

8.04 LTS obtained from different sources. There are some differences in the original sys-

tem configurations. Distribute them to m users and observe the trend of deduplication

ratio. If n < m, some of the virtual machines are duplicated instances. We can expect

the deduplication ratio in the case of n < m to be between the identical instances case

and the case of n = m, in average. This experiment is more practical for host centers.

They may trust a few certain sources of virtual machines, but not necessarily the same

version. It would be good to know whether or not the trend of deduplication ratio in

this experiment is comparable to the last section. This would prove or disprove that

the impact of user-related actions is independent from system configurations and minor

differences.

5.1.3 Heterogeneous instances

As different distributions act in different roles, it is more realistic to survey

the trend of the deduplication ratio from heterogeneous instances that are distributed

to users. We hope to simulate the actual environment of host centers, since they rarely

install only one or two distributions.

Apart from the previous experiments, we would like to collect not only the

intra-VM share and inter-VM share, but also the intra-distribution share and inter-

distribution share. If two heterogeneous distributions have high inter-distribution share,

they may be good choices for host centers. If one particular distribution has high intra-

distribution share, space savings can be achieved by hosting it in large amount.

It is also noted that because different distributions have different system com-

59

ponents and package systems, users on such VMs might exhibit different kinds of behav-

iors. For example, users of BSD may do more scientific and computational tasks, while

users of Ubuntu may be more interested in multimedia entertainment. This is also a

potential source of intra-distribution share and a barrier to inter-distribution share.

5.2 Security

Issues such as privacy and security can be important for virtual machines,

particularly when a hosting center contains thousands of disk images. Thus, it can be

useful to investigate the use of secure deduplication [36] to combine encryption with

deduplication for virtual machines. Doing so promises to provide not only privacy, but

also better security since it will be more difficult for an intruder from system A to

compromise encrypted chunks from system B.

60

Chapter 6

Conclusion

Deduplication is an efficient approach to reduce storage demands in environ-

ments with large numbers of VM disk images. As we have shown, deduplication of VM

disk images can save 80% or more of the space required to store the operating system

and application environment. It is particularly effective when disk images correspond

to different versions of a single operating system “lineage,” such as Ubuntu or Fedora.

We explored the impact of many factors on the effectiveness of deduplication.

We showed that package installation and language localization have little impact on

deduplication ratio. However, factors such as the base operating system (BSD versus.

Linux) or even the Linux distribution can have a major impact on deduplication ef-

fectiveness. Thus, we recommend that hosting centers suggest “preferred” operating

system distributions for their users to ensure maximal space savings. If this preference

is followed subsequent user activity will have little impact on deduplication effectiveness.

We found that, in general, 40% is approximately the highest deduplication

61

ratio if no obviously similar VMs are involved. However, while smaller chunk sizes

provide better deduplication, the relative importance of different categories of sharing

is largely unaffected by chunk size. As expected, chunk-wise compression dramatically

reduces chunk store size, but compression level has little effect on the amount of space

saved by chunk compression.

We also noted that fixed-size chunking works very well for VM disk images,

outperforming variable-sized chunking in some cases, thus confirming earlier findings [31]

stated. In particular, in small chunk stores such as those in the Ubuntu Server series

experiment in Section 3.3.1, fixed-size chunking results in better deduplication than in

variable-size chunking. This is good news for implementers of deduplication systems,

since fixed-size chunking is typically easier to implement, and performs considerably

better.

Surprisingly, the deduplication ratio of different releases within a given lineage

does not depend heavily on whether the releases are consecutive. We expected to find

that, the further away two releases are, the less effective deduplication becomes. We

suspect that this effect is not seen because the same parts of the operating system are

changed at each release, while large portions of the operating system remain unchanged

for many releases. We also noted that, while different releases of a given lineage are

similar, large changes are made in operating systems when they are “forked off” from

existing distributions.

Finally, we further examine the possibility and effectiveness of incorporating

delta encoding into VM disk image deduplication. We use a parameterized algorithm

62

to identify similar chunks, limit the candidate chunks in spatial locality of duplicate

chunks, and apply delta encoding on the selected candidates. Fine-grained adjustments

can be made on the parameter combinations to meet different usage requirements. The

experiments exhibit high effectiveness for homogeneous but poorly duplicated chunk

stores, and ignorable impact on chunk stores with good deduplication ratio. For het-

erogeneous chunk stores with fair deduplication ratio, the delta encoding approach still

produce some space saving. Fortunately, the overall time consumptions for just the

delta encoding phase in the experiments are small. Therefore this approach can be a

considerable post-processing step in a deduplication system.

Throughout all of our experiments, we found that the exact effectiveness of

deduplication is data-dependent—hardly surprising, given the techniques that dedupli-

cation uses to reduce the amount of storage consumed by the VM disk images. However,

our conclusions are based on real-world disk images, not images created for deduplica-

tion testing; thus, we believe that these findings will generalize well to a wide array

of VM disk images. We believe that the results of our experiments will help guide

system implementers and VM users in their quest to significantly reduce the storage

requirements for virtual machine disk images for hosting centers with large numbers of

individually managed virtual machines.

63

Appendix A

Duplicate chunk sequences

In this chapter, we introduce the duplicate chunk sequences in chunk stores,

and discuss how to identify them. Virtual machine hypervisor could examine the lo-

cality information and focus on storing and caching the hottest ones. By doing so,

the sequential access pattern on the sequence chunks are preserved, thus improve VM

performance, in exchange of less space saving and more memory consumption.

The following definitions are essential for the rest of this section:

Chunk A data block between two specific boundaries in a file. With fixed-size chunk-

ing, the offset distance between every pair of boundaries is fixed. With variable-

size chunking, the boundaries are content-based [28, 45].

Ordered chunk sequence A set of chunks ordered accordingly to a specific trait in

the disk images, whose cardinality is greater than or equal to 2.

Sequence containment Sequence A is contained in sequence B if their intersection

64

equals to A while A and B have different appearances.

Sequence overlap Sequence A and B are overlapped if their intersection is a proper

subset of either sequence A or B.

Sequence group Group of fully duplicate sequences with different appearances plus

its subgroups.

Sequence subgroup Fully duplicate sequence group that some of its member se-

quences are contained in another sequences group.

Hotness Measurement of how duplicate an object is, defined as the number of its

appearance in the chunk store.

A.1 Motivation

Generally guest operating system disk I/O on 32KB sequential data blocks is

highly possible to be mapped to 32KB sequential data blocks in the virtual machine

disk image, and then mapped to sequential geometric locations on the physical disk.

In deduplicated virtual machine with 4KB fixed-size chunking, this 32KB sequential

data blocks may be mapped to 8 different chunks. Because the chunk server stores

chunk data according to the chunk IDs, and the chunk IDs are uniformly distributed

by the SHA-1 hash function, it is highly possible that the original sequential disk I/O

is eventually transformed to discrete I/O, results in performance deterioration.

To address this problem, the chunk server would store single chunks as well

65

as sequences of chunks. Sequences are considered as big “chunks,” and the data are

stored in one piece. Therefore the sequentiality of the 32K sequence data in the last

paragraph is preserved. This sequence ends up with multiple “chunk sizes” even if it is

a fixed-size chunk store. While the single chunks are responsible for storing data, the

sequences increase I/O performance. The disadvantages are that duplicate chunks are

stored and more memory are needed for the sequence IDs. The trade off between the

overhead and I/O performance is a function of the hotness of the stored sequences. An

alternative approach is to omit the single chunks if they are part of a stored sequence,

with the penalty of performance that, when accessing the chunks in a sequence, the

whole sequence must be read first. This approach might be good for deduplication

systems whose chunk sizes are smaller than the guest file system’s block size, since it is

the nature of guest OS to request data blocks in the granularity of block size.

A.2 Design

The first level locality is fully duplicate sequences in a chunk store, forming

sequence groups. We use the quaternary

< id, length, size, appearances >

to formally define a sequence in the group, where id is a SHA-1 digest calculated by

running SHA-1 over the concatenation of all the affiliated chunk IDs, length is the

number of chunks in the sequence, size is the size of the sequence in byte and appearances

is the set of locations the sequence appears. id uniquely identifies the content of a

66

sequence for the purpose of deduplication. According to the definition of sequence,

length is always greater than or equal to 2. Specifically for fixed-size chunking, size

equals to length times the chunk size, though the last locality of an image file could

be an exception. For variable-size chunking, there is no necessary relationship between

size and length. Obviously, every chunk in a sequence group is duplicated in the chunk

store.

We always favor long sequences over short sequences. That is, if every sequence

in sequence group A is contained in some sequences of sequence group B, we only

consider B and ignore A, because the locality information in A is redundant. However,

if A is a subgroup of B, we do not ignore A and consider A as a independent sequence

group, since some sequences in A are not part of B per definition and bear unique

information. Finally, overlapped sequence groups are considered no exception as normal

sequence groups with the same reason as sequence subgroups.

Figure A.1 shows a segment of chunks in a chunk store. In the context, we use

file:start:end to specify a sequence starting at offset start and ending at offset end in

file file. For example, 1:16:48 indicates the sequence starting at offset 16 and ending at

offset 48 in file 1, with chunk BB and CC. Figure A.1(a) is an example of a sequence

group. Note that even though 1:16:64 and 2:0:48 are eligible to form a sequence group

with length 3, both of them are contained in a longer sequence group with members

1:16:80 and 2:0:64 respectively, and thus ignored. Figure A.1(b) is a case of overlapped

sequence groups. Chunk 1:16:32 is shared by both sequence groups, but none of them

is contained by the other. Figure A.1(c) exhibits sequence subgroup. Sequence 1:32:64

67

and 2:16:48 are duplicate with sequence 2:48:80, where the chunk 2:64:80 is independent

from the sequence group in Figure A.1(a). Therefore sequence CC AA bears unique

information and is kept in record. Since chunk DD is not duplicated, any sequence

includes it does not form sequence group. There are totally 3 sequence groups with 1

subgroup in this chunk segment.

We implemented two strategies to detect level one locality: progressive and

greedy. In general, the progressive algorithm deduplicates sequence groups of one spe-

cific length in each run. Each run involves two phases. The first phase detects all the

duplicate length l localities in the chunk store. The second phase removes all the length

l − 1 sequence groups contained in any of the length l sequence groups and leave sub-

groups untouched, if there is any l− 1 sequence groups detected so far. After each run,

all the sequence groups with length less than l are conclusive.

Deduplicating sequences is similar to detecting duplicate chunks. Instead of

reading one chunk, for every location the algorithm reads in l chunks, concatenates the

chunk IDs into a string with length 20× l, applies SHA-1 hash on the string to generate

20 byte sequence ID, and does deduplication. The algorithm moves to the next chunk

and process in the same manner, until there are not enough chunks to form a length l

sequence in the disk image.

The progressive algorithm begins the first run at length 2 sequences, and pro-

gressively increases the sequence length until less than 2 sequences can be formed. To

detect all possible duplicate sequences, this algorithm needs to run N −2 times, assum-

ing N is the number of chunks in the largest image file. Each run reads every chunk

68

(a) A sequence group BB CC AA CC in bold

text

(b) Two overlapped sequence groups AA BB in

shade and BB CC AA CC in bold text

(c) A sequence group BB CC AA CC with sub-

group CC AA, since the chunk AA at 2:64:80 is

not a part of the former sequence group

Figure A.1: Examples of level one locality.

69

(a) The first run detects all the length 2

sequence groups AA BB and BB CC

(b) The second run detects the length

3 sequence group AA BB CC, leaving

the subgroup AA BB untouched

Figure A.2: Illustration of the progressive strategy. The longest sequence group has
length 3.

ternary record in the chunk store at least once, therefore a large number of duplicate

disk I/Os are inevitable. The progressive algorithm is simple and straightforward to

implement, and ensures output of specific length l in merely 2 runs (length l and length

l + 1). However since virtual machine disk images are generally big files, detecting all

sequence groups may take a long time. Figure A.2 illustrates the progressive strategy.

We use the concatenation of chunk IDs instead of chunk data to identify se-

quences by means of reducing disk I/O. We show that this approach does not dramati-

cally increase the probability of hash collision by using the shorter input strings. Assume

we have a perfect hash function that generates uniformly distributed b-bit digests for

70

any input string no more than m bits long. This hash function is capable of producing

2b distinct digests, each of which has 2m−1
2b−1 collisions in the input space. Consider the

fixed-length input strings with l bits each, given b < l ≤ m. The total number of distinct

strings is 2l, and the collision number for each digest is reduced to 2l−b for this specific

input space. If b ≥ l, the collision probability of perfect hash function is constantly 0.

Now we have n distinct random strings from the length-l input space, satisfying

n < 2l. We consider the shift of the probability having no collision in all strings, because

any pair of data blocks from the disk image is correlated. To compute it, each time

we hash one string, compute its probability of having collision with any of the previous

digests, make the complement probability, and follow the procedure n times. It differs

from the probability of the birthday problem [20] since each input string is counted only

once. The probability of having no collision in all strings pnc is

pnc =
n∏

i=1

(2l − 2l−b) · i
2l − i

=
n∏

i=1

(
2l

2l − i
(1− i

2b
))

This is the upper-bound of all possible input, since duplicate strings may be involved

in actual practice. Obviously the probability becomes 0 when n goes to 2b. By fixing

b and n, decreasing l results in increasing pnc. However, if n is far less than 2l, the

equation is approximated by

pnc =
n∏

i=1

(1− i

2b
) (A.1)

a value not related to l.

71

For SHA-1 hash, b is constantly 160 [3], therefore the collision probability is

bounded by the number of chunks n and chunk size l. In our experiments, the smallest

chunk size is 8192 bits (1KB), and the smallest chunk ID concatenations are 2×40 = 80

bytes (we use the ASCII representation of the SHA-1 hashes), or 640 bits. 1TB chunk

store generates 230 1KB chunks and at most 230 − 1 chunk ID concatenations. It is

safe to consider that 230 − 1 is far less than either 2640 or 28192. Thus, unless the

SHA-1 digests are badly distributed in the space, the concatenation approach will not

dramatically change the collision probability.

On the other hand, the greedy algorithm finishes detecting all sequence groups

in one run, with the prerequisite that all chunk records are loaded in memory (alternative

method is discussed in section A.3.1). The algorithm visits each chunk in a specific order

(discussion on detection order is in section A.3.3) in the index. For each of the visited

chunk, locate its other duplicate instances in the chunk store, and greedily extend the

sequences starting from these chunks. We call the first chunk of each sequence the head

chunks, the first such sequence in the detection order the head sequence, and the rest

of such sequences the candidate sequences. The extending procedure is repeated on the

head sequence and all the candidate sequences. Once the last extended chunk differs

from the one in the head sequence or the end of chunk store is encountered, the extending

is stopped on that candidate sequence.The extending on the head sequence stops when

all candidate sequences have stopped extending. Obviously, if the head chunk of the

head sequence is an unique chunk, the extending procedure does not happen. Otherwise,

at the end of extending, there is at least one candidate sequence whose length is as long

72

as the head sequence, all of which form a sequence group with the head sequence. All

the candidate sequences whose lengthes are shorter than the head sequence, and no less

than two, form sub-localities. All the candidate sequences whose lengths are less than

2 are ignored.

To avoid duplicate sequence groups in the detection result, the head chunks of

group members are recorded, and will be skipped in the rest of the second run. To avoid

contained sequences, every processed head chunk is assigned a non-negative minimum

sequence length after extending or skipping, defined as l − d with l be the length of

the most recent sequence and d be the chunk distance between the head chunks of the

current and the most recent sequence. Whenever the current sequence is concluded

with a length less than its head chunk’s minimum sequence length, this sequence is

contained in a previous sequence group and should be ignored. The initial minimum

sequence length for all chunks is 0. Figure A.3 illustrates the greedy strategy.

A.3 Discussions on the greedy algorithm

There are four significant factors to be considered when implementing the

greedy algorithm:

A.3.1 Postprocessing or inline deduplication

Postprocessing deduplication means all data for the deduplication process are

ready before it starts. Inline deduplication means while some or no data is available

when the deduplication process starts, more data will come during the deduplication

73

(a) Before extending the current head

chunk AA

(b) Extend the head chunk AA once to

BB

(c) Extend twice to CC. The num-

bers in parentheses are the minimum

sequence lengthes.

Figure A.3: Detection result of the first sequence group with the greedy strategy. In the
second extending, 1:48:80 hits the implicit boundary, and becomes a sequence subgroup.

74

process. The former mode is usually used in archive system backup, and the latter one

is best for realtime data backup. In postprocessing deduplication, full data analysis and

sorting are possible, and the index and/or content (if memory size permits to fit) of the

data can be loaded prior to the deduplication process. In inline deduplication, only parts

of the total data are accessible at all times, and the deduplication algorithm can only run

progressively. A queue of the most recent chunks are kept on record, and the oldest ones

are abandoned when the queue is full. Therefore, the inline deduplication can be seen

as multiple local version postprocessing deduplication, which is updated progressively.

In our experiments, the subject virtual machine disk images are static and always fully

available. The extra flexibility of postprocessing deduplication simplifies the algorithm

logics and increases its performance by keeping less footprints and utilizing more memory

on hash caching, especially for our Berkeley DB implementation. Therefore, we mainly

focus on postprocessing deduplication in our experiments. However, when implementing

on-the-fly VM deduplication systems, inline implementation would be the only choice,

since the disk data are constantly changing. More related information can be found in

[27].

A.3.2 Minimum unit (postprocessing dedup only)

In the description of the algorithm above, the Minimum unit is the native

chunk, and the algorithm identifies duplicate sequences by comparing the ID of chunks.

Chunk IDs are always available before the locality detection starts, therefore no pre-

processing is needed. However, since a single chunk does not form a sequence, locating

75

a duplicate chunk does not necessarily mean to locating a locality. Therefore, many

random disk I/Os would be necessary since the duplicate chunk instances are usually

scattered in the chunk store, and an initial extend must be always included in the

algorithm, which slightly perplexes the implementation. On the other hand, using

length 2 sequence as the Minimum unit requires joining every two adjacent chunks into

sequences before the locality detection starts. Fortunately, deduplication can be applied

on these length 2 sequences, and only the duplicate sequences are locality candidates.

This alternative would greatly shrink the detection time (depending on the workload)

and simplify the implementation.

A.3.3 Detection order

There are two detection orders of the locality detection. By offset is defined as

visiting every chunk from the first bit of the first image to the last one. It is the nature

order because the locality is a set of sequences. Since the original chunks are usually

processed and stored with this order, this order requires no additional sorting proce-

dure. As it is guaranteed that all the visited head chunks will not be revisited again,

one can remove the bookkeeping information of such chunks to save memory utilization

and improve detection performance. On the contrary, by ID is a detection order that

takes all chunk instances of a same ID into account at once, processes them as the head

chunks, and moves to the next chunk ID in specific sorting direction (dictionary, alpha-

betical, etc.). The number of distinct chunks are usually much less than the number

of chunk appearances, thus, traversing through all the targets could be faster than the

76

first detection order, making it efficient in highly duplicate chunk stores. However, as it

does not guarantees that all the head chunks will be visited only once, postprocessing

to remove contained sequences will be required.

A.3.4 Multi-threading

Multi-threaded locality detection is feasible. One approach is to start all n

threads at the beginning of the chunk store, and follow the by offset detection order

until there are not enough chunks left in the chunk store to form a sequence. Each of

them uses different but adjacent chunks as the head chunks, off by one chunk. When

thread t1 finishes its detection at chunk c1, the detection result of thread t1+1 at chunk

c1 + 1 could be used to verify if the latter is a contained sequence of the former with

short-term memory bookkeeping. Although this is not always true for another instance

of chunk c1 and c1 + 1, it is highly possible if the sequence starting from c1 is a locality.

Moreover, since all the head chunks are logically adjacent, a cache system could improve

the detection performance with high hit rate (depending on the workload). On the other

hand, if the threads detect locality by ID, logically adjacent chunks are not necessarily

to be visited sequentially, and a cache system cannot help improving performance no

matter whether it is in context of prefetching future chunk data or by verifying contained

sequences.

It is also natural to consider the divide-and-conquer strategy, which evenly

divides the work load into n parts, assign each part to one thread, and merges the result

after all the threads finish. This approach could yield higher performances by taking

77

advantage of parallelism when the chunk store are stored in a multi-disk environment,

e. g. RAID-0 or RAID-5 disk arrays. However, bookkeeping is necessary for all the

processed chunks in all threads, since some localities may be scattered across threads.

In case of large chunk stores, the memory capacity would be easily used up, and the

performance deteriorates as more memory pages are flushed to disk.

78

Bibliography

[1] M. Ajtai, R. Burns, R. Fagin, D.D.E. Long, and L. Stockmeyer. Compactly en-

coding unstructured inputs with differential compression. Journal of the ACM

(JACM), 49(3):318–367, 2002.

[2] Siddhartha Annapureddy, Michael J. Freedman, and David Mazières. Shark: Scal-

ing file servers via cooperative caching. In Proceedings of the 2nd Symposium on

Networked Systems Design and Implementation (NSDI), pages 129–142, 2005.

[3] Anonymous. Secure hash standard. FIPS 180-1, National Institute of Standards

and Technology, April 1995.

[4] IBM Anthony Liguori and IBM Eric Van Hensbergen. Experiences with content

addressable storage and virtual disks. In First Workshop on I/O Virtualisation,

2008.

[5] Lior Aronovich, Ron Asher, Eitan Bachmat, Haim Bitner, Michael Hirsch, and

Shmuel T. Klein. The design of a similarity based deduplication system. In SYS-

TOR ’09: Proceedings of SYSTOR 2009: The Israeli Experimental Systems Con-

ference, pages 1–14, New York, NY, USA, 2009. ACM.

79

[6] http://bagside.com/bagvapp/.

[7] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf

Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In

Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP

’03), 2003.

[8] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In ATEC ’05:

Proceedings of the annual conference on USENIX Annual Technical Conference,

pages 41–41, Berkeley, CA, USA, 2005. USENIX Association.

[9] Deepavali Bhagwat, Kave Eshghi, and Pankaj Mehra. Content-based document

routing and index partitioning for scalable similarity-based searches in a large

corpus. In Proceedings of the 13th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD ’07), pages 105–112, August 2007.

[10] Austin Clements, Irfan Ahmad, Murali Vilayannur, and Jinyuan Li. Decentralized

deduplication in san cluster file systems. In Proceedings of the USENIX Annual

Technical Conference, June 2009.

[11] Lasse Collin. A quick benchmark: Gzip vs. Bzip2 vs. LZMA, 2005.

[12] 2005. http://www.7zip.org.

[13] 2005. http://www.bzip.org.

[14] Landon P. Cox, Christopher D. Murray, and Brian D. Noble. Pastiche: Making

80

backup cheap and easy. In Proceedings of the 5th Symposium on Operating Systems

Design and Implementation (OSDI), pages 285–298, Boston, MA, December 2002.

[15] M. Daum and S. Lucks. Hash Collisions (The Poisoned Message Attack) “The

Story of Alice and her Boss”. Presentation at Rump Sessions of Eurocrypt 2005,

5, 2005.

[16] Gaurav Deshpande and Sachin Manpathak. A revaluation of modern file systems.

[17] P. Deutsch. Deflate compressed data format specification version 1.3. 1996.

[18] John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon, and Marvin Theimer.

Reclaiming space from duplicate files in a serverless distributed file system. In Pro-

ceedings of the 22nd International Conference on Distributed Computing Systems

(ICDCS ’02), pages 617–624, Vienna, Austria, July 2002.

[19] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part

One: Format Of Internet Message Dodies, 1996.

[20] M. Girault and M. Campana. A generalized birthday attack. In Lecture Notes in

Computer Science on Advances in Cryptology-EUROCRYPT’88, pages 129–156,

New York, NY, USA, 1988. Springer-Verlag New York, Inc.

[21] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C. Snoeren,

George Varghese, Geoffrey M. Voelker, and Amin Vahdat. Difference Engine: Har-

nessing memory redundancy in virtual machines. In Proceedings of the 8th Sym-

81

posium on Operating Systems Design and Implementation (OSDI), pages 309–322,

December 2008.

[22] Val Henson. An analysis of compare-by-hash. In Proceedings of the 9th Workshop

on Hot Topics in Operating Systems, 2003.

[23] Val Henson. An analysis of compare-by-hash. In Proceedings of the 9th Workshop

on Hot Topics in Operating Systems (HotOS-IX), May 2003.

[24] Jeffrey Hollingsworth and Ethan Miller. Using content-derived names for configu-

ration management. In Proceedings of the 1997 Symposium on Software Reusability

(SSR ’97), pages 104–109, Boston, MA, May 1997. IEEE.

[25] Jr. Kingsley G. Morse. Compression tools compared. Linux J., 2005(137):3, 2005.

[26] D. Korn, J. MacDonald, J. Mogul, and K.V. RFC. 3284: The vcdiff generic differ-

encing and compression data format. IETF, June, 2002.

[27] NetApp Larry Freeman. Looking beyond the hype: Evaluating data deduplication

solutions. NetApp White Paper, WP-7028-0907, 07, May, 2007.

[28] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-bandwidth

network file system. In Proceedings of the 18th ACM Symposium on Operating

Systems Principles (SOSP ’01), pages 174–187, October 2001.

[29] Eugene W. Myers. An O (ND) difference algorithm and its variations. Algorithmica,

1(1):251–266, 1986.

82

[30] Partho Nath, Michael A. Kozuch, David R. O’Hallaron, Jan Harkes, M. Satya-

narayanan, Niraj Tolia, and Matt Toups. Design tradeoffs in applying content

addressable storage to enterprise-scale systems based on virtual machines. In Pro-

ceedings of the 2006 USENIX Annual Technical Conference, 2006.

[31] Calicrates Policroniades and Ian Pratt. Alternatives for detecting redundancy in

storage systems data. In Proceedings of the 2004 USENIX Annual Technical Con-

ference, pages 73–86, Boston, MA, June 2004. USENIX.

[32] Sean Quinlan and Sean Dorward. Venti: A new approach to archival storage.

In Proceedings of the 2002 Conference on File and Storage Technologies (FAST),

pages 89–101, Monterey, California, USA, 2002. USENIX.

[33] Michael O. Rabin. Fingerprinting by random polynomials. Technical Report TR-

15-81, Center for Research in Computing Technology, Harvard University, 1981.

[34] http://www.azillionmonkeys.com/qed/hash.html.

[35] K. Smith and M. Seltzer. File layout and file system performance. Technical Report

TR-35-94, Harvard University, 1994.

[36] Mark W. Storer, Kevin M. Greenan, Darrell D. E. Long, and Ethan L. Miller.

Secure data deduplication. In Proceedings of the 2008 ACM Workshop on Storage

Security and Survivability, October 2008.

[37] http://www.thoughtpolice.co.uk/vmware/.

[38] http://xdelta.org/.

83

[39] http://code.google.com/p/open-vcdiff/.

[40] http://www.vmware.com/appliances/.

[41] VMware, Inc. Introduction to VMware Infrastructure, 2007.

http://www.vmware.com/support/pubs/.

[42] VMware, Inc. Virtual Disk Format. VMware web site,

http://www.vmware.com/interfaces/vmdk.html, 11 2007.

[43] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full

SHA-1. Lecture Notes in Computer Science, 3621:17–36, 2005.

[44] Lawrence L. You. Efficient Archival Data Storage. PhD thesis, University of Cali-

fornia, Santa Cruz, June 2006. Available as Techncial Report UCSC-SSRC-06-04.

[45] Lawrence L. You, Kristal T. Pollack, and Darrell D. E. Long. Deep Store: An

archival storage system architecture. In Proceedings of the 21st International Con-

ference on Data Engineering (ICDE ’05), Tokyo, Japan, April 2005.

[46] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk bottleneck in the

Data Domain deduplication file system. In Proceedings of the 6th USENIX Con-

ference on File and Storage Technologies (FAST), February 2008.

[47] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory, 23(3):337–343, May 1977.

84

	ssrctrcover
	ssrctr-10-01

