
Spyglass: Fast, Scalable Metadata Search for
Large-Scale Storage Systems

Technical Report UCSC-SSRC-08-01
May 2008

Andrew W. Leung Minglong Shao Tim Bisson
Shankar Pasupathy Ethan L. Miller

Storage Systems Research Center
Baskin School of Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064

http://www.ssrc.ucsc.edu/

Minglong Shao, Tim Bisson, and Shankar Pasupathy are employees of NetApp, Inc.



Spyglass: Fast, Scalable Metadata Search for Large-Scale Storage Systems

Andrew W. Leung⋆ Minglong Shao† Tim Bisson† Shankar Pasupathy† Ethan L. Miller⋆
⋆University of California, Santa Cruz

†NetApp Inc.

Abstract

As storage systems reach the petabyte scale, it has become
increasingly difficult for users and storage administrators
to understand and manage their data. File metadata, such
as inode and extended attributes are a valuable source of
information that can aid in locating and identifying files,
and can also facilitate administrative tasks, such as storage
provisioning and recovery from backups. Unfortunately,
most storage systems have no way to quickly and easily
search file metadata at large scale.

To address these issues, we developed Spyglass, a in-
dexing system that efficiently gathers, indexes and queries
file metadata in large-scale storage systems. Our analysis
of file metadata from real-world workloads showed that
metadata has spatial locality in the storage namespace and
that the distribution of metadata is highly skewed. Based
on these findings, we designed Spyglass to use index par-
titioning and signature files to quickly prune the file search
space. We also developed techniques to efficiently handle
index versioning, facilitating both fast update and queries
across historical indexes. Experiments on systems with
up to 300 million files show that the Spyglass prototype
is as much as several thousand times faster than current
database solutions while requiring only a fraction of the
space.

1 Introduction

Modern storage systems are approaching the point where
they are storing billions of files in petabytes of stor-
age [34]. Organizing and managing this data has become
a daunting task for both users and storage administrators
for several reasons. Users need to find files with particular
characteristics in the vast sea of data, and administrators
need to understand the nature of the data being stored to
more effectively manage the storage. Both tasks require
the ability to efficiently answer questions about the prop-
erties of the data being stored; thus, fast, scalable searches
over file metadata benefits both users and administrators.

File metadata, such as inode fields (file size, owner,
modification time,etc.) and extended attributes, contains
important information that can help in addressing these

data management challenges. For example, a user may
wish to find their recently modified documents or files in
their home directory that should be deleted. Providing
these type of file metadata queries to users can help reduce
their time spent browsing and managing files. Likewise, a
storage administrator may wish to find which system con-
figuration files were recently changed or the users whose
home directories have been growing the fastest to better
inform their management decisions. Moreover, queries
can be refined using additional metadata, such as extended
attributes or a file system path to localize results to a part
of the file system.

A fast, scalable metadata search system is critical
for making such information easily accessible. Previ-
ous research on file search has either primarily focused
on content search [5, 11, 13, 15, 18, 27, 30], which can-
not address many of these queries, or relied on relational
database management systems (DBMSs) to organize and
index file metadata [2, 20, 21, 24]. However, through anal-
ysis of metadata from real-world workloads we show
that two metadata characteristics,spatial locality in the
file system namespace and highlyskewed distributions
of metadata values, make DBMSs an inefficient solution.
This limits their ability to address the challenges in large-
scale storage systems and supports the notion that exist-
ing DBMSs are not a “one size fits all” solution [6, 32].
Thus, given the need for metadata search, it is important to
have a design that can achieve the scalability and perfor-
mance needed to address metadata management in large-
scale storage systems.

To address the shortcomings of existing systems, we
developed Spyglass, a fast, scalable metadata search sys-
tem designed for large-scale storage systems. Spyglass
improves metadata query performance through the use of
several new search and indexing techniques that exploit
metadata properties. First, Spyglass uses a novel parti-
tioning scheme that exploits the clustering of metadata
values within the file system hierarchy. Second, we use
signature files [8] to quickly prune the set of partitions
we must search, resulting in faster searches with fewer
disk accesses. Third, we utilize K-D trees [3] to pro-
vide fast search over our partitioned index. Finally, we
use a new method of index versioning that enables fast
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time-traveling queries across multiple metadata versions.
Evaluation of our prototype shows query performance im-
provements of up to three orders of magnitude while re-
quiring about 10% of the space, compared to a DBMS-
based approach. Additionally, Spyglass exhibits scalable
performance as the size of the file system increases.

The remainder of the paper is organized as follows. We
first present an extended motivation for metadata search
in Section 2. In Section 3 we survey metadata character-
istics and discuss why these characteristics make DBMSs
an ill-suited solution. We then discuss the design and im-
plementation of Spyglass in Section 4. We present an ex-
perimental evaluation of Spyglass in Section 5. Related
and future work are discussed in Sections 6 and 7, respec-
tively. We summarize and conclude in Section 8.

2 Motivation

In order to design a scalable metadata search system that
can address user and administrator queries, it is impor-
tant to understand existing storage management problems,
and how searching metadata can solve them. This sec-
tion discusses several use cases for metadata search, and
describes common query characteristics that a metadata
search system might be able to exploit. Some of these
use cases are obtained through a survey of IT depart-
ments, while others are personal experiences of the au-
thors and other users. Thus, we believe these examples are
good representations of questions facing individual users
and storage administrators. It is important to note, how-
ever, that these queries are not equally common, nor have
the same performance requirements. For example, user
queries to find their document files are likely far more
common than administrator queries about the long-term
growth of the storage system. Likewise, common user
queries require fast performance for usability, while ad-
ministrator queries have slightly more relaxed require-
ments, though must still be able to quickly query large
sets of files.

Metadata queries can be characterized by several fea-
tures, including the locality in the file system, the locality
of reference, the need for metadata history, the number
of query predicates (metadata attributes in a query), and
the number of results returned (or its selectivity). We ex-
pect most query in a large-scale storage system will be of
two classes; either, summary queries (“how much space
is userX consuming”) or queries that return a relatively
short list of files. This is because queries that return very
long lists of results provide no focused information, de-
creasing their usefulness.

Some of the most common queries are likely to be user
queries to find files with particular characteristics. These
queries may search the entire file system or just within

a sub-tree or directory. For example, a number of us al-
ready frequently use Apple’s Spotlight [2] for this very
purpose on our desktops. These queries contain multiple
attributes, such as modification date, file type, and owner,
to produce shorter lists of results. This is because, as we
will later show, any attribute alone produces too many re-
sults; however, theirintersectionsare much smaller and
often confine the search space to a small set of directo-
ries. Similarly, queries are often localized to sub-trees
in the file system. This allows users to limit and reason
about query results because queries are often not looking
for files anywhere in the file system, but rather within a
more specific location.

Administrative queries, while less frequent than user
queries, are equally important as they aid administrator’s
management decisions. Here again, query results can be
confined to a few sub-trees. For example, an administra-
tor might ask about which system configuration files were
recently modified or deleted. Also, both user and adminis-
trator queries have locality of reference. That is, they fre-
quently find and search for files in only a few locations in
the file system, such as a home directory or project work-
ing directory. This is because important data tends to be
clustered in relatively small sub-trees.

Administrative queries often ask about summary or ag-
gregation information. These queries allow general in-
formation about the data in the storage system to be ex-
tracted. Also, both administrator and users greatly benefit
from being able to query about the past versions and the
history of metadata. This can used for extracting trends
over time or tracking how the storage state changes.

Our approach does not currently consider content-
based queries, such as those provided by Google Desk-
top [12]. While content-based queries are an important
class of metadata query, Spyglass does not currently han-
dle such queries; we plan to address this area in future
work.

3 Metadata Characteristics

This section discusses the characteristics of storage sys-
tem metadata that make the “one size fits all” solution us-
ing a general-purpose DBMS [32] inadequate for building
a high-performance metadata search system.

We would like to first define the terminology used in
this paper before discussing the characteristics.Storage
system metadata, or simply metadata, is a general term
referring to the information describing objects,e.g.,files,
stored in a storage system. It includes theinodestructure
used in most file systems and any extended tags added
by applications or users. This paper focuses on the inode
structure, although our solutions can be extended to ad-
dress other types of metadata. The termattribute refers
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Attribute Description Attribute Description
inumber inode number owner file owner

path full path name size file size
ext file extension ctime change time

type file or directory atime access time
mtime modification time hlink hard link #

Table 1: Attributes Used. They are the fields in the “inode” struc-
ture. We extractext from path.

Data set Description # of files Server Capacity
Web web & wiki server 15 million 1.28 TB
Eng build space 60 million 30 GB

Home home directories 300 million 76.78 TB

Table 2: Metadata Traces. The small server capacity of the Eng
trace is because the majority of the trace is small source code
files: 99% of files are less than 1 KB.

ext size uid ctime
Web 0.000162% – 0.120% 0.0579% – 0.177% 0.000194% – 0.0558% 0.000291% – 0.0105%
Eng 0.00101% – 0.264% 0.00194% – 0.462% 0.000578% – 0.137% 0.000453% – 0.0103%

Home 0.000201% – 0.491% 0.0259% – 0.923% 0.000417% – 0.623% 0.000370% – 0.128%

Table 3: Locality Ratios of the 32 most frequently occurring values. All Locality Ratios are well below 1%, which means files
with these attribute values are in less than 1% of directories. In other words, more than 99% of directories can be pruned from the
search space.

to the specific information of metadata, such as file size,
modification time, and owner of a file.Attribute value,
or simply value, refers to a value of a specific attribute.
For example, “5 KB” is an attribute value of the file size
attribute androot is a value of the file owner attribute.
Attributes usually have a large set of possible values. Ta-
ble 1 lists the attributes used in this paper.

The metadata used in this paper was gathered from
traces taken on three network file servers—Web, Eng, and
Home—in a NetApp data center; characteristics of these
file servers are shown in Table 2.

Although the three traces represent different workloads,
their attribute values show the same characteristics: high
spatial locality in the hierarchical file system namespace
and a highly-skewed distribution. The following two sub-
sections explain these properties and their implications for
the design and performance of Spyglass.

3.1 Spatial Locality of Attribute Values

The most interesting characteristic of storage system
metadata is thespatial localityof attribute values in the
hierarchical file system namespace. We make a critical
observation that attribute values tend to be clustered un-
der a few file system sub-trees. For example, files with
theext valuehtml are likely to reside under directories
related to web pages, and files with theowner valuetom
tend to reside in the sub-tree rooted at/home/tom. This
locality is hardly surprising, since the hierarchical struc-
ture of file systems is used by users to classify and manage
files.

We measure the spatial locality of a metadata attribute
value by itsLocality Ratio. The Locality Ratio of an at-
tribute value is defined as the percentage of directories
that contain files with that value (referred to astarget
files), compared to the number of all directories in the
storage system. A directory is considered to contain a tar-

(a) Locality Ratio=54% (b) Locality Ratio=38%

Figure 1: Examples of Locality Ratio. The Locality Ratio of
ext value =html is 54% (= 7/13) in the first tree and 38% (=
5/13) in the second tree. Therefore, the value ofhtml has better
spatial locality in the second tree than in the first one which
conforms the conclusion by looking at the trees.

get file if any of its sub-directories contains a target file.
Using this metric, an attribute value has good spatial lo-
cality if the corresponding Locality Ratio is low, meaning
the target files are clustered in a few directories. Spatial
locality is important for search performance, since it al-
lows us to prune the search space to those directories that
contain target files.

Figure 1 shows a simple example of the Locality Ratio.
Suppose we want to compute the Locality Ratio of html,
a value ofext, for two simple file system trees. Each node
in the tree graphs represents a directory. Black nodes and
gray nodes are the directories that directly and indirectly,
respectively, containhtml files. It is easy to see that
the Locality Ratio is a good indication of spatial locality
because it correctly reflects the fact that the second tree
has better spatial locality than the first one (38%< 54%).
Moreover, a file system tree with better spatial locality
will more quickly allow a system to prune directories that
cannotcontain a file that matches a query.

We calculated the Locality Ratios of the 32 most fre-
quently occurring values of different attributes in Web,
Eng, and Home, summarizing the results in Table 3.
This table lists Locality Ratios of 4 attributes:ext, size,
owner, andctime. Other attributes have similar Locality
Ratios which are omitted to save space. In all cases, at-
tribute values show very good locality in the file system
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Figure 2: Attribute Value Distribution Examples. A rank of 1 represents the attribute value with the highest file count.

namespace (≪ 0.01); thus, more than 99% of directories
can be pruned from the search space.

Unfortunately, current metadata search solutions are ei-
ther namespace-oblivious, such as the DBMS solutions
treating path names as normal character strings, or un-
aware of spatial locality, such as brute-forth search in
find. In contrast, the search algorithm and data struc-
tures in Spyglass exploit spatial locality to achieve better
performance, as demonstrated by our experimental results
in Section 5; Section 4 describes the Spyglass search al-
gorithm in detail.

3.2 Skewed Distribution of Attribute Values

Another prominent characteristic of storage system meta-
data is the highly skewed data distribution for almost all
attribute values and combinations of attributes. Figure 2
shows the distributions forext and the combination of
(ext, size) from the Home trace.

The figures are plotted as follows. Taking Figure 2(a)
as an example, we count the number of files for eachext
value (such ashtml, doc, andpdf) and rank allext
values based on their file counts with rank 1 being the
ext value that has the most number of matching files. We
then plot the ranks ofext values (the X axis) and their
corresponding file counts in percentage (the Y axis) using
a log-log scale. Figure 2(b) is plotted in a similar way
using values of the two-attribute pair (ext, size).

Figure 2(a) shows that 80.0% of files have one of 20
popular values ofext while the remaining 20.0% of files
account for over 40000 other file extensions. Overall, the
distribution curve is similar to thepower law distribu-
tion [29]. This observation holds true for other attributes
across all traces we examined. We do not graph these due
to lack of space.

We next generated a Cartesian product of the top 20
values fromext andsize, yielding 20×20= 400 differ-
ent pairs. We can see from the file counts (in percent-
age) shown in Figure 2(b) that the file counts of these
pairs are significantly smaller than the file counts for the

corresponding single attribute; most are at least an order
of magnitude smaller. For attribute combinations that in-
volve more than two attributes, their file counts are even
smaller.

The above two figures show two observations on stor-
age system metadata: searching for popular values of a
single attribute results in a large set of matching files;
but searching for combinations of multiple popular single-
attribute values often results in a very small set of match-
ing files. Therefore, indexes that cansimultaneously
search on multiple attributes to obtain the final matches
directly are the best solutions for Spyglass, where the ma-
jority of queries on metadata are multi-attribute queries,
as discussed in Section 2.

Existing solutions in DBMS using single-attribute in-
dexes, such as index ANDing [7] or composite in-
dexes [25] cannot avoid unnecessary processing on un-
wanted intermediate results, making them inappropriate
for Spyglass. Rather, multidimensional access meth-
ods [9], also known as multidimensional indexes, offer
better solutions for Spyglass. Among a variety of multi-
dimensional access methods, the design of Spyglass uses
K-D trees [3], a popular multidimensional access method,
to improve the performance of multi-attribute search. Sec-
tion 4 explains how Spyglass adopts K-D trees to search
storage system metadata and how it balances the trade-
offs of K-D trees.

4 Design and Implementation

The goal of Spyglass is to aid data management by provid-
ing a scalable, search-able repository of all file metadata
in the storage system. Our design was guided by several
principles: (1) The index should be sensitive to the file
system’s hierarchy. The hierarchy already defines how
users organize and group files, and contains information
about how files are accessed and used. The index should
exploit this information. (2) Fast query execution is more
important than strict consistency. Most queries can be ad-
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Figure 3: Spyglass Overview. Spyglass resides within the stor-
age system. The crawler extracts file metadata, which gets stored
in the index. The index consists of a number of partitions and
versions.

equately satisfied even with slightly stale data, while per-
formance is critical to usability. (3) File metadata history
should be maintained because it facilitates queries regard-
ing usage and storage trends. (4) Dedicated hardware re-
sources should not be required as they may become pro-
hibitively expensive in large-scale systems. Instead, Spy-
glass should be able to reside within the storage system.

In addition to these principles, we have chosen to focus
on several types of queries we believe are the most impor-
tant and most likely. 1) Multi-dimensional queries with
more than one query predicate. Specifying queries with
multiple predicates is an effective way of refining search
results. In a large-scale storage system, single predicate
queries often return too many results to be of use. 2)
Queries localized to a sub-tree or directory. Localizing
queries allows users to control which files to search. In
large-scale storage systems, searching the entire names-
pace is often not needed as users can reason about the
location of the files they care about. 3) Time-traveling
queries. Querying across multiple metadata versions al-
lows users to understand how storage is used and how it
changes. This information can improve how users orga-
nize their data.

Spyglass consists of two major components: the Spy-
glass index which stores metadata and serves queries and
a crawler that extracts metadata from the storage system.
Figure 3 provides a high-level view of Spyglass. The
Spyglass index design utilizes two key concepts:hierar-
chical partitioningandpartition versioning. Hierarchical
partitioning decomposes the index into separate partitions

/

/home /usr /etc

/home/aleung /home/elm /usr/include /etc/rc.d

/

/etc

/etc/rc.d

/home

/home/elm

/home/aleung

/usr

/usr/include

File System Hierarchy

Spyglass Index

Sub-Tree

Partitions

Disk

Figure 4: Hierarchical Partitioning Example. Sub-trees par-
titions, shown in gray, index different file system sub-trees. The
Spyglass index is simply a tree of sub-tree partitions.

based on the storage namespace hierarchy. This allows
the index to be managed and searched at the granularity
of sub-trees, which is critical to providing scalability as
the system grows. Partition versioning manages index up-
dates and versions. Index updates are batched and applied
to each partition as new incremental versions. Version-
ing updates enable users to query over past versions and
simplify index update semantics. Throughout this section
we discuss the motivations behind these concepts and how
they are applied.

4.1 Hierarchical Partitioning

The Spyglass index is partitioned into a number of sep-
arate indexes based on the file system’s namespace hier-
archy. The concept of hierarchical partitioning is a di-
version from the traditionally row, and more recently col-
umn [31], physical designs of DBMSs. Rather than store
records physically adjacently on-disk using their row or
column order like DBMSs, Spyglass stores records adja-
cently on-disk that are hierarchically nearby in the names-
pace. Hierarchical partitioning is illustrated in Figure 4,
where sub-trees are mapped to separate partitions, shown
in gray. Each partition is stored sequentially on-disk. The
motivation behind this design is that queries can often be
satisfied with only a small fraction of the hierarchy. For
example, searching for useraleung’s presentation files
likely does not require searching all sub-trees. Likewise,
localizing queries to a sub-tree reduces the search space.
As a result, only a small subset of the hierarchy often
needs to be retrieved from disk. By clustering the hierar-
chy on-disk and allowing only portions of the hierarchy to
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be read at a time, queries can often be satisfied with only
a few small sequential reads, even in large-scale systems.

In addition, hierarchical partitioning utilizes localityin
file metadata and access patterns. The spatial locality
analysis in Section 3.1 shows that files nearby in the hier-
archy are more likely to share metadata values than those
farther apart. For example, most or all files in a personal
directory may share a common owner, or files in a direc-
tory may share a common modification time. This is also
true for extended attributes, where only a small related set
of files tend to share attribute keys. As a result, fetching a
partition of the hierarchy from disk will often fetch a num-
ber of qualified records. Likewise, not fetching records
from all parts of the hierarchy can often reduce the num-
ber of unqualified records fetched. File access patterns
also exhibit locality. More precisely, not all directories
and sub-trees are equally popular [1, 19]. Often only a
small fraction of directories, relative to the entire hierar-
chy, are frequently accessed. This implies that only a frac-
tion of hierarchical partitions may be frequently queried,
which can be stored in-memory with infrequently queried
partitions stored on-disk.

We refer to each hierarchical partition as asub-tree par-
tition. A sub-tree partition manages metadata for one or
more of the file system’s sub-trees. In Figure 4 we see
different sub-trees map to different partitions. Our cur-
rent prototype uses a simple greedy algorithm to do this
mapping. The Spyglass index is simply a tree of sub-tree
partitions. The tree’s parent-child relationships are based
on where the sub-tree appears in the hierarchy. A sub-
tree partition has two components: apartition indexand
partition metadata. The partition index stores and serves
queries for metadata in its assigned sub-trees. Partition
metadata is used to determine if a partition is relevant to a
query, aid aggregation queries, and support partition ver-
sioning.

The entire Spyglass index is stored on-disk. However,
a copy is kept in-memory, with the exception of the parti-
tion indexes. The Spyglass index tree and partition meta-
data are small, however the partition indexes, which stores
the metadata, are too large to all fit in-memory. Instead,
a partition cacheis used to manage the paging in and out
of partition indexes from memory. The partition cache
pages entire partition indexes to and from memory. The
motivation is that if a file must be read for a query, it is
likely that other files nearby in the hierarchy also need to
be read; paging entire partition indexes allows these files
to be fetched in a small sequential read. This concept is
analogous to file system embedded inodes [10]. Embed-
ded inodes store inodes adjacent to their parent directory
on-disk. This allows the directory and its inodes to be
fetched in a small, sequential read under the assumption
that an access to one directory or inode will likely access
other inodes in the directory.

The partition cache uses a simple LRU algorithm to
manage memory. Similar to that of file system caches,
queries have locality of reference and a partition index
queried once is more likely to be queried again. In the
common-case, only a small set of partitions, correspond-
ing to popular sub-trees, are frequently searched. An
LRU algorithm keeps these popular partitions in-memory,
while most reside on-disk. As a result, querying com-
monly accessed sub-trees will produce no disk accesses
and be very fast.

4.2 The Partition Index

The goal of the partition index is to quickly satisfy re-
quests for all metadata in a sub-tree partition. To do this
we use a K-D tree [3]. A K-D tree is ak-dimensional
binary tree that provides logarithmic point, range, and
nearest-neighbor search over ak dimensional space. It tra-
verses the tree by alternating the dimension (1. . .k) used
to pivot at each level. Each metadata attribute is a unique
dimension in the K-D tree. A K-D tree is used because
it provides fast, multi-dimensional search over all meta-
data in the partition. Alternative multi-dimensional struc-
tures, such as R-trees [14], Grid Files [23], and K-D-B-
trees [26] either perform poorly for non-uniformly dis-
tributed data or are disk-based structures. Also, space
overhead is minimal because beyond the file metadata,
only the tree pointers need to be stored.

A K-D tree is poor for frequently changing data because
it can perform poorly when unbalanced. This means fre-
quent metadata updates can degrade performance. How-
ever, partition versioning, which manages index updates,
treats updates as immutable versions. Therefore, a K-D
tree is never updated in-place and will not become un-
balanced. We discuss partition versioning further in Sec-
tion 4.4.

4.3 Partition Metadata

Each sub-tree partition also contains metadata about the
files and sub-trees it indexes. This includes the names of
the indexed sub-trees, summary statistics, version infor-
mation, andsignature files[8]. Summary statistics aid
aggregation and trend queries. Statistics, such as min-
imum, maximum, and average values are computed for
each metadata attribute when the sub-tree partition is up-
dated. By pre-calculating statistics, aggregation and trend
queries can be satisfied without needing to read or process
information from the partition index. Each partition also
maintains aversion vector, which is a vector of different
partition index versions. We elaborate on version vectors
in Section 4.4.

Each sub-tree partition contains a signature file for each
indexed metadata attribute. Signature files, or just signa-
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tures, are compact summaries of a partition index’s con-
tents. Signatures are used during query execution to deter-
mine if a partition index needs to be searched by determin-
ing if it contains any files matching the query predicates.
Note, signatures onlytestsfor the existence of matched
files. The partition index must be queried to retrieve its
information.

A signature is a bit-array with an associated hashing
function. All bits in the signature are initially set to zero.
A common example is a Bloom Filter [4]. When a meta-
data value is inserted, it is hashed to a bit-position, modulo
the size of the signature, which is then set to one. A query
only searches a partition if signature bits for all predicates
in the query are set to one. This allows Spyglass to quickly
test which partitions are needed for a query and which are
not. However, a signature can only determine if a partition
index doesnothave any records matching the query pred-
icates. This is due to hashing collisions which can cause
false-positives. False-positives do not affect the accuracy
of results because a partition with matching results will
never be skipped. However, false-positives can degrade
performance by causing partitions with no matching re-
sults to be searched. Spyglass controls false-positives two
ways. First, each partition index is kept relatively small,
keeping the chances of collision low. Second, metadata
attributes can use specialized hashing functions that have
more control over false-positive occurrences. For exam-
ple, a signature of file sizes may wish to assign each bit
to a size range rather than a unique size value. This can
allow false-positives to be clustered for the frequently oc-
curring size ranges, reducing false-positives for less pop-
ular ranges.

4.4 Partition Versioning

Spyglass receives index updates in batches and treats each
batch as a new version. The motivation is two fold. First,
we wish to support time-traveling queries as they enable
useful data management queries. Second, we wish to sim-
plify index update semantics. Designing for frequent, in-
place updates greatly complicates design as locking and
synchronization must be considered. Also it degrades
query performance as queries and updates contend for
shared data structures and cache space. This motivation
follows from our design principle that index consistency
is, in general, less important than query performance as
most queries do not require strict consistency. As a result,
Spyglass trades-off index consistency for scalable time-
traveling queries and simple update semantics.

4.4.1 Creating Versions

Updates are applied in batches of incremental metadata
changes and each update represents a new index version.

/

/etc

/etc/rc.d

/home

/home/elm

/home/aleung

/usr

/usr/include

T1

T1

T1

T2

T2

T3

T3

Baseline
Index T0

Incremental
Indexes

Version
Vector

Figure 5: Versioning Partitioning Example. Each sub-tree par-
tition manages its own versions. A baseline index is a normal
partition index from some initial time T0. Each incremental in-
dex contains the changes required to roll query result forward to
a new version. Each sub-tree partition manages its version in a
version vector.

We discuss how incremental changes are collected later
in Section 4.5. Each sub-tree partition manages new ver-
sions for its assigned sub-trees, meaning individual par-
titions are versioned rather than the Spyglass index as a
whole. This is shown in Figure 5. A versioned sub-tree
partition contains two components: abaseline indexand
incremental indexes. A baseline index is a normal sub-tree
partition index and represents the state of the storage sys-
tem at time,T0. An incremental index is an index of meta-
datachangesbetween two points in time,Tn−1 and Tn.
An incremental index contains the information needed to
roll query results fromTn−1 forward toTn. These changes
include metadata creations, deletions, and modifications.
By storing just incremental changes, partition versioning
has minimal space overhead.

Partition versioning begins with a baseline index, as
shown in gray and labeledT0, in Figure 5. When a batch of
metadata changes are received atT1 they are used to build
incremental indexes. Each sub-tree partition manages its
incremental indexes using a version vector, which is a vec-
tor of incremental indexes, each representing a different
version. We see in Figure 5 that each partition’s vector can
be a different length because partitions are likely not up-
dated at the same rate. The partition cache also manages
incremental indexes and pages them in and out with the
baseline partition index. As a result, partition versioning
adds an overhead to page-in a partition as all incremental
indexes must also be read. The motivation behind this is
that due to locality of reference, queries will often hit in
the partition index cache. Thus, in the common-case, ver-
sioning introduces a small overhead because no additional
disk accesses are required.
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To retrieve query results from any index version,Tn,
the results from the baseline index,T0, andall changes
betweenT0 andTn are needed. For example, in Figure 5
querying the sub-tree/home/aleung requires the base-
line index and results from incremental indexesT1 andT3.
The changes fromT1 and T3 modify the results (add or
remove results) fromT0 to produce query results that re-
flect the state of the storage system atT3. Because each
incremental index only contains changes for a partition,
retrieving and applying changes is often very fast. This
means that the partition versioning overhead is dominated
by the number of partitions to page-in from disk in order
to satisfy a query.

The goal of an incremental index is to quickly retrieve
the metadata needed in order to roll the baseline query
results forward to a more recent version. To do this we
again use a K-D tree. Each K-D tree indexes metadata
changes. Metadata changes include the type of change
(create, delete, or modify) and the changed metadata.
Changes that create metadata include the newly created
metadata, changes that delete metadata include the deleted
metadata, and changes that modify metadata include the
old and new metadata. This is because a modification can
cause a new metadata version to match a query, as well as,
cause old metadata versions to no longer match a query.
Thus, we must be able to add the new results that match
the query and remove the old results that no longer match
from the results lists.

4.4.2 Managing Versions

While maintaining many incremental versions can facil-
itate useful queries, they also add space and time over-
head. Over time it becomes less useful to keep older ver-
sion at a fine time granularity. To reduce the overhead
for older versions, Spyglass usesversion collapsingand
version checkpointing. Version collapsing merges incre-
mental indexes with a baseline index, reducing overhead
by removing the incremental index at the cost of version
granularity. When collapsed, an index becomes accurate
to the time of the last collapsed incremental index. Ver-
sion checkpointing allows a collapsed index to be saved to
disk and represents a landmark versions of the index. A
landmark version is a full Spyglass index that is retained,
as it represents some significant point-in-time.

We describe the use of collapsing and checkpointing
using an example. Suppose that the Spyglass index is up-
dated hourly, creating a new incremental version of the
index. Time-travel can be performed at hourly granular-
ity. At the end of the day, incremental versions can be
collapsed into the baseline index. This reduces time and
space overhead, however we can no longer travel hour-
by-hour over the last day. Also, at the end of each day,
each collapsed index is checkpointed. These checkpoints

represent storage system state at the end of each day. At
the end of the week, all but the latest daily checkpoint are
deleted. Likewise, at the end of the month, all but the lat-
est weekly checkpoint are deleted. This results in differ-
ent time-scales maintaining different version granularity.
Over the past day any hour can be searched. Over the past
week any day can be searched, over the past month any
week can be searched, and so on. Managing index ver-
sions this way allows time and space to be traded-off for
the required time-traveling capabilities.

4.5 Collecting Metadata Changes

To collect batches of metadata changes Spyglass takes ad-
vantage of snapshot technology in the WAFL [16] file sys-
tem on which we designed our prototype. Our approach
allows the difference between two file system snapshots
to be quickly calculated. This provides a fast method for
generating the batches of update Spyglass needs. It should
be noted that Spyglass does not depend on this approach.
Any method for collecting metadata changes will suffice.
However, alternative solutions presented us with a num-
ber of challenges. Periodically walking the file system
tree is a time consuming process. Also, buffering file sys-
tem event notifications to generate batches of changes can
require large amounts buffer space.

Given two file system snapshots, we quickly calculate
metadata differences between them using WAFL’sinode
file, a file containing all inodes in a snapshot. When a
snapshot is created in WAFL, it copies the inode file us-
ing a copy-on-write mechanism. As a result, we can sim-
ply read each snapshot’s inode file, and compare them
to generate the metadata changes between two snapshots.
Snapshot-based differencing is very fast because it only
needs to compare the inodes that have changed between
the two snapshots (due to copy-on-write). The output is
a log of all added, deleted, or modified metadata. If only
one snapshot is used, a log equivalent to a crawl of the
entire file system is produced.

5 Experimental Evaluation

In this section, we evaluate our Spyglass prototype. The
goal of the evaluation is to understand performance and
scalability properties and how they compare to existing
DBMS solutions. Overall, Spyglass achieves fast query
execution, hundreds of milliseconds for common queries,
even as the number of files increases. Spyglass also con-
sumes less space and has better update performance than
DBMSs. The versioning mechanism of Spyglass is effi-
cient which incurs little overhead for most queries.
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5.1 Experimental Setup

All experiments were run on a Dual core AMD Opteron
machine with 8 GB of RAM running Ubuntu Linux 7.10.
Related files and data sets are stored on an NFS partition,
mounting a high-end NetApp controller.

All experiments use the same metadata traces as de-
scribed in Table 2. For Web and Eng, we also collect
several days of incremental snapshot metadata. Each con-
tains daily changes of all metadata.

We compare Spyglass to two popular relational
DBMSs, anonymously referred to as System X and Sys-
tem Y. For both DBMSs, we use an index-based physical
design, which consists of a base relation with all attributes
in Table 1. Each attribute has a B+-tree index built on
top of it. Spyglass uses the same attributes when building
its K-D trees. We use this design, as opposed to verti-
cal partitioning or composite indexes, because it is easy to
implement and we believe is a likely design choice for a
metadata DBMS.

Internal cache sizes are set to 128 MB, 512 MB, and
2.5 GB, for the Web, Eng, and Home traces, respectively,
in all three systems. This amounts to about 1 MB for every
125,000 files. Spyglass also uses a soft limit of 100,000
files per sub-tree partition index. There are no limits on
the size of an incremental index.

5.2 Microbenchmarks Evaluation

Our microbenchmarks evaluate update and metadata col-
lection performance, space overhead, Spyglass index lo-
cality, and selectivity sensitivity.

5.2.1 Update Performance

We compare the performance of updating baseline in-
dexes of all metadata traces in Spyglass to the perfor-
mance of bulk loading and index building in the two
DBMSs. We do not look at incremental index update per-
formance as the DBMSs have no versioning, making an
accurate comparison difficult.

Figure 6 shows that Spyglass is between 8x and 44x
faster than System X and System Y. Spyglass indexes all
attributes of each metadata entry once and usually writes
to disk in relatively large sequential streams. In contrast,
each DBMS indexes each attribute separately, in addition
to loading the table. Spyglass is still faster even if we
compare only the indexing time in the DBMSs with the
total update time in Spyglass. To put it in perspective,
Spyglass updates the 300 million Home trace files in one
and a half hours, while the DBMSs take 18 hours and 2
and a half days, respectively. Last but not least, Spyglass
update performance shows a linear scalability with regard
to trace sizes. The performance difference between the
DBMSs is due to the significant differences in how each
builds indexes.

5.2.2 Metadata Collection Performance

We now show the performance of baseline and incremen-
tal crawling using our snapshot-based file system crawler,
and compare it to an optimized multi-threaded crawler
that walks the file system tree to compute snapshot differ-
ences, which we call the host-based crawler. Figure 7(a)
shows the time to generate a baseline using both the host-
based crawler and the snapshot-based crawler. A base-
line crawl generates a complete list of all metadata for a
given file system hierarchy. This figure shows see that
the snapshot-based crawler outperforms the host-based
crawler; the snapshot-based crawler can leverage the on-
disk layout of file metadata by sequentially scanning the
inode file and reporting each file’s metadata. The host-
based crawler on the other hand must traverse the file sys-
tem hierarchy and then sort the metadata. The host-based
crawler generates a baseline in a sorted order to facilitate
incremental crawling.

An incremental crawl reports the changes between two
versions (snapshots) of a file system. For the host-based
crawler, an incremental crawl is generated by creating a
second baseline, then sequentially scanning the two base-
lines to determine their differences. Figure 7(b) shows the
time to generate the incremental changes between two file
system versions when the relative changes to the baseline
are 2%, 5%, and 10%. For instance, the plot Host-5% at
40 million files means a change of 2 million files. This
figure shows that the snapshot-based crawler significantly
outperforms the host-based crawler. The snapshot-based
crawler is able to avoid comparing blocks making up the
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inode file that haven’t changed between two snapshots be-
cause of WAFL’s copy-on-write mechanism. As a result,
incremental snapshot-based crawl performance is relative
to the number of changed files, not the total number of
files. However with the host-based crawler, performance
is relative to the total number of files because it must first
generate a sorted baseline, then difference the two base-
lines.

5.2.3 Space Overhead

This section examines the on-disk space consumed by all
three systems. For the DBMSs, this includes the table and
B+-tree index space. Figure 8 shows Spyglass takes 5x
to 8.5x less space than either DBMS. This is due to two
main reasons. First, Spyglass indexes each metadata en-
try only once whereas the DBMSs require the table space
plus the space for each index where each storesN (value,
record id) pairs (minus duplicate values). The index space
alone is larger than the total space in Spyglass. Second,
Spyglass saves space by storing only partial pathnames
because part of the path prefix is already stored in the sub-

tree partition’s metadata. This also explains why Spyglass
consumes less total space than just the DBMS tables.

Once again, Spyglass shows very close to linear scala-
bility across the traces. Since disk space is cheap, the ram-
ifications of space overhead is often not the on-disk foot-
print, but rather the number of records that can be stored
in-memory. With a smaller space overhead, a larger frac-
tion of the index can be stored in memory, reducing disk
accesses, thereby improving query performance.

5.2.4 Index Locality

Here we measure how effectively Spyglass exploits local-
ity in the namespace hierarchy. To do this, we generate
a query log for each attribute and each two-attribute pair
based on the template “select files with attribute = value”
and “select files with attribute1 = value1 and attribute2
= value2”, respectively. For example, the query template
for ext is “select files withext = value”. Each log con-
sists of 300 queries with values randomly selected from a
full metadata trace and 200 queries with values randomly
selected from the corresponding incremental trace, result-
ing in a total number of 500 queries. The reason of using
the incremental traces is to incorporate a notion of pop-
ularity into the query logs because the incremental traces
represent frequently accessed files.

Due to the space limit, we report only the results of ex-
ecuting the query logs forext, owner, and (ext, owner)
from the Eng trace. Recall that Spyglass uses signature
files to eliminate sub-tree partitions from the search space.
A partition is queried only if all signature bits correspond-
ing to the query predicates are set to one.

Figure 9(a) shows a cumulative distribution (CDF) of
sub-tree partitions queried for each query log. We find that
50% of the queries onext reference fewer than 75% of the
sub-tree partitions, while over 50% of the (ext, owner)
andowner queries reference fewer than 2% of sub-tree
partitions. This is because theowner attribute is more
clustered in the hierarchy thanext, which confirms the
findings in Table 3. In addition, the (ext, owner) queries
reference far fewer indexes thanext or owner alone. This
is because the combination of the two attributes is highly
clustered. Multi-attribute queries often provide better lo-
cality than single-attribute queries.

Figure 9(b) shows a CDF of the cache hit rates in our
query logs. Again, we find that theext queries have worse
locality than either of the other logs. Only 22% ofext
queries have a cache hit ratio of 85% or higher while 91%
of the owner queries have a cache hit ratio of 99% or
higher. Becauseext values are more distributed through-
out the hierarchy, it is less likely that a queried partitionis
already in the cache.

Experiments on other query logs across the three data
sets have similar observations. In summary, these mea-
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surements show that Spyglass is effective at limiting the
search space and disk access because it can leverage the
spatial locality existing in storage metadata.

5.2.5 Selectivity Impact

In this experiment, we compare how metadata selectivity
influences the performance of Spyglass and the DBMSs.
We again generate query logs ofext andowner from the

Web trace with varyingselectivity(# of results / # of all
records). Figure 10 plots query selectivity against query
execution time. We find that the performance of System X
and System Y are highly correlated with query selectiv-
ity. However, this correlation is much weaker in Spy-
glass, which exhibits much more variance. For example, a
Spyglass query with selectivity 7×10−6 has a 161 ms run
time while another with selectivity 8×10−6 has a 3 ms run
time. This is because Spyglass is more sensitive to hier-
archical locality and query locality than query selectivity.
This is unlike DBMSs, which access records from disk
based on the predicate it thinks is the most selective. The
weak correlation with selectivity in Spyglass means it is
less affected by the highly skewed distribution of storage
metadata which makes determining selectivity difficult.

5.3 Macrobenchmark Evaluation

We now compare the performance of Spyglass with Sys-
tem X and System Y on a macrobenchmark generated
based on three query logs that mimic real possible user
queries. Each query log represents a different kind of
query a user may ask. The first is a user finding the
space consumed by their files of a particular type. This in-
volves queries withowner andext predicates, retrieving
and summing file size (size). The second is a user locat-
ing files in their personal directory. This involves queries
with owner, type, andpath predicates. Matched results
must have a prefix that matches the path predicate. File in-
ode numbers (inumber) are returned. The third is a user
locating their recently modified files. These queries in-
volve owner, ext, path, and time range predicate. The
time is a two-week range overmtime. These templates
are chosen because each looks at the impact of different
query types on the index.

We generate our macrobenchmark by filling each query
log with attribute values randomly selected from each
trace. By randomly choosing values, the frequency distri-
bution of attribute values is maintained in the query log,
meaning more frequently occurring values are more fre-
quently queried. When randomly selecting files, we ig-
nore files with high hard link counts because they skew hi-
erarchy locality and are an aberration from normal meta-
data properties. As a result, not all query logs have the
same number of queries. The total number ranges be-
tween 100 and 300 queries. All queries in a log are re-
played in the order they appear in the trace file. We find
3x to 5x performance differences between System X and
System Y in our experiments. We believe this is due to the
differences in how each chooses query plans, resulting in
the occasional use of table scans.

Figure 11 compares the total run times of each query
log on each trace. For the first query log, Spyglass is be-
tween 3.5x and 18x faster than the DBMSs. This is be-
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Figure 12: CDFs of Macrobenchmark Query Execution Times. For each query log, we show a CDF of query execution times for
the Eng trace. In Figures 12(b) and 12(c) all queries are extremely fast because these query logs include a file path predicate that
allows Spyglass to narrow the search to a few partitions.

cause Spyglass is usually able to narrow the search to a
small number of sub-tree partitions. Figure 12(a) shows
the CDF of query execution for this query log on the Eng
trace. We see that 54% of Spyglass queries have an exe-
cution time less than 100 ms. This shows that the query
execution hits the partition cache most of time and has
very few or no disk accesses. However, we see that the
curve tapers. This is because a number of queries either
access many partitions that are not in the cache or access
more partitions than the cache can hold.

For the second and third query logs, we find that Spy-
glass significantly outperforms the DBMSs: threeorders
of magnitude(> 1000×) in some case. The key reason for
the improvement lies in the hierarchical partitioning. The
hierarchical nature of the Spyglass index allows sub-trees
of the hierarchy to be quickly searched, without the need
to process or traverse other locations. These query logs
use path as a predicate, which allows Spyglass to only
search sub-tree partitions below the path. Figures 12(b)
and 12(c) demonstrates this with a CDF of query times
on the Eng trace. Almost all queries finish within 100 ms.
This is because the search space is often narrowed to only
a few sub-tree partitions ensuring a worst-case scenario of
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Figure 13: Partition Versioning Performance. The total run
time of the 500 queries increases 10% for an additional incre-
mental index. The overhead is caused by only a few queries.

a few sequential disk accesses if the partitions are not in
cache. In summary, Spyglass exploits the locality proper-
ties of both the metadata and queries to reduce the overall
search space, allowing it to scale in large-scale storage
systems.

5.4 Partition Versioning

We now look at the performance overhead of partition ver-
sioning. We use the full baseline Web trace and its three
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incremental traces, which are the metadata changes in the
three days following the baseline. We use this data to gen-
erate a query log using the same method discussed in Sec-
tion 5.2.4. Figure 13(a) shows the query log’s running
time with no incremental indexes (just a baseline index)
and with one, two, and three incremental indexes. We see
that each incremental index adds a 10% overhead to the
total running time, which scales linearly. Figure 13(b),
which is a CDF of query execution time, shows that
the 10% overhead is not evenly distributed amongst the
queries. We see that the distribution of query execution
time is very close for all curves. This is because version-
ing adds very little overhead when the sub-tree partition is
already cached. Cache hits require only microseconds to
query an incremental index. However, cache misses must
read the partition index and all of the incremental indexes
from disk. Figure 13(b) shows that for most queries, over-
head is very low. For the few queries that require a number
of disk accesses, overhead increases, which accounts for
the 10% overhead in the total running time.

6 Related Work

As the amount of data in storage systems has grown, more
work has focused on effectively managing it. Past re-
search focused on semantic data search [5, 11, 13, 15, 27]
and more recently, extracting and searching semantic re-
lationships, such as context [30] and provenance [22, 28].
Using search to manage storage has also found its way
into available products [2, 12, 17, 20, 21]. However, much
of this work has been focused on content search. While
useful, content search only provides the ability to locate
files based on content keywords. As a result, it lacks many
important queries offered by metadata search. Some work
does address metadata search, though it is often left to
general-purpose DBMS systems, which are ill-suited so-
lutions. We believe Spyglass addresses a key component
of effective data management and can be use to aid exist-
ing content search systems.

Spyglass also follows in the spirit of the database com-
munity that “one size fits all” DBMS solutions do not
work [6, 32]. This paradigm argues that the best data man-
agement solutions are those designed specifically for the
problem at hand, which has produced new database de-
signs, such as H- and C-stores [31, 33]. However, data
management in storage systems has largely ignored this
idea. We feel Spyglass is a first step towards making data
management and search primary a component of the stor-
age system by showing performance and scalability can
be achieved with specialized designs.

7 Future Work

Thus far, Spyglass has addressed scalable metadata
search, however, there are a number of important data
management aspects not yet addressed. Two that we plan
to look at in the future are query language and security.
An effective query language is important for the system’s
usability, however, a number of important queries, such as
time-traveling or trend queries, do not map well onto ex-
isting languages, such as SQL. We believe a specialized
query language, like our indexing structures, can provide
significant benefit over existing tools. Security is also im-
portant for usability because it must not leak information
to a user about the contents of the storage system that they
are not authorized to see. However, since access control
in file systems is often at the granularity of sub-trees, Spy-
glass can leverage hierarchical partitioning to improve the
time spent performing security checks.

We view Spyglass as a first step towards enabling users
and administrators access to their data beyond traditional
directory browsing mechanisms. We plan to look at how
to integrate scalable file content search into large-scale
storage systems. We also plan to look at how information
beyond a file’s metadata and content, such as relationships
with other files, can be integrated into the storage system.

8 Conclusions

Managing and organizing data has become much more
difficult, for both storage users and administrators, as stor-
age systems have begun storing much more data. In this
paper, we argued that the ability to search file metadata
has the potential to address a number of these problems.
Searching file metadata allows users and administrators
to quickly gather information about storage that improves
how they manage data. We showed that metadata has
both spatial locality and skewed distributions, limiting the
performance and scalability of existing solutions that use
DBMSs.

To address this issues, we developed Spyglass: a fast,
scalable system for searching metadata in large-scale stor-
age systems. Spyglass uses novel indexing techniques that
partition the index based on the file system hierarchy to
exploit locality of metadata values and applies signature
files to quickly prune the query search space. Spyglass
also includes a novel index versioning method to allow
index updates and queries based on index history. An
evaluation of our Spyglass prototype shows that it can
outperform DBMS solutions with respect to time-space
overhead, update time, and query performance, reducing
query time by up to three orders of magnitude for some
macrobenchmarks while only consuming 10% of the stor-
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age space compared to traditional DBMS-based metadata
indexing techniques.
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