
UNIVERSITY of CALIFORNIA
SANTA CRUZ

LARGE SCALE MULTI-TYPE INVERTED LIST INDEXING
A project report submitted in partial satisfaction of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Joerg Meyer

March 2005

The project report of Joerg Meyer is ap-
proved:

Professor Darrell D. E. Long

Professor Scott A. Brandt

Copyright c© by

Joerg Meyer

2005

Abstract

Large Scale Multi-Type Inverted List Indexing

by

Joerg Meyer

Full-text indexing using inverted lists has become the preferred method of making very large docu-

ment collections searchable. Existing research has mostly dealt with the ef�cient representation of

text indexes using a common inverted list format for all terms encountered in the text of the docu-

ments. However, in recent years, indexing has gone beyond recording just the occurrences of words

in a text document. Additional data mining is being done on the document corpus and document

annotations have to be indexed. As a result many of the features to be indexed and associated with

documents do not exhibit the same characteristics as text and, therefore, having a common inverted

list format is less than optimal. This paper presents a framework to use multiple inverted list for-

mats and shows how this can signi�cantly improve the disk space usage, and as a result, improve

query response times by reducing I/O latencies. A priori knowledge about the characteristics of

data to be indexed plays an important role in selecting optimal inverted lists formats by providing

hints to the index build process. The framework was applied to the full text indexer used in the IBM

WebFountain project, which allows the storage of arbitrary data with each occurrence of an index

term. Using the framework presented in this paper, the index' disk footprint could be reduced by up

to 12%, with some inverted lists exhibiting savings of up to 80%. The additional overhead of the

framework did not lead to query performance degradation, with some response times improving by

up to 75% for selected queries.

Contents

Abstract iii

List of Figures vii

List of Tables ix
1 Introduction . 1
2 Motivation: One-Fits-All Formats are Sub-Optimal 4

2.1 Existing Index Build Process . 4
2.2 Problems . 7

3 Design and Implementation . 9
3.1 Design Goals and Constraints . 9
3.2 Modi�cations to the Index Build Process 10
3.3 Merge Process Changes . 15
3.4 Posting Serializers and Query Engine Changes 17
3.5 Implementation Details . 20

4 Applying the Framework and Experimental Results 21
4.1 Test Data . 21
4.2 Reduction in Index Size . 21
4.3 Reduction for Individual Index Terms . 23
4.4 Stop-Words � Very Frequently Occurring Terms 24
4.5 Query Processing Performance . 25

5 Related Work . 27
6 Conclusion and Future Work . 30

References 35

v

vi

List of Figures

1.1 Example of an inverted list index. 1
2.1 Steps in an index build process. 6
2.2 Section of a WebFountain index inverted list for a single term. 7
2.3 Sample WebFountain document. 7
3.1 Intermediate posting format. 12
3.2 Sample WebFountain index build speci�cation. 14
3.3 Pseudo code for index build merge process. 15
3.4 Pseudo code for modi�ed index build merge process. 16
3.5 Abstract Posting Serializer API. 17
3.6 Posting Serializer class hierarchy for terms requiring positional information. 19
3.7 Posting Serializer class hierarchy for terms without positional information. 20

vii

viii

List of Tables

3.1 Sample of inverted list needs for different index terms. 18
4.1 File Sizes for index builds of 2 million documents. 22
4.2 Selected inverted list sizes for a 2 million document index. 24
4.3 Top 10 list of stop-words in terms of frequency in a 2 million document index. . . . 25

ix

x

1 Introduction

Digital document collections (e.g., the World Wide Web, or a corporate intranet) play an

important role as sources of information for enterprises as well as for personal use. Text retrieval

systems such as search engines aid the user in �nding information in such large collections. Almost

all of the large scale text retrieval systems make use of compressed inverted list indexes, which are

considered the most useful indexing technique for very large collections [22]. Figure 1 shows a

simpli�ed inverted list index, which can be understood as a collection of lists of occurrences for the

set of unique index terms (i.e., words on a page). Occurrences are also referred as postings. The

remainder of this paper will use the term posting.

Figure 1.1: Example of an inverted list index.

A lot of research has been done in the area of compressing inverted lists for terms in

the text and many compression techniques have been developed, tailored for various inverted lists

1

formats. For example, in the simplest inverted list format a posting would just be a document

identi�er indicating that the document with the given id contains the term. Obviously, such lists can

only be used to answer queries about containment of one or more terms in a page, but they cannot

answer queries such as whether two terms appear right next to each other on a page. For such

problems, extensions to inverted lists are used, so that a posting can contain information about the

document and the position within that particular document. Over time though, as collections grew

in size, and simple keyword matching returned too many results, more information was necessary to

present the most relevant results. For example, on top of positional information on a page, Google1

uses posting attributes such as whether the term was capitalized, part of a title, part of an URL, or

an anchor2 [5]. Such information can be used to give certain postings a higher weight.

Other features of a document, such as the language it was authored in, or the domain

it belongs to, are indexed to give the users more control on what part of the document collection

to search through. For such document meta-data, an inverted list format that contains positional

information is overkill. If not all of the features of an inverted list format are necessary for such

terms, the use of escape sequences3 in inverted lists allows for distinguishing between different

kinds of postings. However, escape sequences still require extra space and have generally negative

effects on query performance as every hit needs to be checked for escape sequences in order to

decode it properly based on the type of posting.

IBM's WebFountain4 project uses a full text indexer and query engine to provide a text

retrieval system to a wide variety of applications, such as Google-style regular search or classi�ca-

1http://www.google.com
2An anchor is the text inside the <A>tag in HTML pages.
3A common technique for escape sequences is to use a few bits in one or more data items to indicate to the reader of

the data what to read next.
4http://www.almaden.ibm.com/webfountain

2

tion of sets of pages [12]. An important feature of WebFountain's text retrieval system is the ability

to do advanced queries like the following:

Find me all pages that contain the terms Joerg and Meyer and that were crawled during
the last week.

Another potential query could be:

Find me all pages that contain the terms Joerg and Meyer and pages with URLS that
match the regular expression *.ibm.com/people/*.'

Such support is achieved by not only indexing text but also augmentations produced by so-called

document miners. Examples for such miners are language detection, geo-spatial location detection,

name spotting, classi�cation, to name only a few. For many of these the produced information does

not refer to a particular position on a page but rather the whole page. Additionally, many of these

terms require the storage of arbitrary length data with each posting, similar to storing text attributes

as used in Google. For that purpose, WebFountain started out with a very generic indexer that

provided one inverted list index format in which each posting consisted of a location (i.e.,document

id and position in document) and data, which in turn consisted of a length and a sequence of bytes.

The bene�ts of such an approach are the ease of implementation and code maintenance and that it

can support virtually all needs for storing various pieces of information within a posting. However,

with growing index sizes, the one-format-�ts-all philosophy results in sub-optimal representations

of postings lists. It was also observed that, with very few exceptions, all postings for an index term

are of the same nature, meaning that either all of the postings had a variable length data�eld or they

had a �xed length data�eld. Additionally, as part of the evolution of the project, new requirements

arose that went beyond handling textual input data.

To address the problem of increased secondary storage for the index, as well as decreased

query performance, the WebFountain indexer was modi�ed to take as input not only the name of the

3

data source to be indexed but also of what type the input data is and what its needs for an inverted

list are. To avoid having to deal with escape sequences, the modi�ed indexer was restricted to one

inverted list format per unique term, which allows the ef�cient selection of an inverted list reader

depending the type of the token. The modi�ed indexer uses signi�cantly less space by avoiding the

compression and storage of unnecessary information. Furthermore, it represents an easily extensible

framework in which new inverted list formats can be added or existing ones be replaced.

The remainder of this paper provides a more detailed illustration why the existing solution

is less than optimal in Section 2. Section 3 describes the overall system design chosen to enhance

the existing indexer to make use of token types and provides details about the implementation.

Preliminary results and a quantitative analysis of improvements is given in Section 4. The paper

concludes with a a brief overview of related work in the area of compressing inverted lists in Section

5 and closing remarks as well as an outlook on future direction in Section 6.

2 Motivation: One-Fits-All Formats are Sub-Optimal

2.1 Existing Index Build Process

The WebFountain indexer was designed for indexing large document corpora. Indexing

large corpora of millions of documents generally means that the processing cannot be fully done in

memory, even on machines with large amounts of RAM. Therefore, the index build process needs to

interact with secondary storage (e.g., hard disk or attached storage). The overall process of indexing

is the recording of all postings of an index term. At the end of this process, each unique term in the

document corpus is represented by an inverted list5

5Postings in inverted lists are sometimes as postings and inverted lists as as postings lists.

4

For example, as of February 2005, individual indexers in the WebFountain production

environment process between 10 and 20 million pages, with a number of individual index terms

between 150 to 250 million. Holding all terms in-memory during processing would virtually exhaust

all available memory, leaving no room for the actual lists of postings. Therefore, the index build

process is a multi-step process, consisting of the following phases6:

1. Build an in-memory index, which is fundamentally the same as an index stored on disk with

the distinction of covering fewer documents.

2. Temporarily storing the in-memory index on disk.

3. Merge all temporarily stored in-memory indexes into the �nal index.

As shown in Figure 2.1, the �rst two steps are repeated until all documents are processed, followed

by the third and last phase. The process is similar to the hierarchical merging of partial indexes as

described by Baeza-Yates et al. [1]. Merging is necessary, because in WebFountain, often times the

order in which documents are indexed does not re�ect the order in which inverted lists should be

stored [14].

The inverted list format within a WebFountain index is a very generic format, with each

posting in an inverted list consisting of a location and a data�eld, as shown in Figure 2.2. The

data�eld consists of a length l and the sequence of l bytes. A location in memory is �xed-size num-

ber, i.e. 32 or 64-bits wide. On disk, the locations are encoded using d-gaps, which basically means

that locations are represented relative to their previous location [22]. Such deltas are generally rela-

tively small and can be encoded using very few bits. For ease of implementation, the WebFountain
6The mentioned phases are used in a static index build process, which processes all documents �rst and then produces

a usable index. Incremental indexers differ from this method by incrementally making more documents searchable. Their
drawback is that processing the same number of documents generally takes longer.

5

Figure 2.1: Steps in an index build process.

indexer uses a byte-level encoding, i.e. it always uses a multiple of 8 bits to encode a delta [14].

The WebFountain indexer compression scheme falls into the category of non-parameterized mod-

els. Parameterized models like global and local Bernoulli models take into consideration density of

postings on a per corpus or document level [22].

In the WebFountain system, documents are stored in an XML7-like representation as

shown in Figure2.3.

All of the keys under the DOC node can be indexed treating it as textual data which maps

nicely to the generic inverted list format. An indexer is simply given a list of XML element names

to look for within each DOC element, with minimal input on how the data was to be interpreted.

7http://www.w3c.org/XML/

6

Figure 2.2: Section of a WebFountain index inverted list for a single term.

<DOC>
<ID>00006AF98...</ID>
<CONTENT> ... </CONTENT>
<URL>http://www.almaden.ibm.com</URL>
...

<DOC>

Figure 2.3: Sample WebFountain document.

Clearly, automatically determining how the data should be interpreted, e.g. as a number or a se-

quence of characters, can often be ambiguous.

2.2 Problems

The indexer's inverted list is not the most ef�cient representation but it has proved appro-

priate in the beginning when indexes contained up to 10 million pages and the amount of additional

data to be indexed remained fairly small. However, as the WebFountain system ingested more doc-

uments, index sizes grew beyond a point, where inef�ciently compressed inverted lists cause higher

than tolerable I/O latencies. Furthermore, as the project continued to grow, so did the number of data

7

miners that annotate documents. As mentioned in the introduction, there are many annotations now

that require data to be stored with an posting. For example, a date miner may detect sequences of

text on a page that represent a date and a time and insert a date term at the position in the document,

with the date represented as a 32-bit number. Even though all postings of this term have a data�eld

of length 4 (in bytes), the indexer stores the length for every posting in the inverted list. Other

miners, such as the language miner determine attributes of the entire document. In most cases,

positional information within the document or data�elds are not necessary. Yet, with the existing

format, some escape sequence needs to be used to indicate that a data�eld is actually not present.

Making the escape sequence part of the location cause problems with the delta encoding, therefore,

extra space is wasted for each posting. Escape sequences have other additional drawbacks because

they require to continually check a condition, which slows down the decoding of the inverted list

postings [22]. Generally, all postings for any of the terms to be indexed require the same format.

As pointed out earlier, every indexable item of a WebFountain document is treated as

text and can be mapped to the generic format. However, this is somewhat equivalent to the idea of

storing a 32-bit number in a database using BLOBs8.

Based on the observation that the majority of terms need only one posting format but not

all terms need the same, the task is now to extend the WebFountain indexer to allow for multiple

inverted list formats. One of the main objectives is to reduce the on-disk footprint of the entire

index or selected inverted lists as that will have a positive impact on query performance. Another

important goal is to provide an extensible framework in which new inverted list formats can quickly

be tried without requiring major rewrites of large portions of the existing indexer code base. Last

8BLOB = Binary Large Object.

8

but not least, trying to reuse as much code as possible of the existing indexing process in terms of

steps 2 and 3, was a desired goal of the entire process.

The fundamental idea is to assign a token9 type to each index term and propagate this

through the index build process. The best token type for an item to be indexed is derived from hints

about the input data. Each token type has an unambiguous format, so that no escape sequences will

be necessary in the decoding of inverted lists for terms. Having the most-optimal inverted list format

for a term, allows us to reduce the on-disk footprint of the entire index. The hints about input to be

indexed are provided by the user through an index build speci�cation, that is extensible. The next

section provides a detailed description of the new input format, how hints are converted into a token

type and how the secondary goals of reusing existing code as much as possible, as well as providing

an extensible framework, were achieved.

3 Design and Implementation

The previous section highlighted some of the problems associated with the existing in-

verted list format used in the WebFountain indexer. This section reiterates some of the design goals

and present the solution implemented.

3.1 Design Goals and Constraints

The primary goal in designing a more �exible indexer supporting a variety of inverted

list formats was to reduce disk storage use, which in turn would improve query performance by

reducing I/O latencies. Aside from that goal, other goals and constraints played signi�cant roles:

9In WebFountain index terms are referred to as tokens.

9

• Create a solution that can easily be extended later on to facilitate research and development

of optimized inverted lists for special purpose index terms.

• Avoid a complete rewrite of all the indexer code, which contains the code to perform the index

build process as well as code to do the query processing.

The overall structure of the indexer code can be separated into four separate parts, the

document consumer, the in-memory indexer, the merger, and the query engine. The document con-

sumer portion of the code is responsible for ingesting the documents, split them into the indexable

items and insert the index terms into the indexer. The indexer portion of the code handles the con-

struction of the in-memory indexes, the output of partial indexes, while the merger processes all

partial indexers into a �nal index. The query engine uses the �nal index to provide search engine

functionality. In trying to avoid a major rewrite, the goal was to leave the query engine and in-

memory indexer virtually untouched and only modify the reader module in the document consumer

as well as the writer module in the merger. This was achieved by introducing token types, create a

class hierarchy for posting serializers and a new module to ingest an index build speci�cation.

3.2 Modi�cations to the Index Build Process

The existing WebFountain in-memory indexer had one basic API to record an posting of

a term:

bool insert(Token* indexTerm, Token* data, Location loc);

The class Token is basically a wrapper class around a sequence of bytes and a length �eld. This is

done for reasons of allowing the indexing of arbitrary byte sequences and not rely on null terminated

strings. It has one method that serializes the actual data of an instance using:

void toBytes(...);

10

The in-memory indexer keeps track of all encountered terms in a set of documents in its internal

in-memory data structures. When the pre-allocated data structures are full, a partial index write to

disk is initiated. Index terms are written using the above mentioned toBytes() method. The

concepts of polymorphism and inheritance enabled the in-memory indexer to now index terms that

also carried a type.

Token Types

As mentioned in the previous sections, only one posting format is generally necessary per

unique index term. Therefore, a new type called TokenType was introduced, which was derived

from the base class Token. That meant, that existing APIs did not need to be changed in the in-

memory indexer. Even the writer modules that write out partial indexes remained unchanged, as

the respective token object provides an API for serializing itself into a memory buffer. Adding a

member indicating the token type and overloading the toBytes() method on the TypedToken

class was all the coding work necessary to make the in-memory indexer support token types.

Intermediate Data Format

The decision to leave the in-memory indexer unchanged meant that any term that was

indexed used the existing very generic format of location and data�eld. This concept of having an

intermediate data format allowed us to use the in-memory indexer as-is. Therefore, we now needed

for each token type a method to turn input data into the intermediate format, as well as a mechanism

to turn the generic intermediate format into an posting of a specialized inverted list format (see

Figure3.1). For the proper conversion of input data into the intermediate format, most changes were

necessary in the document consumer. For the problem of turning the intermediate format into an

11

Figure 3.1: Intermediate posting format.

inverted list format, the concept of a PostingSerializer was added, one per unique token

type.

Document Consumer Changes

Historically, all input to the WebFountain indexer was considered to be textual data. For

that reason, the APIs were basically oriented towards the support of indexing textual data in various

forms, such as arrays of index terms (pre-tokenized10 content), strings, or the raw text of a document.

The basic choices for interpreting input elements of a WebFountain document, were to index the

contents of such an element, or to index the content in the data�eld, or to index the content as
10Tokenization is the process of splitting a document into individual terms.

12

an individual key. For example, indexing the elements LANGUAGE and CRAWLDATE out of the

following document

<DOC>
<ID>000064...</ID>
<LANGUAGE>En</LANGUAGE>
<CRAWLDATE>124578965</CRAWLDATE>
<CONTENT> ... </CONTENT>
...

</DOC>

could be done in one of two ways. For the element LANGUAGE, a good choice is to index the name

of the element and its value as one term Language En. This implied a data�eld length of 0. Another

option is to use the element name as the term and put the value into the data�eld of a posting. The

latter alternative is a good choice for indexing the CRAWLDATE element as it allows searching for

ranges of dates in large indexes. Aside from generic keys like the aforementioned language and

crawl date example, WebFountain documents provide pre-tokenized content. Basically, aside from

the above mentioned options of associating an input element with a way to index the information,

there were no other ways of specifying other characteristics of the input data. This limited but very

simple interface led to a very simple speci�cation of index inputs. In order to take advantage of

a more sophisticated indexer supporting various inverted list formats, a mechanism to provide an

indexer with more hints about the inputs was needed, such as whether the input requires positional

information within the document, whether any data�elds are used, or whether data�elds have �xed

lengths.

Th chosen solution is a fairly simple language based on XML that allows the creation of

index build speci�cations. A simple example of such a speci�cation would look as follows:

An indexBuildItem in the context of WebFountain refers to an element under the

DOC element in a WebFountain document. In addition to specifying the name of the element using

13

<indexBuildSpecification>
<indexBuildItem>

<typeName value=''CONTENT''/>
<format value=''SLV''/>
<indexRule>

<style name=''Positional''/>
<style name=''textattribute''/>

</indexRule>
</indexBuildItem>
<indexBuildItem>

<typeName value=''CRAWL_DATE''/>
<format value=''NUMBER''/>
<indexRule>

<style name=''data32''/>
</indexRule>

</indexBuildItem>
...

</indexBuildSpecification>

Figure 3.2: Sample WebFountain index build speci�cation.

the typeName element, the indexBuildItem element speci�es the input format of the item,

as well as a rule (indexRule) on how to index the inputs. An indexRule can have multi-

ple styles. For example, in the sample index build speci�cation shown in Figure 3.2, the element

CONTENT is described with a format of SLV and an index rule using the styles Positional and

textattribute. This means that the format of the content of the element named CONTENT in

a WebFountain document is of the format SLV, which is a special compact binary format that can be

understood as vector of index terms with associated positions on the page. In this case the indexer

itself does not need to do any tokenization. The Positional style indicates that every item in

this vector needs to be indexed with positional information. The textattribute indicates that

each item in the vector also contains a 1 byte �xed-length data�eld. Therefore, the needs for an in-

verted list for this type of input is to store a location with in-document position followed by a 1 byte

data�eld. The other element illustrated in the sample index build speci�cation in Figure 3.2 is an

14

example for which the input element can be interpreted as a number and no positional information

is necessary. Furthermore, the data�eld to be used for the posting is a 32-bit number. Therefore,

an posting in an inverted list suitable for this kind of input needs to consist of a location without

positional information and a �xed-length data�eld. As one can see, in both cases the previously

used length for the data�eld becomes unnecessary to store in the inverted list. All that needs to

be done is to use an appropriate token type to select an object that knows exactly how to read the

inverted list for a particular type. These objects are called posting serializers.

3.3 Merge Process Changes

The changes to the merge process were relatively simple. In the previously existing merge

process, one writer object (PostingsWriter)was used to write all inverted lists to disk. For each

unique terms, all postings were written using the the

writePosting(LOC* loc, Token* dataField)

interface. The simpli�ed sequence of code to write the postings for an index term from a partial

index to an inverted list is shown in Figure 3.3. For clarity the code that handles all partial indexes

was omitted.
for each unique term do:

add term to dictionary

for all postings of the current term do:

writer.writePosting(posting.loc, posting.data);

end

end

Figure 3.3: Pseudo code for index build merge process.

15

The only places in the merger code base that needed to be changed was the basic algo-

rithm as shown in Figure 3.3 and the implementation of writePosting method. The changes

to the merge process consisted of using the token type of the current term to select the appropriate

posting serializer and pass this serializer to the postings writer object. The modi�cations in the

writePosting method consisted of using the serializer object to write the posting to an output

buffer or device. Figure 3.4 shows the modi�ed merge process.

for each unique term do:

add term to dictionary

select posting serializer based on token term

writer.setSerializer(serializer)

for all postings of the current term do:

writer.writePosting(posting.loc, posting.data);

end

end

Figure 3.4: Pseudo code for modi�ed index build merge process.

For the selection of the serializer based on a term's token type, we chose the concept of

a PostingSerializerFactory based on the factory design pattern described by Gamma et al. [10].

Selecting a serializer through the factory is done through a single API like

PostingSerializer* getSerializer(TokenType tt);

and allows us in the future to easily add new token types and their serializer implementations by

simply updating the Factory implementation. The basic algorithm to build the index (in-memory

indexer and merger code bases) can remain unchanged.

16

3.4 Posting Serializers and Query Engine Changes

The concept of an abstract posting serializer allows us to keep the basic algorithms for

building an index unchanged when adding or trying new inverted list formats. In the case of Web-

Fountain an posting serializer implements a very basic API, shown in Figure 3.5. The serializers

class PostingSerializer {

public:

int serialize(Loc* loc, Token* data, char* buffer);

int deserialize(char* buffer, Loc& loc, Token& data);

};
Figure 3.5: Abstract Posting Serializer API.

are used for writing term postings out to a buffer (serialize method), as well as reading from a

buffer back into memory (deserialize method). Both methods return the number of bytes writ-

ten to or read from an i/o buffer (buffer parameter). The deserialize method also returns the

location and a reference to the data�eld in the parameters. For clarity, helper methods to determine

whether there is room in the i/o buffer have been omitted. Using this basic API, the changes to

the PostingsWriter's writePosting method were then limited to replacing the serialization of

the individual pieces of an posting (i.e., location and data�eld) inside the writePosting method

with a call to the serializer's serialize method. Section 4 illustrates how this basic framework

was used to achieve index builds using multiple inverted list formats.

Currently, WebFountain has a wide variety of index terms in the system. Table 3.1 reit-

erates samples of different inverted list needs for different kinds of index terms11. An Entity refers
11The term Stop-words in table 3.1 refers to very frequently occurring terms. For example in the English language,

terms like the, and are considered stop-words.

17

Token Type Location Data�eld Extra Example
Text positional 1-byte �xed none Words on a page.
Text positional none none punctuation, Stop-words
Meta-Data doc only none none Language, Mime-Type, etc.

doc only 4-byte �xed none Dates, Ranks, Sizes, etc.
doc only variable length none URL, Title

Entities positional var. length span Person, Geo-Location

Table 3.1: Sample of inverted list needs for different index terms.

to a sequence of words within the document and requires additional information in each posting.

The additional information is called a span, which denotes the number of tokens in the sequence of

tokens within the document the entity refers to.

For each of the rows in the table an individual serializer had to be written. Overall, the

implementation effort for creating the set of individual serializers consumed a relatively small por-

tion of time, because a lot of the serializers share common behaviors. So far, we have implemented

8 different serializers for being able to write up-to 14 different inverted list formats. Figures 3.6

and 3.7 illustrates the class hierarchy of the various serializer classes. The class hierarchy shown

in Figure 3.6 is used to write postings for terms that require positional information onto the page.

The 64 in the names of the serializers refers to the fact that the WebFountain indexer uses 64-bit

numbers in-memory to represent the two d-gaps (i.e., one for document numbers and one for intra-

document positions). On the other hand, the class hierarchy shown in Figure 3.7 is used to read

and write postings for index terms, that do not require positional information. Serializer subclasses

with DataX as part of their name in either hierarchy are used to write postings that have �xed length

data�elds.

Similar to the changes in the merger code base, minimal changes to the query engine

were necessary to be able to read multiple inverted list formats. The existing query engine used

18

Figure 3.6: Posting Serializer class hierarchy for terms requiring positional information.

one class to access inverted lists on disk. The implementation of that class was changed such that

the deserialization of an posting out of an inverted list was now done calling the deserialize

method of the appropriate serializer object. The selection of the appropriate serializer object was

achieved by using the same factory. The token type necessary for selection of the correct serializer

was read from the dictionary entry. The dictionary of the WebFountain index contains the set of

unique terms. With each of the terms, additional information is stored in a dictionary entry, such

as the pointer to the inverted list, the number of entries in the list and, as part of the changes of

the work described in this paper, the token type of the index term. When performing a query, the

query terms are checked against the dictionary. If they exist, objects for accessing inverted lists are

19

Figure 3.7: Posting Serializer class hierarchy for terms without positional information.

created. The creation of these object now includes the selection of the posting serializer based on

the token type read out of the dictionary entry.

3.5 Implementation Details

The WebFountain indexer and all of the aforementioned changes were implemented us-

ing standard C++. The compiler used was gcc, version 3.0.3. For parsing the XML index build

speci�cation, the Xerces12 package, version 2.6.0 was used. The identi�cation of token types

was done through an enum. By implementing the serializers as share-nothing objects, only one

instance of a particular serializer was necessary for each unique token type. Accessing the ap-

propriate serializer is done through a table lookup using the token type to index into an array of

PostingSerializer objects. This incurs virtually no overhead during the build process.

12http://xml.apache.org/xerces-c/

20

4 Applying the Framework and Experimental Results

The previous section laid out the changes necessary to allow for the use of multiple in-

verted list formats inside the WebFountain indexer. The primary goal of this undertaking was to

optimize inverted lists for various kinds of index terms. In order to determine the usefulness of

the approach discussed in this paper, an index build of the existing WebFountain indexer with an

was copared with an index build using the new multi-inverted list format indexer. The results and

�ndings of this experiment are presented in this section. Results referring to the existing WebFoun-

tain indexer are labelled current, results referring to the new approach discussed in this paper are

labelled new.

4.1 Test Data

A random selection of 2 million Web documents from the WebFountain cluster served as

the test data set. That data was indexed with both versions to compare their performance in terms

of disk usage, index build times, and query performance. Unless otherwise noted, all results refer to

tests using the indexes covering all 2 million documents. Both index builds indexed the same data

as stored in the WebFountain cluster. The set of 2 million documents contains approximately 41.5

million unique index terms. Approximately 1.2 million of these pages were detected to be English

documents, the remaining documents covering languages such as German(114K), French(73K),

Chinese(65K), and Arabic (1K).

4.2 Reduction in Index Size

The �rst test was to determine how the new framework can reduce the �nal index size

on disk. For this �rst test, the mechanism was simply for not storing positional information for

21

File Sizecurrent File Sizenew Improvement [%]
Dictionary 1.69GB 1.61GB 95%
List Descriptors 0.71GB 0.58GB 82%
Inverted Lists 5.5GB 4.82GB 87%
Total 7.9GB 7GB 88%

Table 4.1: File Sizes for index builds of 2 million documents.

all index terms that fall into the category of meta-data. Such terms include dates (e.g., the date a

page was collected, authored or last modi�ed), MIME types, and languages to name a few. For

the index terms that referred to words within a document, the new framework does not offer any

improvement because the serialization of postings of a word in a document still requires the writing

of two d-gaps and a 1-byte text attribute. This is identical to the currently used indexer because

an escape sequence was used that allowed to have 1 byte data�elds without storing a length. The

bene�t of the new format is that checking for this escape sequence now becomes obsolete. The

other major feature that was used for this initial test was to declare some inputs as numbers, to take

advantage of �xed-length data�elds without having to write out the length of the data�eld. With

these minimal changes, the index footprint on disk could be reduced by approximately 12% for the

entire index and slightly more than 13% for the inverted lists alone. Table 4.1 shows the �le sizes

for both index builds. The column labelled Improvement indicates the percentage of space used by

the new indexer in comparison to the currently used indexer. Translating this to the WebFountain

production environment which has indexes covering approximately 15 million pages, the savings

for this test would translate to savings of roughly 7GB for a �nal index.

Index Build times could be improved slightly by having to write less data in the merge

phase. Improvements were not expected in the document consumer and in-memory indexer portions

of the code because the basic algorithm remained unchanged.

22

4.3 Reduction for Individual Index Terms

More pronounced than the savings in overall index size are the savings for some of the

index terms used in WebFountain indexes. As previously mentioned, the WebFountain data miners

augment documents by adding information about them. For example, the crawler13 adds informa-

tion on when the page was crawled. Classi�cation miners add tags to the document, on whether

the page falls into certain categories or not. Another miner produces various hashes of parts of the

content of the document, similar to the idea of producing shingles as described by Broder [6]. These

shingles are treated as regular terms in a WebFountain index. For the aforementioned terms, a sig-

ni�cant saving could be achieved by only having to encode the fact whether it occurred on the page

and not where on the page. Some of the terms shown in Table 4.2 are examples of taht kind. As

before, the column labelled Improvement shows the percentage of space used by the new inverted

list format compared to the currently used format. The sizes of the inverted lists are given in the

number of 4KB blocks. For terms like Language_En, more savings could be achieved, by not

having to write a data�eld at all. For terms like CrawlDate, it is advantageous that all postings

had a data�eld with length 4. The term [[docid]] is used to store the actual document identi�ers

in an inverted list. Document identi�ers in WebFountain are 16-byte MD-5 hashes of the URLs of

the documents. In this case, the inverted list size could be reduced by using a format that store doc-

ument d-gaps only and uses �xed-length 16-byte data�elds. Some of the more signi�cant savings

stem from the previous approach of treating everything as text without any knowledge about the

nature of the data. The term [[paragraph]] describes postings of paragraph boundaries. This

allows the support of queries that require terms to appear within a sentence or paragraph. For those

terms, positional information was still used but the 1-byte text attribute was eliminated.
13The crawler is the component in the WebFountain system that collects Web documents.

23

Term Name Inverted List Sizecurrent Inverted List Sizenew Improvement [%]
Language En 1983 332 16%
CrawlDate 9167 2704 29%
[[docid]] 20815 9166 44%
[[paragraph]] 43026 22548 52%

Table 4.2: Selected inverted list sizes for a 2 million document index.

4.4 Stop-Words � Very Frequently Occurring Terms

In the current WebFountain indexing environment and results illustrated in the previous

sections, all index terms that appear within a document use an inverted list format of positional in-

formation as well as a �xed-length 1-byte data�eld. This data�eld is mainly used to store postings

attributes, such whether the posting is part of a title, anchor, heading or other distinguishing docu-

ment features. The assumption in the past was that all terms are equal in terms of indexing them.

However, not all terms are equal when it comes to the number of occurrences or their importance

during query time.

One such group of index terms that is generally not considered as useful as other terms is

the set of stop-words [1]. Examples of stop-words in the English language are articles, prepositions

and conjunctions. Table 4.3 shows the 10 most frequently occurring terms and their number of

postings in the 2 million test index. The general idea is that a stop-word used by itself as a query

term is a poor choice to search through a large document collection. However, they are still useful

and even necessary, if the text retrieval system supports phrase searches. One possible optimization

for indexing such stop-words is to eliminate storing the text attributes for such stop-words, which

would save 1 byte per posting. Applying this approach by using a separate token type for stop-

words, approximately 50MB alone could be saved for the 10 terms shown in Table4.3. For the 230

most frequently occurring terms in the 2 million documents appearing at least 250000 times, this

24

Term Name Term Frequency
the 11469882
to 6357260
and 6281822
of 5857122
a 5504061
in 4054749
for 3332138
is 2350735
de 2290000
you 2251109

Table 4.3: Top 10 list of stop-words in terms of frequency in a 2 million document index.

would save approximately 170MB, which represents approximately 2.5% of the entire space needed

for storing the inverted lists for such terms.

Aside from needing to have a PostingSerializer implementation that only writes positional

information, the document consumer code base needed to be modi�ed to detect stop-words. Possible

implementations to check index terms for belonging to the set of stop-words is the use of a Hash

table or a burst trie [18, 24].

4.5 Query Processing Performance

With the reduction of the sizes of inverted lists on disk come other bene�ts besides saving

space. On of them is the reduction of I/O latency. One of the fundamental processes in query

processing is the enumeration of the postings in an inverted list. Some tests were run enumerating

over all postings for certain terms in the inverted lists.

For most index terms that correspond to text, the enumeration times were virtually iden-

tical to the enumeration times of the existing indexer. For example, all 11 million occurrences of

the term the could be enumerated in about 8 seconds (i.e., deserializing approx. 1375postingsms . The

25

elimination of checking for escape sequences has not had a signi�cant effect on improving perfor-

mance, on the other hand introducing a class hierarchy to do the serialization has not hampered

performance due to using virtual functions. Proper inlining of the serialization methods and careful

optimizations can further improve the new indexer enumeration times over the existing version.

For the terms listed in Table4.2, enumeration time savings between 10 and 15% could

be observed. The enumeration tests were done repeatedly on a warm �le system cache, and the

reported savings are averages over 10 runs.

As mentioned in the introduction, WebFountain supports advanced queries like the fol-

lowing:

Find me all pages that contain the terms Joerg and Meyer and that were crawled during
the last week.

Another potential query could be:

Find me all pages that contain the terms Joerg and Meyer and pages with URLS that
match the regular expression *.ibm.com/people/*.'

The data�eld for postings plays an important role to support these kinds of queries. In particular,

limiting a query to the recently ingested pages is a very frequently used operation in WebFountain.

For example, looking for documents that contain the index term joerg, the indexes returned 175 hits

in virtually the same amount of time. Adding the additional restriction to only return pages that

were crawled within a very small time window, the new multi-inverted list indexer more than twice

as fast. This is mostly due to the elimination of expensive string conversion operations but also due

to the reduction in space on disk. The term joerg is a relatively infrequent term in the index. Using

a date range query as described with query terms that occur more frequently will cause more range

checks. Savings in date range queries of up to 80% in runtime could be observed. The application

26

of an inverted list format for terms with very long data�elds, such as URLs or entities, is currently

under evaluation.

Overall, most queries run within the same time frame or slightly faster using the multi-

type inverted list index. Using a class hierarchy and virtual functions limits the ability to inline

frequently used code sequences. Lea showed that this can cause signi�cant performance problems

[13]. Known techniques to improve performance are the use of inlining by eliminating virtual

functions where possible and make use of templates instead. In our case, the primary goal was to

create a clean framework that can be used to create and try new inverted list formats quickly.

5 Related Work

Formats for inverted lists have been discussed in the research literature at great length.

Most compression schemes are based on the idea of sorting the inverted lists in ascending order

of document numbers and positions within the documents and then replace the full information

of a posting with a d-gap representation relative to the previous posting. Witten et al. reviewed

the basic techniques and state that for the majority of practical purposes, the most suitable index

compression technique is the local Bernoulli method using Golomb coding [22]. There has to be a

trade-off between the computational compression and de-compression overhead and the amount of

I/O necessary to load an inverted list. In order to avoid decompressing all previous postings to get

to any posting in the inverted list, auxiliary information is added to the list, fundamentally dividing

the list into blocks [20]. The WebFountain indexer uses the blocking technique and a compression

scheme that falls into the category of non-parameterized models. The compression scheme is a

simple byte-aligned variable length integer encoding scheme which has been shown to be more

27

ef�cient during query time although it is not as space-ef�cient as Golomb codes [16]. The work

presented in this paper provides an easy to use framework for evaluating the various approaches in

terms of compression ratio and query evaluation times.

Alternatives to using inverted lists are bit vectors, signature �les and block addressing

inverted indexes. Zobel et al. and Witten et al. showed that inverted lists are the most appropriate

for large collections [25, 22]. The WebFountain index is designed as an inverted list index, but the

framework described in this paper could be used to have a bit-vector token type. While a bit-vector

can be viewed as a form of an inverted list with at most one posting per document, simulating

signature �les with this framework is not easily feasible because they represent a fundamentally

different approach than inverted lists.

Most research has dealt with the compression of inverted lists for index terms that repre-

sent single words within a document. Williams et al. present an approach to make phrase queries

more ef�cient by combining next-word indexes with indexing phrases [21]. Commonly available

features in search engines also include the use of ranges and site names. However, generally the

additional index terms are treated as texts and so are their inverted lists. The multi-type inverted list

index presented here allows for the integration of an optimal inverted list format. IBM recently re-

leased the Unstructured Information Management Architecture SDK, which allows the analysis and

annotation of unstructured information (e.g., web documents) and provides a framework to build an

index of the annotation and analysis results [15].

The index build process described in this paper assumes a single node index build with

currently up to 16 million pages per machine. Clearly, web scale indexes need more than a few

machines. A variety of approaches to indexing large corpora of documents on a cluster of machines

have been proposed. Common techniques include term partitioning and document partitioning

28

schemes, which have one node in the cluster either store the complete inverted lists for a set of

terms (term partitioning) or the inverted lists of all unique terms in a set of documents. Sornil

proposes a parallel inverted list-index which use a hybrid-partitioning scheme [17]. Google uses

10000+ machines to distribute a search engine [2], but uses replication through the Google File

system [11]. Either partitioning scheme can be used with our proposed framework because it is

applied on the level of the inverted lists and not at the level of document or term distribution.

As a reference implementation the static index build process was used. Static indexing

schemes can generally only be updated by re-indexing the entire set of documents. Incremental or

dynamic indexing schemes allow for updates without having to revisit all the pages. Instead they

add, extend or modify inverted lists into an existing index. One of the main concerns with incre-

mental indexing schemes are disk space fragmentation and their ability to process large volumes of

updates quickly. Various approaches have been proposed to address these issues. Cutting and Ped-

ersen show how the Zip�an14 distribution of term postings can lead to space and time optimizations

unique to the incremental indexing tasks [8]. Tomasic et al. use a similar approach by dynamically

separating short and long inverted lists and optimized the retrieval and update for each kind of list

[19]. Brown et al. proposed an approach that uses a persistent object store and its data management

facilities to provide ef�cient incremental updates [7]. The framework presented in this paper is not

speci�c to static indexing and can therefore be used to support multi-type inverted lists can be used

in the scope of incremental indexing.

In a way, the approach presented here borrows some mechanisms from the relational

database community. Creating appropriate PostingSerializer objects for custom postings is roughly

14George Zipf observed in 1949 that the frequency of an item tends to be inversely proportional to its rank [23]. This
observation is widely used in information retrieval system by assigning weights to terms by taking the inverse of the
number of documents a term is in.

29

the same as creating a table and an inverted list posting represents a row in such a table. The reason

for not using relational databases for large scale text retrieval systems vary, among them inadequate

performance due to DBMS overhead, and lack of requirement for ACID transactions, yet some of

the basic principles do apply [4]. The work presented in this paper gives us the ability to have

appropriate formats for different data types.

Aside from managing inverted lists in a text retrieval system, the query processing and the

relevance of the results have been a topic of intensive research. Most users do not care how a search

engine works they expect relevant results as a response to a query [3]. With growing document

collection sizes, some searches literally turn into �nding the needle in the haystack. The two main

issues to deal with are recall and precision. A search that returns virtually every document for a

given query has a high recall, while a search that returns only relevant pages is said to have a high

precision [22]. Numerous approaches have been proposed to strike a good balance between recall

and precision, such as using document link-structure information [5], automatic query re�nement

and relevance feedback to name only a few. The topic of search quality is not subject of this paper,

the interested reader may refer to Croft's Advances in Information Retrieval [9].

6 Conclusion and Future Work

The WebFountain project faced the problem of having to index a lot of inputs that were

not index terms in the traditional sense and growing corpus sizes. The existing indexer was based

on a generic inverted list format that was extremely powerful but not extraordinarily ef�cient for the

growing list of requirements. A better solution was needed, to decrease the amount of storage space

necessary and to more ef�ciently handle different forms of input.

30

Our primary goals in developing a multi-type inverted list indexer were the reduction

of the amount of disk space used by an inverted list index, and the creation of a framework that

enables the research and development of ef�cient indexing formats and techniques. Based on the

IBM WebFountain full-text indexer which used a generic inverted list format, a framework was

created that allows

• for the exact speci�cation of inputs to the indexing process and their types,

• and provides simple to use APIs to create new inverted list formats, without having to modify

the basic indexing algorithm.

Most of the development effort went into the abstraction of the index build process by

keeping a generic intermediate format and the development of the index build speci�cation. The

ability to assign token types to index terms is the key to support multiple inverted list formats. Each

unique token type has its own format. As of March 2005, 8 different PostingSerializer classes

supporting 14 different formats have been implemented.

Taking advantage of the different nature of inputs (i.e., index terms requiring positional

information, meta-data not requiring positional information, terms requiring data�elds, etc.) led the

reduction in the disk usage of an index by 12%. Section 3 also provided examples on how to save

additional disk space by treating different kinds of terms differently (e.g., stop-words). Selected

inverted lists could be reduced by up to 80% due to choosing an optimized posting representation,

that eliminated intra-document d-gaps and made use of �xed length data�elds.

The entire framework was implemented in C++ making extensive use of inheritance and

polymorphism so that the overall algorithm had to undergo only minimal changes. This way of im-

plementing it negates some performance optimization by the compiler, such as inlining. However,

31

overall query response times remained on the same level or even improved slightly for queries with

terms that already were very ef�cient. This indicates that the performance penalty of using virtual

functions is negligible. Queries using terms that underwent signi�cant space savings saw improve-

ments of up to 75%, mainly due to the elimination of costly type conversions and the elimination of

obsolete information in the inverted list. The overall performance in terms of index build times and

query response times is very encouraging as very little work has been put into optimizing the new

framework.

While the reduction in disk space was one of the primary goals, it was not a goal be-

cause of limited availability of disk space but rather the discrepancy between processor and memory

speeds and disk performance. Reducing the on disk footprint has positive effects on query response

times because having to read less data reduces cache pollution and I/O latencies. Furthermore, a

reduction of disk space helps with the transfer of indexes to other nodes for replication or load

balancing reasons.

The framework was applied in the static index build setting and proved useful as an ex-

tension of an existing indexer with minimal changes to its core algorithm, namely the in-memory

indexing. Keeping a generic intermediate posting format avoids modi�cations to the core algo-

rithms. This enables the quick implementation and evaluation of new inverted list formats and

test their impact on index build performance and query response times. Furthermore, it allows for

easy mixing and matching of different indexing techniques, such as bit-vectors with full positional

inverted lists.

Future plans for the use of this framework is the integration into WebFountain's incremen-

tal indexer. In an incremental index, inverted lists are constantly updated. Having multiple inverted

list formats at your disposal allows for potentially switching formats during index update phases.

32

This may be done based on observations of the existing list and its growth, as well as the availability

of new optimized postings lists formats. Additionally, alternatives to our current d-gap compression

schemes can be tried and evaluated, based on existing research as reviewed in section 5 and observa-

tions made as part of handling billions of documents in the WebFountain system. Some of the index

terms in WebFountain require large data�elds, which are currently stored on disk as-is, without any

compression. For example, to allow for searches using regular expression on relatively short text

strings15. Being able to use a tailored inverted list format in which data�elds can be individually

compressed is a compelling use of the framework presented in this paper.

15URLs are considered short text strings compared to Web documents.

33

34

References

[1] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, New York, NY, 1999.

[2] Luiz A. Barroso, Jeffrey Dean, and Urs Hoelzle. Web search for a planet: The google cluster
architecture. IEEE Micro, 23(2):22�28, 2003.

[3] Michael W. Berry and Murray Browne. Understanding Search Engines. Society for Industrial
and Applied Mathematics, Philadelphia, 1999.

[4] Eric A. Brewer. Combining systems and databases: A search engine retrospective. In Readings
in Database Systems, 3rd Edition, University of California, Berkeley, 2004.

[5] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.
In WWW7: Proceedings of the seventh international conference on World Wide Web 7, pages
107�117. Elsevier Science Publishers B. V., 1998.

[6] Andrei Z. Broder. On the resemblance and containment of documents. In SEQS: Sequences
'91, 1998.

[7] E.W. Brown, J.P. Callan, and W.B. Croft. Fast incremental indexing for full-text informa-
tion retrieval. In Proceedings of the 20th International Conference on Very Large Databases
(VLDB), pages 192 � 202, Santiago, Chille, September 1994.

[8] Doug Cutting and Jan Pedersen. Optimizations for dynamic inverted index maintenance. In
Proceedings of the 13th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 405�411, 1990.

[9] Bruce W. Croft (Editor). Advances in Information Retrieval. Kluwer Academic Publishers,
Norwell, Massachusetts, 2000.

[10] Ralph Johnson John Vlissides Erich Gamma, Richard Helm. Design Patterns; 1st edition
(January 15, 1995). Addison-Wesley Professional, Reading, MA, 1995.

[11] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google �le system. In SOSP

35

'03: Proceedings of the nineteenth ACM symposium on Operating systems principles, pages
29�43. ACM Press, 2003.

[12] D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pattanayak, A. Tomkins, and J. Zien. How to build
a webfountain: An architecture for very large-scale text analytics. IBM Syst. J., 43(1):64�77,
2004.

[13] Doug Lea. Customization in c++. In C++ Conference, pages 301�314, 1990.

[14] J. Zien S. Rajagopalan M. Fontoura, E. Shekita and A. Neumann. High performance index
build algorithms for intranet search engines. In Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004.

[15] IBM Research. Unstructured information management architecture sdk, 2004.

[16] Falk Scholer, Hugh E. Williams, John Yiannis, and Justin Zobel. Compression of inverted
indexes for fast query evaluation. In SIGIR '02: Proceedings of the 25th annual international
ACM SIGIR conference on Research and development in information retrieval, pages 222�
229. ACM Press, 2002.

[17] Ohm Sornil. Parallel Inverted Index for Large-Scale, Dynamic Digital Libraries. Ph.D. thesis,
Virginia Polytechnic Institute and State Univeristy, 2001. Department of Computer Science.

[18] Justin Zobel Steffen Heinz and Hugh E. Williams. Burst tries: a fast, ef�cient data structure
for string keys. ACM Trans. Inf. Syst., 20(2):192�223, 2002.

[19] Anthony Tomasic, Héctor García-Molina, and Kurt Shoens. Incremental updates
of inverted lists for text document retrieval. In SIGMOD '94: Proceedings of the 1994 ACM
SIGMOD international conference on Management of data, pages 289�300. ACM Press, 1994.

[20] Anh Ngoc Vo and Alistair Moffat. Compressed inverted �les with reduced decoding over-
heads. In SIGIR '98: Proceedings of the 21st annual international ACM SIGIR conference on
Research and development in information retrieval, pages 290�297. ACM Press, 1998.

[21] Hugh E. Williams, Justin Zobel, and Dirk Bahle. Fast phrase querying with combined indexes.
ACM Trans. Inf. Syst., 22(4):573�594, 2004.

[22] Ian Witten, Alistair Moffat, and Timoty Bell. Managing Gigabytes. Morgan Kaufmann Pub-
lishers, Inc., San Francisco, CA, 1999.

[23] George Zipf. Human Behavior and the Principle of Least Effort. Addison Wesley, Reading,
MA, 1949.

[24] Justin Zobel, Steffen Heinz, and Hugh E. Williams. In-memory hash tables for accumulating
text vocabularies. Inf. Process. Lett., 80(6):271�277, 2001.

[25] Justin Zobel, Alistair Moffat, and Kotagiri Ramamohanarao. Inverted �les versus signature
�les for text indexing. ACM Trans. Database Syst., 23(4):453�490, 1998.

36

