Using Comprehensive Analysis for
Perfor mance Debugging in Distributed
Storage Systems

Technical Report UCSC-SSRC-07-05
May 2007

Andrew Leung Eric Lalonde Jacob Telleen
aleung@cs.ucsc.edu elaonde@cs.ucsc.edu jtelleen@cs.ucsc.edu
James Davis Carlos Maltzahn
davis@cs.ucsc.edu carlosm@cs.ucsc.edu

Storage Systems Research Center
Baskin School of Engineering
University of California, Santa Cruz
Santa Cruz, CA 95064
http://ww. ssrc. ucsc. edu/

Using Comprehensive Analysis for Performance Debugging iDistributed
Storage Systems

Andrew Leung Eric Lalonde Jacob Telleen James Davis Carlalszithn
University of California, Santa Cruz
{aleung,elalonde,jtelleen,davis,carlgs@cs.ucsc.edu

Abstract traverse user and kernel-level code on many different ma-
chines, and its performance is dependent on many factors

Achieving performance, reliability, and scalabilitsuch as load and cache state. This makes understanding

presents a unique set of challenges for large distributgsd debugging file system behavior extremely difficult.

storage. Debugging issues can be daunting given theyigyipyted storage performance have two classifica-
scale of these systems. Recent work has focused on fifigss. node-specific issues (problems either occurring at,
gramed performance analy_'sls; this insufficient for_ bwl%—r relevant to, a single node) and inter-node issues (prob-
ing a complete understanding of the system. To identifys caused by relationships with other nodes). De-
problem areas, there must be a way for developers to hgygqing node-specific problems has been researched for
a comprehensive view of the entire storage system. T ny years with much success [2, 5,13, 16, 28]. Under-
is, users must be able to understand both node spedifig,qing inter-node problems has become an interesting
behavior and complex relationships between nodes. ajlenge explored more recently [3, 8, 10-12, 16, 17, 22,
We present a distributed file system profiling methogly; - the key problem facing current approaches is an
that supports such analysis. Our approach is based;Quijity to achieve comprehensive analysis of éreire
combining node-specific metrics into a single cohesiVg,rage system. In particular, a complete view of the stor-

system image. This affords users two views of the st)fge system includes all node-specific events, as well as,
age system: a micro, per-node view, as well as, a MaiBmplex inter-node events

multi-node view, allowing both node-specific and com- 1.1 ding inter-node problems has proven difficult
plex inter-nodal problems to be debugged. We have im- 9 b P

plemented a prototype profiler in the Ceph distributed fi Jecause these problems are: (1) distributed, the source of

system with a focus on efficiency, portability, and scalabff

ity. We visualize the storage system by displaying nod®)
and intuitively animating their metrics and behavior a_roblem source, and (3) sporadic, the pro_b_lem may only
. . ccur on a few nodes or only under specific workloads.
lowing easy analysis on complex problems. We evaluaié X : .
. ; r example, storage devi@egs high I/O latencies may
the overhead and scalability of our prototype profiler an .
be due to local performance issues or may be caused by

find it contributes little overhead and easily scales to-stor,
y other nodes.A's performance problems may be the re-

age systems of over 1,000 nodes. Our visualization hs%?t of another device mirroring data or&pA replicatin
allowed us to uncover several important performance is- 9 P 9

s ; ata onto a slower device, érhaving to perform recov-
sues within Ceph, ranging from poor load management10

supringly strong correlation between, supposedly decé;ury caused by another device failing. We assert that in or-
pled, metadata and data operations. er to fully understand and debug distributed storage, both

node-specific and inter-node events must be analyzed.

Profiling is a common technique for identifying per-

1 Introduction formance issues, understanding behavior, and debugging

problems in any system. Current profiling techniques for
The complex nature of distributed storage increases distributed systems take a fine-grained approach via activ-
bugging complexity. Moreover, performing root-causéy tracking and resource accounting. These have proven
analysis is complicated in large-scale storage systeus®ful in revealing single-path bottlenecks and building
where data and load are highly decentralized and the numorkload models. However, such a fine-grained approach
ber of possible causes is large. A single 1/0O request daces difficulties when attempting to correlate inter-node

problem may be far removed from where its effect is
gserved, (2) opaque, the number of nodes obfuscates the

relationships with performance. In this case both micfiting and visualization. We discuss the design and imple-
(node-specific) and macro (inter-node) analysis of the sysentation of our system in Sections 4 and 5. We present
tem is necessary to achieve a complete understandingof experiences profiling the Ceph petascale, distributed
performance. file system in Section 6 with a performance analysis in

The current Standard for Visua”zing System perfoﬁectio.n 7. We discuss future work in Section 8 and con-
mance is to log and graph relevant performance countéfgde in Section 9.
This is appropriate when seeking knowledge of individual
metrics, but as the size of a system grows, the usefulngss
of these techniques diminishes. For example, users Zn Related Work

easily view the throughput of any single node as a graph _
and be satisfied, but the log and graph approach fails wt%f?f'“ng and benchmarking storage systems is a heavily

the goal is to convey more complex concepts such as hr&ﬁearched topic, though distributed storage present many

an individual node failure impacts overall resource avaH_nepr_ored _challenges. . _S|gn|f|cant inroads hav_e been
ability. made in tracing and profiling local file systems which re-

, . side on a single machine [2,5, 13,16, 28]. Latency anal-
, We take a comprehensive appr.oach to profiling, anaIVS‘ls and system instrumentation are common methods of
ing both micro and macro behavior, and offer a more g g ating data, while performance counters are used to
bust view of the system than standard log and graph tegly, o5 node performance. This is insufficient for a dis-
niques. We profile the system by runningigualization v, ;te 4 environment, where understanding the inter-node

clienton each node. The client is responsible for collegte, to:mance relationships is critical to problem resolu-
ing node-specific instrumentation data and local mach i

statistics. Data is forwarded to a clusterdualization 5 .\ i0us research in profiling general distributed sys-

serverswhich use timestamp information to serialize dag ¢ 5 yyresses the scenario where applications are black-

from all nOQes m_to_a s_lngle, cohesive stream of SyStede entities whose source code cannot be viewed or
events. This serialization enables cause and effect aq@%

. o trumented (often for proprietary reasons) [1,6, 16].
ysis of distributed performance problems. The order hen high-level graph construction is sufficient for pro-

stream is then fed into eisualization applicatiorwhich filing, this approach is quite useful. However, in a dis-

uses computer animation to intuitively animate represgp, te storage system, where capturing internal state is
system activity and behavior in real ime. critical to establishing an accurate view, the necessary in
We have implemented our profiler in the Ceph petastrumentation makes a black-box approach inadequate.
cale, distributed file system [25] along with a prototype Other existing techniques focus on fine-grained profil-
visualization application. Our prototype visualizes stojhg and end-to-end request tracing is used in order to iden-
age behavior by animating all nodes in the system afi§ bottlenecks [11,12,16,22], model workloads [18,
their various system metrics and activities. For examp@], and identify anomolies [20] in a distributed environ-
we animate CPU utilization as a changing color scale agfént. Systems like Magpie [3] and Pinpoint [7] use sta-
charaterize metadata operations via changing pie chajtgical modeling to infer performance outliers. They rely
Our animation allows users to see all nodes in the S¥geavily on trace files, which limits their ability to identif
tem and easily understand how those nodes are opesags that are common to all paths in a system. This ap-
ing. By viewing multiple nodes at once, users can easpyoach also assumes that outliers are necessarily thé resul
understand complex inter-node relationships. For exagtbugs. Other approaches like Pip [21] require that the
ple, the effects of mirroring data become obvious becayggsrs specify their expectation for how a workload should
Changes in performance can eaSin be identified. Eva|%rform_ This can be a Comp|ex task, and puts the burden
tions of our profiler indicate a very limited overhead angh the user to have a deep knowledge of the workload.
scalability in storage systems over 1,000 nodes. Usinganother profiling approach uses statistical correlation
our visualization we uncovered several important perfqg yunderstand which performance thresholds are related to
mance issues in Ceph. These issues range from poor lgRghtions in Service Level Objectives (SLOs) [8, 9]. This
balancing of metadata operations to a suprisingly stropgrk has similar objectives to our own, in that the goal
correlation between, supposedly decoupled, metadata @@ identify states which relate to performance degrada-
data operations. tion. However, this work relies on having a precise defi-
The remainder of the paper is organized as followsition of performance violations, which a SLO affords. In
Section 2 discusses related profiling and visualizatieontexts such as scientific computing environments, the
work. Section 3 presents the design goals behind our plaek of such a definition puts the administrator in the po-

sition of arbitrarily defining service objectives. Instdad of correlating metrics on separate machines. If Ganglia
is more important to know whether a performance degr@ports that two machines are experiencing high resource
dation is the result some specific inefficiency, or whethetilization, one must still log into those machines and an-
the system as a whole is simply experiencing high utilizalyze each independently to figure out why. Answering
tion. guestions regarding inter-node relationships is a primary

We rely on animation to visualize system data becau@@al of our work, and to that end our design goals supports
it can take raw data and manipulate it so that recognifis type of analysis directly.
able patterns begin to emerge, which makes management
of resources and trend analysis easier [15]. This allows .
the user to see subtle interactions that can easily be o&r- Des'Qn Goals

looked by other methods of data exploration. Visualiza- . , . L)
tion can also be used for prediction and intuitive troy.ne design of our profiler and visualization was motivated
bleshooting. by several goals: .
. Low Overhead: In order to achieve accurate perfor-
There have been numerous systems which rely on vt nce metrics, profiling must introduce minimal over-
sualization techniques to analyze systems data. Rivet d Therefo}e introducing major computations along
is an architecture for flexible and extensible visualizatio . '

. s . critical paths must be avoided.
of generalized distributed systems. Because of their {0- S L
L . . calability: As distributed storage systems grow larger,
cus on general distributed systems, Rivet requires a

= ; : .
tional data transformation stages to generalize data,hmh?galab'“ty becomes_ a major design focus. W'.th Iarge
A .Systems comes an increases the number of points being
adds overhead. Visualization is done through showing_.. . :
S - ofiled and the amount of data being collected. This
pipelines of system events, statistics, and graphs. While . A
L o equires that the profiling infrastructure be able to grow
useful for general distributed systems, it is inadequate 10. . . R
. L S . Wwith the size of the storage system and that visualization
storage systems which require visualization of both time-_,_ . . A
‘ . echniques continue to present intuitive results evenes th
coordinated high level system state as well as low-leve
information. NetLogger [14] is a methodology for enamount of data becomes large.
99 gy 9 Portability: The utility of any distributed profiling sys-

erating precise performance event logs and visuali2|{1eq.n is bounded by the range of nodes on which it can be
the aggregate data for performance analysis. It can pro-

file any arbitrary metric chosen by developers, and C%pplled._ For th|s reason, portabll[ty IS a key design crite
. ! : ra. While points of instrumentation will differ between
ordinates log files to a central repository. NetLogger's . . .
. o nodes and file systems, the method for gathering the in-

log-and-graph approach to visualization makes root-catgge

analysis difficult in a distributed file system, where the rmation should be completely abstracted from the file

. . sg(stem itself. As a result, simple instrumentation should
problem source is often removed from where its effect i e .
e the only modification requirement.

felt. Further, the delay associated with creating NetLo%— . L
ger event logs is prohibitively expensive for a distribut omprehensive An.aIyS|s.. D|str ibuted storage sys.tems
file system, where I/O latencies usually measure in %]gve complex relat|or!sh|ps W'th. many nodes which af-
ects performance. This complexity is exacerbated as sys-
em size increases. To be effective, it must be feasible to

"E'ﬁckly and easily understand large amounts of data and

requests take through the system, allowing bottleneGgs effect of node interactions. At the same time, under-

along the path to be revealed [1,3,19,20,23,24]. Thigynging the performance of each individual node remains
approach has proved useful for identifying inefficient Soffyeqral” Therefore, any visualization must make both of

ware components and slow nodes in a network. Unforfyge macro and micro metrics intuitive to the user.
nately, is a call-graph only provides information about a
single path in the system and is unable to build a compre-

hensive view of how many nodes are interacting at oncg} Methodology

Ganglia [17]is a distributed monitoring project that has
a similar approach to visualization as our own. GangliaT® achieve our design goals, we take a distributed ap-
able to monitor systems using scalable techniques thatpmeach to profiling. Each node in the file system runs a
troduce low processing overhead to each system. We tid@al visualization clientwhich is responsible for profil-
a similar approach in how we represent individual systeing local storage system and machine information. Peri-
nodes. One major difference between our work and Gartlically, each visualization client updatesiaualization
gliais that Ganglia does not afford the user with a methedrverwith recent changes to the local node. The server is

croseconds. ¢
Several systems use call-graphs to build the path t

responsible for chronologically ordering the data to pr

duce a single, serialized stream of system events from Instrumentation %
nodes and sending this serialized sequencevisualiza- Visualization Data =
tion application The visualization application visually Client DI Ceph FS | s
represents nodes in the system and displays or animi read()
their metrics and behavior. This provides an intuitveir | — " T] sys_read()
terface where both node-specific and complex inter-nc V‘F'S | c_"§
behavior are easily understood. We discuss this proces , 3
detail throughout this section. 'nStrugsztat'on y nfs_read() o)
@

NFS
4.1 Visualization Client

The visualization client is implemented as a user-spe
process which collects instrumentation data and machine . o . .
statistics. This design provides two key benefits. Firg, thigure 1: The visualization client allows profiling user
client does not add overhead to critical paths becaus@d kernel-level file systems.

relies only on instrumentation data and can reside outs”

Incoming Buffer

of the storage system. This improves development tir "5 —— Events
and ensures that the client does not interfere with syst

performance. Second, by only requiring instrumentati i B et W s M et
data, the client can profile any instrumented part of tl ___ suer [Evenis (] Fler [Appcatn |
storage system. This greatly improves portability and ¢ c

lows profiling of components in user and kernel spac
For example, profiling a kernel-level file system only re
quires that the file system log data to a shared file whi
the visualization client can read. This is illustrated ig+i _ i o) L
ure 1, where we see that the visualization client can profi@ure 2: A high-level pipeline of visualization server op-

user level file systems without interrupting calls to VF§_rations.

Additionally, the client can profile a kernel-level file sysstamped and sent to the visualization server over RMI.

tem, such as NFS, by simply requiring that NFS log irfhe communication period is kept short to ensure that in-
strumentation data to a source accessible to the client. Tenation sent to the visualization server is fresh.

benefits we have discussed indicate that how and where
the system is instrumented is critical to the robustness . i
the profile. Therefore, regardless of where the storage sl)?sfz Visualization Server
tem resides, building a robust profile is dependent on ag-order to achieve a complete view of the system, metrics
curate system instrumentation. from all nodes must be aggregated to a common location.
We have implemented the visualization client as a Ja&aluster of visualization servers is responsible for recei
RMI client. The client profiles the local node by usingng and organizing data from all nodes in the system and
two methods of data collection. The first method is cofer passing a serialized ordering of system events to the
cerned with metrics which are common to all nodes irisualization application. Event ordering is achieved by
the storage system, such as system load and network ecoimparing the time stamps of events received from all vi-
lization. This node-agnostic method is performed bysaalization clients. We assume that each node in the sys-
thread which periodically polls local OS resources likeem is roughly synchronized.
/ proc/ | oadavg. The second method is node-specific, The key benefit of centralizing metrics at the visual-
and depends on the role that the node plays in the staation servers is that it allows visualization clients th a
age system (e.g., client or server). These events are dagependently of each other, requiring the client’s respon
tured from instrumented code in the storage system itsaibility to simply be collecting and forwarding metrics to
The visualization client stores collected metrics in a loctihe server. Requiring the visualization clients to coordi-
database. Periodically, a separate communication threatk in order to serialize events would introduce major
polls this database to aggregate events that occured dudognplexities and add overhead from to the extra commu-
the previous poll interval. This aggregation is then timacation.

System metrics are organized into a cohesive, timere exploring further extensions to this which is discussed
ordered series by the visualization servers based on timasSection 8.
tamps. The reason for this is two-fold. First, events in aWe have implemented the visualization server as a Java
distributed storage system have many cause-and-effecR®t server. Figure 2 demonstrates a high-level view of
lationships. For example, a write at a storage device aie stages in the server pipeline. Before passing events
be the result of numerous metadata operations causing ée visualization application the server applies a filter
metadata server to flush its journal. As such, understamthe filter serves to limit the amount of data passed to the
ing these events is directly dependent on understandigplication. For example, if the user has chosen to focus
their ordering. Second, serializing data at the visualizgwe visualization application on a subset of system nodes,
tion server allows the design of the visualization applicére server only needs to pass data for those nodes being
tion to be simplified. For example, the visualization aptisplayed.
plication is designed using an event-driven model where
it simply displays events are they are received.

A consequence of ordering events at the visualizatigr'l3 Visualization Application

server is that events can be received out-of-order. If tqiﬁe effectiveness of any performance debugging solu-
ISsue were not agdre_sse_d, events would be passed totig‘l?depends on its ability to easily and intuitively con-
V|§uallzat|on _appllcatlon in the wrong order. We e_lddre% information to the user. There have been many ap-
this by patch'lng.events "?“ th_e server befOYe sending th aches towards visualizing activity in distributed sys-
to the visualization application. By batching for a sho Ems and several have been discussed in Section 2. While
period (less than a second) the Servercan receve an_dsg?he of these solutions are not suitable for large-scale

, others may prove effective. In any case, the

within the buffer window are passed to the V'Sual'zat'oéhitability of any visualization is determined by the user’

clientin the correct order. Long buffer windows cause g 15 \ve have chosen to focus on a visualization method
large number of events to be correctly ordered, but a

imoly that the visualizati licati i . t easily presents both micro (node-specific) and macro
Imply that the visualization application will receive up inter-node) metrics. As a result, we have chosen to use

dates less frequently. Th? merits of t_h|s tradeoff vari ﬁnple computer animation to visually represent the entire
between systems, depending on how important event gr- system and animate system behaviors

dering is. . S o
We have implemented an initial visualization prototype

The main difficulty with clustering is that each servgn c++ using the OpenGL 1.5 library. While our proto-
cannot create a complete ordering of events for a buffgpe is rudimentary, it serves as a proof-of-concept refer-
window because visualization clients may communicai@ice. The visualization application may or may not reside
with any server. To address this, servers communicgig¢the same node as the visualization server. As such, the
all information for a specific time interval to a specifigerver may stream metrics to the visualization application
server who is the authority for that interval. For exampleia IPC, sockets or a shared file. Nodes are animated by
all servers may forward data that is timestamped betW%pphs Corresponding to the role of the node in the sys-
logical time 1500. 0 and1600. 0 to a specific servertem (e.g., client or file server). All collected metrics and
where all events for that period can be correctly ordergfleasurements correspond to animations which are dis-
Authority for a time interval may be calculated via simplgjayed relative to their node glyph. For example, a file
hash, mapping intervals to servers. server’s /O characterization may be shown as a dynami-

Another important scalability issue is the amount sflly changing histogram adjacent to the glyph. Alterna-
data that is forwarded to the visualization server. If digertively, a node’s system load may be animated by changing
collect a large amount of data from each node, a syBe color of the node’s glyph. Users can view any subset
tem with a large number of nodes will overwhelm evedf nodes or metrics in order to improve comprehension
a reasonably sized visualization server cluster. To allf-large-scale systems. We discuss further details of our
viate this, the visualization server limits the amount dfplementation in Section 5.
data sent by each client. The server only requires thaVisualizing each node in the system and animating
clients forward data values of interest, which correspondde metrics and behavior provides several features that
to specifications from the visualization application. Fanake it a reasonable approach for distributed storage sys-
example, when the visualization application is only atems. First, animations are easy to understand. At a
alyzing storage device performance, the amount of dafance, users can understand changing colors or shapes far
collected about storage system clients can be reduced.mdae intuitively than logs or static graphs. Second, users

Node Type Metric Animation
MDS System Load Color Map
Operation Breakdown Pie Chart
Client Network Traffic ~ Arrows in/out
OsD System Load Color Map
Network Traffic ~ Arrows in/out
Disk Utilization Percentage
I/O Size Breakdown Histogram
Write latencies Values

Table 1: The metrics collected by the visualization client
and their corresponding representation in the visuabmati
application. Our analysis has emphasis on OSD and I/O
performance.

Figure 3: Parallel file system architecture and data flow.

can validate inter-node relationships. For example, if fildDS and all file I/O operations, such agad() and
I/O causes a node to become heavily loaded, one can id#hi-t €() , to the storage devices. Large-scale systems
tify that file’s mirror because it will also be heavily loadedmay contain tens of thousands of clients and storage de-
Third, users can narrow their view to focus on the perfofices and hundreds of metadata servers. Figure 3 shows
mance of a single node or set of nodes. This supports aibp parallel file system architecture and data flow.
trarily tailoring analysis as the user sees fit. Fourth, view Our system is particularly well suited for profiling par-
ing multiple nodes allows users to validate observatioradlel file systems because they present several unique fea-
For example, analysis of high 1/O latency can determitigres. First, file data is highly distributed, commonly
whether the issue is occurring on more than one nogéjped across many storage devices. This means profiling
whether the latency is comparable on all nodes involveat)y single device is insufficient. Second, the control path
whether load is comparable on all nodes, and whether thalecoupled from the data path. As a result, MDS pro-
high latency persists over time. Fifth, visualization can Hiling techniques are inherently different from storage de-
done in real-time or offline. By profiling and viewing thevice profiling techniques. Third, location of data and load-
system as a workload runs in real-time, users can monit@lancing play major roles in how a system performs and
performance and identify problems early. By recordirggales. Thisimplies the importance of replication poficie
log data and replaying it, users can diagnosis previoufijlure handling, and other reliability techniques. These
observed performance issues. Our analysis and resulti&ittors motivate the need for a macro view of the entire
Section 6 support these beliefs. file system and the need for cause and effect relationships
to be correlated in time.

)) Ceph is designed around several novel concepts which

5 Implementation Details make it an excellent system to evaluate. Ceph uti-
lizes a pseudo-random data placement function, called
We have implemented our performance debugging sf3RUSH [26], which scales better than traditional alloca-
tem in the Ceph petascale, distributed file system [28pn tables. The separation between metadata and data is
We chose Ceph because it is large-scale (designed rf@aximized by pushing responsibilities, such as object se-
petabytes of data and tens of thousands of nodes), dtgdization, to intelligent OSDs. Finally, load-balangiat
ports high performance computing workloads, has sevetted MDS is handled by dynamically assigning responsi-
unique design features, and is currently in prototype stality for namespace sub-trees [27]. All of these concepts
tus. This means problems are likely abundant and analyasie quite new and therefore their implications have yet to
is helpful to current designers. be fully understood, meaning Ceph provides an excellent
Ceph is designed as an object-based, parallel file spgofiling test subject.

tem. These systems generally consist of three main comOur visualization client collects different metrics de-
ponents: the client, a metadata server cluster (MDS), gmehding on the type of node it is profiling (i.e., client,
a cluster of object storage devices (OSD). These systeti3S, OSD). In addition, a visualization client runs on
achieve scalability and performance by separating teach node in Ceph’s Monitor cluster, which is responsible
control and data paths. Clients communicate all namésr managing the MDS and OSD clusters and for boot-
pace operations, such apen() andstat (), to the strapping clients. The Monitor is used to learn of nodes

= CERIVE) P o |

e R e S

Z MDs
& Client

Metrics
@ MDS Operation Breakdown @ Network Throughput Tl
@ I/O Latency
‘ I —
@ Disk Utilization @

Disk Free: 99.9 Disk Free: 99.99% Disk Free: 99.99% < Disk Free: 89.67% <

T/ TN TN
een m B [aom | -

LR SR LW SW LR SR LW S8W LR SR LW E8W
0.000 ms 0.349 ms 0000 ms 0.862 ms 0.000ms 0.136 ms

Characterization of Reads
and Writes

® ©

Figure 4: A labeled screenshot of the visualization appbca

System Load Average

Large and Small Write
Latencies (Moving Average)

entering or leaving the system or changing state (i.e., i®shown above each OSD as the total percentage of free
responding but not confirmed failed). These events agace used. The menu on the right of Figure 4 allows
sent to the visualization server as architectural updatesers to toggle the nodes and metrics in view.

The visualization client collects several simple, but ukef

metrics from other nodes in the system, with an emphasis .) ..
on OSD performance. These metrics are enumerate®in Profiling and Visualizing the Ceph

Tablel. - Petascale, Distributed File System
In our visualization application users are able to tog-

gle the metrics being displayed and which nodes are\g conducted a study on Ceph to evaluate the ability of
focu;. Figure 4 shows a screenshot of the. V|§ua|'zat'°8ur profiling and visualization techniques to aid in debug-
aaplication with numeric labels and descriptions addeéjng performance. Our experiments focus on the visu-
Clients are represented on top, with MDSs following, anffiz ation application’s ability to reveal inter-node perf
OSDs on the bottom. Tab_le 1 also deta|Is_ the ammatl%nce problems. For each performance issue revealed,
used to present each metric. Network traffic, labeled 2,43 yajidate our observation through additional experi-
shown as triangles pointing in and out, which grow anfents. Each study was conducted on a 25 node clus-
shrink as traffic varies. System load average, labeledi@, \where each node was a PC with four 64-bit 2GHz
change_s from blue to red, indicating low and high qug_ual-Core CPUs, 8GB of RAM, 4 SCSI hard disks, con-
respectively, as the load changes. Each MDS has a Riteqd through a 10 Gigabit Extreme Switch and run-
chart, labeled 1, showing a breakdown of the number g,y RHEL 4 with kernel version 2.6.9. All experiments
open() (blue)readdir () (red), ancst at () (green) \yere conducted with the Ceph client cache disabled as
operations received. Each OSD shows a breakdown of Y \ite hack policy resulted in high variability between
by type and size, labeled 6, with a kilobyte acting as thgns. Each experiment used 4 OSDs while the number of
cutoff between large and small 1/O. Below the 1/O brealapss and clients varied between experiments. A single
down, labeled 5, is the moving average of large and smglajization server was run on a seperate node with the
write latencies, respectively. Disk utilization, labeled 5 alization application also residing on that node. To

LAll screenshots have a corresponding gray-scale versarcen be S2V€ page space, the ﬁgure$ in our analysis only include
included. the key portions of our visualization.

Disk Free 99937%

TN

>

Disk Free: 89317 <
|||| ||H_|l||l ’ 5000 -

I
LR SR LW oW LR SR LW SwW
QA0ms 083ms QA25% s 0133ms

(a) Write latency for 80 clients(b) Write latencies for 80

writing a shared file usingclients writing a shared

small write sizes. file using small write sizes
and 32 clients writing
non-shared files using large
write sizes. Time)

Figure 5: OSD profiles for workloads with varying I/OFigure 6: The latency for small writes on an OSD. La-

sizes. Small write latencies significantly increase whégncy significantly spikes at 65 seconds when large 1/0Os

another workload is introduced. are introduced. This is denoted with a dotted line.

6.1 Small Write Latency

Write Latency (microseconds)

We ran an experiment to analyze the impact writes of
varying sizes play in the storage system. We ran an exper-

imentwith 80 clients writing a shared file on a single OSBye(a large tree of directories and files, and then walked
using a small write size just under a kilobyte. The profilgnd read the entire tree. We observed a large number of
of this single OSD is depicted in Figure 5(a) and shows ayna| writes being written to the OSDs, depicted in Fig-
erage small write latencies on the order ofi80We then e 7(a). Upon further investigation we discovered the
introduced another 32 clients, each of whom wrote nogips's metadata journal was being synchronously flushed
shared files in large IMB chunks. The profile of the samg the OSDs on every metadata operation to ensure the
OSD is shown in Figure 5(b). Introducing the large writgygs reliability. Then we introduced a second workload
workload served to dramatically increase the latency @here 20 clients ran 1/O heavy operations, in which each
small writes, far beyond expectations. Small write latengyient wrote a gigabyte to a unique file. The only meta-
increased on the order of 60% and greatly increased IQfa operations issued were to open and close the files.
on the OSD. While introducing an additional 32 clientgyr visualization of the OSDs under both workloads in
should add overhead, it is not expected to be so SeV&Rure 7(b) shows a much higher load on each OSD, and
particularly because Ceph’s data placement algorithmaigain the latency for small write operations (the journal
designed to distribute I/O evenly. We conducted a sepfyshes) significantly increased, which we witnessed in
rate experiment to validate our observations. We ran i previous experiment. To validate our observation and
same workloads, introducing the 32 clients issuing Iargﬁa|yze the impact of the high latency journal flushes,
writes 65 seconds into to the experiment, and plotted the compared the time required to run the metadata only
latencies for small writes in Figure 6. We see a significabrkload with and without the additional 20 clients per-
spike in latency for small writes at time 65 when largg, ming I/0. Our results are shown in Figure 8. The meta-
writes begin. This indicates what is most likely an imyata workload is over 60% slower when there are addi-
plementation inefficiency in Ceph's OSD code. This al§gynal clients performing I/0. This overhead is due to the
serves as a simple example of how allows easy problg@yed latency of journal flushes slowing the performance

identification. of metadata operations. This is suprising because it con-
flicts with the general intuition that metadata and data
6.2 Metadata and I/O Separation operations are decoupled in parallel file systems. This

dependency can be eliminated by bypassing the MDS'’s
Our second profile explores a more complex exampleraded to store the journal on the OSDs, perhaps via reli-
inter-node performance problems. The profile consistaldle NVRam or a separate journal store. This experiment
of examining the effects various workload types have @emonstrates how a comprehensive view of the entire sys-
performance. We began by running a workload consistitegn allows problems with seemingly remote causes to be
only of metadata operations where 50 clients each cigentified.

DISk Frog: 90987 Dlsk Frc—:e‘ 99977

< < ‘D.Ifak Free 99.99%_- 4
TITING TN TN

l
= |

e] [== =]
LF? SR SW SROLw S LR sk LW 5w
007 dms O.COOI’T‘S Q0% s 000 0.C85ms

(a) OSD activity with a metadata-only workload running.
Disk Free: GO74% ‘ Digk Free: B771% ‘ Disk Free‘ 8581 < Digk Froe 8095% 4
(AT p UL UILUJJUIJl[[I HTHIITITNS

LR =R L =W LR Sk LW SW LR SR LW 5w
0221ms Q12T DE78ms 0.118ms 0.335ms Q225ms DZ51ms 0.C80ns

(b) OSD activity running a metadata workload and a I/O wallevhich issues large writes.

Figure 7: OSD profiles under a metadata only and a metadat&/@naorkload. The increased load and latency
indicate the I/0O workload is interfering with the metadatarkioad.

220 — . allows a MDS node to dynamically share responsibility
0 | o oo " Other Cllents (G Workioad for a hot or popular portion of the namespace with an-
other, less loaded, MDS node. We tested Ceph’s imple-

180 menation of this strategy using a flash crowd and 3 MDS

160 nodes. The flash crowd consisted of over 11,000 total

140 open requests from 2,000 clients. Figure 9 shows the
MDS load distribution as depicted by our visualization.

1

1

1

120 The pie chart next to the first two MDSs indicate each
node only received open requests, while the third MDS
has not received any requests. We immediately see one
MDS is far more loaded than the other two. We investigate
further by measuring the number of requests received by
each OSD, shown in Figure 10. The distribution of load
is very uneven, with one MDS handling over 90% of the
requests and the third handling none at all. This indicates
implementation inefficiencies with the load balancing pol-

100

Workload Runtime (s)

0 10 20 30 40 50 jcy, such as infrequent exchanges of load metrics between
Client ID MDS nodes or slow migration of the namespace to other
MDS nodes.

Figure 8: The average time for 50 clients to run a metadata
exclusive workload with and without 20 additional clients o)
performing an I/O exclusive workload. 6.4 Replication Policy Impact

.ﬁ .ﬁ ameama Ve conducted a final experiment which analyzed the role
replication plays in storage performance. We first ran a

Figure 9: Load distribution across three metadata serveksrkload with 50 clients writing non-shared files using a
during a flash crowd workload. One MDS signifigantljarge write size just over a kilobyte. This was run twice,
more load than the others. once with a single replica and once with three replicas.
6.3 MDS Load Balancing Ceph_ mirrors_ each replica _onto separate (_)SD_s, thOl_Jgh
our visualization does not directly show replication. This
Ceph employs an advanced metadata load balandm@ecause replication passes through a seperate interface
scheme called Dynamic Subtree Partitioning [27]. DS#hich was not encapsulated by our intrumentation. The

D.I'Sk Freel: 92907 < F)isk Frc—:'ei:l%.%% 4 F)_isk Free:: 99.96%. 4
ATTTTMARATTGgR AT RRTRTTI g TTTTARRRARNY
> ‘ > >

LR SR OLWN S LR SR LW =w LR =R LW S
01 26ms 0.085ms QA125ms 014 s 01 30ms 0.0C00Ms

(a) Fifty clients with one replica.

LR SR LW SW LR =R LW <sw LR SR LN S
D201me 0.1838ms Q227 ms 0187 ms 01 86ms 0.000ms

(b) Fifty clients with three replicas.

Diglke Free: 99907 Diglk Free: 999497 Digk Free 99997 Digk Fres: 100,007
ML Qo S g
3 J s I ! - > _| ’
| _ L m -

LR SR LW =W LR SR LW Sw LR S/ LW Sw A Y 1
QC00ms Q08I D000 0.085ms Q079 rs 151 DOC0rre 0.C00ms

(c) A single client with one replica.

Dlsk Free‘ 9999‘7 Dl'sk Free' 90997 4 Dlsk Free- 99997 4 Dlsk Free 100007 <
[S'I_fll' LR SR OLW ﬁ LR SR LW Sw LR SR LW S
Q000 GOS0 CO0ms 0ACErs Q.09 ms G4 ms CO00ms 0.000ms

(d) A single client with three replicas.

Figure 11: OSD profiles with different replication strategi The added write latency to do three replicas is far larger
with 50 clients than with 1.

replication is however noticable via analysis of the ngbrovided in Table 2. With a single client three-way repli-
work interface. Each OSD receiving lots of data, withowgtion adds a 37% overhead, while with 50 client, three-
high write traffic, is acting as a mirror. The OSD proway replication adds a 59% overhead. If replication only
files with different replication strategies are shown in-Figadded a cost to apply updates remotely we would expect
ures 11(a) and 11(b). We see the latency for both writee latency differences to be closer than those observed.
sizes significantly increases, on the order of 60%, withnfortunately this is not the case, as in addition to the cost
three replicas versus one. While an overhead is expectgicapplying the replica, each node pays a cost for acting
we explore further and re-run each experiment with onlyes the mirror for another nodes data. This adds additional
single client. Our visualization is shown in Figures 11(gverhead which can easily go overlooked with other vi-
and 11(d) with OSD 3 being written to in both cases. Witbualization strategies. Our approach allows the increased
a single client latency still increases, though the discrdptency and network traffic (due to replication) to easily
ancy between the two is far smaller. Average latencies are

10000 — 100 7

80

60 o

[

20
. i

8000 —

—
—

6000 —

Average RMI Call Latency (ms)

o
L

|
=]
N

100 |
500 —|
750 —|
1000 —

4000 — Number of Ceph Clients

Figure 12: Average latency for RMI function calls to
push collected metrics from the visualization client to the
server as the number of Ceph clients increases.

Number of open() Calls Serviced

2000 —

average call latency with 1,000 nodes is only three times
0 ‘1 ; g that of latency with one node. This indicates that even in
MDS Number very large systems the cluster of visualization servers may
be kept small.
Figure 10: The number of open requests handled by eaclthe second experiment analyzes the number of mes-
MDS during a flash crowd workload. sages received by the visualization server as the number of
nodes in the system increases. Figure 13 shows the total

#Clients | #Replicas write() latency number of messages received by the visualization server
1 1 71.82 . - 7 .
1 3 9855 once all clients have finished writing 500MBs using 1IMB
. size writes. The number of messages quickly increases as
50 1 134.27 .
50 3 515.29 the number of nodes increases to over 1,000. Though the

Table 2: The average write latency (in microseconds) f%ggregate numper is high, there are roughly [ess than 130
messages received from each node. The major factor that

dlﬁerent_repl_lcatlon policies. Ad(_jmg more reph_acs bec'ontributes to the increase in total message is the length
comes signifigantly more expensive with more clients.

of the workload, as more messages will be sent for longer

running workloads and adding clients increases the length

be seen together, which opens the door for more compfhe workload.

problems to be revealed. Our final experimentlooks at the performance overhead
added by our profiler. We ran three workloads, each with
and without our profiling infrastructure present and mea-

7 Performance Evaluation sured the total time for each workload to run. We used
three workloads, a heavy-metadata only workload, a light-

We evaluated the overhead and scalability of our profild® and light-metadata workload, and a heavy-l/O only

in Ceph in several experiments. Experiments were comerkload. Table 3 shows our results. We see that the

ducted using the same 25 node cluster, though 12 OgiBualization client profiling each node adds a near neg-

were used instead of 4. Our results indicate that our Wigible overhead to each workload. This comes directly

sic prototype profiler is able to scale to reasonably larffem requiring only instrumentation code to be added to

systems (> 1000 nodes) even with only a single visuakhe storage system, eliminating any expensive bottlenecks

ization server. Also, our results show that requiring oniyn critical paths.

instrumentation code incurs a very minimal overhead.

In our first experiment we measured the latency for

RMI function calls which push collected metrics fromth8 Future Work

visualization client to the visualization server. We vdrie

the number of Ceph clients (and thus visualization clienfBhe opportunity exists in a number of areas for future

and Figure 12 shows the results and standard deviatiomairk. As scalability is a necessity when performing on-

each run with outliers removed. Even with a system siline analysis of distributed systems, the volume and gran-

greater than 1,000 nodes RMI call latency is modest. Thkarity of metrics sent to the visualization server must cor

ging distributed file systems. Our current prototype has
more OSD-specific metrics than any other device. Fu-
ture enhancements are needed MDS performance metrics,
specifically in the areas of journal operations and load bal-
ancing. Also, metrics describing activity in each Ceph
client’s local cache is needed to understand how client
cache performance effects workload throughput.

100000 —
80000 —

60000 —

9 Conclusions

Number of RMI Calls

40000 —

We presented a new approach to distributed storage sys-
tem profiling that focuses on offering an intuitive view
of system performance in a scalable fashion. We suc-
cessfully identified a number of performance issues in the
Ceph peta-scale file system, including those which result
from inter-node relationships. We also identified perfor-
mance degradation that resulted from seemingly unrelated

system activities. The ability of our system to identify

Figure 13: The total number of RMI calls received b}ﬁese issues shows promise for our prototype visualiza-

the visualization server as the number of Ceph clients itﬂin application

creases. The total number of calls accounts for the timeThe low-overhead associated with our profiling tech-
required for each client to write a S00MB file. nique supports the idea that both low and high-level per-
formance metrics can be collected without reducing per-

20000 —

0 1 T T T T T T T T]
0 100 200 300 400 500 600 700 800 900 1000

Number of Ceph Clients

Workload W/o Client W/ Client .
Metadata 165 167 formance. Our performance analysis has also shown that
1/0 w/ metadatal 157 158 the communication overhead associated with aggregating
/0 146 146 performance metrics does not increase significantly as the

Table 3: The total time (in seconds) required to run thr@é'lmber OT cI|.ents mclr)e?ses. Kh . d and
different workloads with and without the visualization " conclusion, we believe our work has motivated an

client profiling the system. Profiling adds a near negﬁi_emon:strated a need to achieve a comprehensive view of

gible overhead since only instrumentation data is addtg(ﬁE storage system ,'f complex performap_ce debugging is
to the storage system. to be achieved. We've asserted our position that as stor-

age become larger and more complex, a more extensive

understanding of the system as a whole is required. We
respond to the level of view abstraction chosen by the ude@pe our work serves motivates others toward this goal.
There are a number of improvements we can make to our

feedback-loop approach to aggregating data. One poss\ﬁ
area is the granularity of data that the visualization serve %ferences

aggregates: For example, if.the user zooms the view intﬁ] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,
a small region, the granularity of data sent from that re-
gion should become more fine-grained. This would com-
plement our current approach of only sending data from ings of the nineteenth ACM symposium on Operating sys-
nodes which currently appear in the view. tems principlesNew York, NY, USA, October 2003.

Another area of potential research is the integration of2] A. Aranya, C. P. Wright, and E. Zadok. Tracefs: A
automated performance anomaly detection using statisti- File System to Trace Them All. IProceedings of the
cal analysis. This approach may compliment our com- Third USENIX Conference on File and Storage _Technolo-
prehensive view of system analysis by notifying the vi- 9'€S (FAST 2004)pages 129-143, San Francisco, CA,
sualization application when performance outliers are d 3 March/April 2004, USENIX Association.

and A. Muthitacharoen. Performance debugging for dis-
tributed systems of black boxes. 8OSP '03: Proceed-

. e . :] P. T. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Us-
tected in the system. Such notifications will make the user ing magpie for request extraction and workload modelling.

In Proceedings of the 6th Symposium on Operating Sys-
tems Design and Implementation (OSBan Francisco,
CA, Dec. 2004.

aware of issues outside of the current view.
Finally, further advances to the visualization applica-
tion will support additional metrics relevant to debug-

[4] R.Bosch, C. Stolte, D. Tang, J. Gerth, M. Rosenblum, arjd6] N. Joukov, A. Traeger, R. lyer, C. P. Wright, and E. Zadok

(6]

(7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

P. Hanrahan. Rivet: a flexible environment for computer
systems visualization. IBIGGRAPH Computer Graphics
200Q volume 34. ACM, 2000.

R. Bryant, R. Forester, and J. Hawkes. Filesystem pdi7]
formance and scalability in linux 2.4.17. Rroceedings

of the FREENIX Track: 2002 USENIX Annual Technical
ConferenceBerkeley, CA, USA, June 2002.

M. Chen, A. Accardi, E. Kcman, J. Lloyd, D. Patterson[18]
A.Fox, and E. Brewer. Path-based failure and evolution
management. IProceedings of the First Symposium on
Networked Systems Design and Implementation (NSDI€I
San Francisco, CA, 2004.

M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: Problem determination in large, dynamic, inter-
net services. IfProceedings of the International Confer-120]
ence on Dependable Systems and Netw@®82.

I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and

J. Symons. Correlating instrumentation data to system
states: A building block for automated diagnosis and con:
trol. In Proceedings of the 6th Symposium on Operatin 1]
Systems Design and Implementation (OS[SAn Fran-
cisco, CA, Dec. 2004.

I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly,
and A. Fox. Capturing, indexing, clustering, and retrigvin 22]
system history. Il8OSP '05: Proceedings of the twentieti{
ACM symposium on Operating systems principfesges
105-118, New York, NY, USA, 2005. ACM Press.

D. Ellard and M. Seltzer. New nfs tracing tools and teCITZS]
niques for system analysis. LISA 03: Proceedings of

the 17th Annual USENIX Conference on Large Installa-
tion Systems AdministratiolSENIX Association, 2003. 24
R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and |. Sto-
ica. X-trace: A pervasive network tracing framework. In
NSDI'07: Proceedings of the 4th USENIX Symposium on
Networked Systems Design and ImplementatisSSENIX [25]
Association, 2007.

D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and |. &toi
Friday: Global comprehension for distributed replay. In
NSDI'07: Proceedings of the 4th USENIX Symposium on
Networked Systems Design and ImplementatitS8ENIX [26]
Association, 2007.

S. Graham, P. Kessler, and M. McKusick. Gprof: A call
graph execution profilerProceeedings of the SIGPLAN

82 Symposium on Compiler Constructjdlune 1982.

D. Gunter, B. Tierney, B. Crowley, M. Holding, and J. Lee[27]
Netlogger: A toolkit for distributed system performance
analysis. INMASCOTS '00: Proceedings of the 8th In-
ternational Symposium on Modeling, Analysis and Simu-
lation of Computer and Telecommunication Systerage

267, Washington, DC, USA, 2000. IEEE Computer Soci{28]
ety.

D. Hughes. Using visualization in system and network
administration. InLISA '96: Proceedings of the 10th
USENIX conference on System administratjpeges 59—

66, Berkeley, CA, USA, 1996. USENIX Association.

Operating system profiling via latency analysis. Aro-
ceedings of the 7th Symposium on Operating Systems De-
sign and Implementation (OSDBeattle, WA, Nov. 2006.

M. L. Massie, B. N. Chun, and D. E. Culler. The gan-
glia distributed monitoring system: design, implementa-
tion, and experienceParallel Computing 30(5-6):817—
840, 2004.

M. P. Mesnier, M. Wachs, R. R. Sambasivan, A. X. Zheng,
and G. R. Ganger. Modeling the relative fithess of storage.
SIGMETRICS Perform. Eval. Re2007.

B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kun-
chithapadam, and T. Newhall. The paradyn parallel perfor-
mance measurement to@omputey 28(11):37-46, 1995.

A. V. Mirgorodskiy, N. Maruyama, and B. P. Miller. Scal-
able systems software—problem diagnosis in large-scale
computing environments. ISC '06: Proceedings of the
2006 ACM/IEEE conference on Supercomputpege 88,
New York, NY, USA, 2006. ACM Press.

P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A.
Shah, and A. Vahdat. Pip: Detecting the unexpected in
distributed systems. Im Proceedings of the Third Sym-
posium on Networked Systems Design and Implementation
(NSDI), San Jose, CA, 2006.

K. Shen, M. Zhong, and C. Li. I/o system performance de-
bugging using model-driven anomally detection. FRST

'05: Proceedings of the 4th USENIX Conference on File
and Storage Technologied SENIX Association, 2005.

S. S. Shende and A. D. Malony. The tau parallel perfor-
mance systermint. J. High Perform. Comput. AppR0(2),
2006.

E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-
El-Malek, J. Lopez, and G. R. Ganger. Stardust: tracking
activity in a distributed storage systeBIGMETRICS Per-
form. Eval. Rev.34(1), 2006.

S. A. Well, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. IfProceedings of the 7th Sym-
posium on Operating Systems Design and Implementation
(OSDI), Seattle, WA, Nov. 2006.

S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn.
CRUSH: Controlled, scalable, decentralized placement of
replicated data. IrfProceedings of the 2006 ACM/IEEE
Conference on Supercomputing (SC 0Bmpa, FL, Nov.
2006. ACM.

S. A. Well, K. T. Pollack, S. A. Brandt, and E. L. Miller.
Dynamic metadata management for petabyte-scale file
systems. IrProceedings of the 2004 ACM/IEEE Confer-
ence on Supercomputing (SC '0fittsburgh, PA, Nov.
2004. ACM.

S. Zhou, H. D. Costa, and A. J. Smith. A file sys-
tem tracing package for berkeley unix. Technical Report
UCB/CSD-85-235, EECS Department, University of Cal-
ifornia, Berkeley, 1985.

	ssrctrcover-07-05
	ssrctr-07-05

