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Abstract

Shingled Magnetic Recording (SMR) disks employ a shin-
gled write process that overlaps the data tracks on the disk
surface like the shingles on a roof, thereby increasing disk
areal density with minimal manufacturing changes. While
these disks have the same read behavior as current disks,
random writes and in-place data updates are no longer pos-
sible, since a write to a track must overwrite and destroy data
on all tracks that it overlaps.

Given this change in write behavior, we argue that the
best way to utilize these disks is not by masquerading them
as traditional disks, but by using approaches that leverage
their proclivity for sequential writes. To address this need,
we developed SMRDB, a key-value data store for SMR
disks, demonstrating that SMR disks can be effectively used
to replace conventional disks for many applications. We
evaluate SMRDB against a state-of-the-art LSM-tree based
key-value database engine, LevelDB, on conventional disks.
Our Yahoo! Cloud Serving Benchmark results show that, de-
spite being restricted to sequential writes, SMRDB outper-
forms LevelDB by 8.8-123.6%.

Categories and Subject Descriptors D.4.2 [Operating Sys-
tems]: Storage Management

Keywords Shingled Magnetic Recording, Key-Value Stor-
age Systems

1. Introduction

Hard disk drives have played a major role in creating to-
day’s data driven world by making digital storage cheap. The
drive’s areal density (the number of bits stored per unit area)
growth has always been hindered by limits imposed by the
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laws of physics, but has steadily increased due to the intro-
duction of new recording technologies. The currently em-
ployed Perpendicular Magnetic Recording is about to reach
its density limit and the industry is eager for the introduction
of new technology to overcome the limit.

Shingled Magnetic Recording (SMR) (Greaves et al.
2009) (SMR-8TB-HDD| [2014)) is leading next generation
disk technology. SMR requires minimal manufacturing
changes because it retains the use of existing disk head and
media technologies, achieving its areal density gain by over-
lapping tracks on one another like shingles on a roof. Tra-
ditionally, user data stored on disks has been managed by
block-based file systems and databases with an underlying
assumption that these blocks are independently updatable
units. However, because overlapping tracks result in destruc-
tive random writes and in-place updates, SMR disks demand
new data management solutions.

SMR access restrictions can be handled in the drive, in the
host, or co-operatively by both the host and the drive (Feld-
man and Gibson|[2013). Standardization efforts to broadly
categorize these disks into Autonomous (drive managed)
and Host-Managed drives (Campello|2013)), and to bring
about new standard commands sets assisting the different
categories are underway. In recent years, data utilization de-
mands have driven a storage shift towards distributed, highly
scalable NoSQL data stores. This shift has encouraged a
new generation of disks, Ethernet key-value drives (Seagate-
Kinetic|2014), presenting another suitable SMR drive inter-
face contender that hasn’t been explored yet.

We believe that SMR drives can be utilized to their fullest
by accepting the sequential write nature of these drives
and adapting to it, rather than masquerading as traditional
disks. To demonstrate that SMR disks can fulfill modern
storage needs and that the SMR capacity gain doesn’t have
to come with lower performance, we designed SMRDB, a
Key-Value (KV) database engine for SMR disks. SMRDB
is designed to run directly on top of a host-managed SMR
disk exposing the SMR functionality and does not depend
on a file system, eliminating the need for a block-level drive
managed SMR solution or a new SMR aware file system.



Both the industry and the research community have come
up with a plethora of applications that use the KV data ac-
cess model. Many of the data storage and management sys-
tems in the cloud have adopted the KV access model (Chang
et al.[2006}; |DeCandia et al.[2007)). A disk running SMRDB,
being an embeddable database engine, can easily be plugged
into these systems, thus replacing traditional disks with the
new SMR disks with ease. Log-Structured Merge (LSM)
tree (O’Neil et al. [1996) based KV stores have also been
demonstrated to work better than traditional file system tech-
niques for storing and managing file system metadata and
small files (Stender et al.|[2010; Ren and Gibson|[2012)), and
an entire user-level file system (Shetty et al.|2013). Thus, our
solution enables easy adoption of SMR disks in a wide range
of applications.

SMRDB manages the underlying disk in a SMR friendly
manner, without the need for a filesystem, using raw sector-
level primitives and sequential writes. SMRDB stores its
data in sequential disk regions and periodically merges the
KVs in selected regions to free the dead space and reorder
the KVs in those regions. SMRDB is designed to work with
raw SMR disks without any drive level block remappers, but
such a device is not yet available in the market for evaluation.
However, since SMR only alters the track layout and rules
about track overwrite, but is otherwise similar to existing
Perpendicular Magnetic Recording technology, performance
measurements from traditional disk used with sequential
write restrictions suffice (Pitchumani et al.[2012)). Therefore,
we evaluate SMRDB using a traditional disk written like a
SMR disk. Our evaluation compares SMRDB against Lev-
elDB, state-of-the-art LSM-tree based embeddable database
engine and shows that SMRDB outperforms LevelDB in
most cases. Our work is the first to adapt an LSM tree based
data layout scheme for SMR disks, and demonstrates that
the scheme results in both good write performance, and good
read performance, including range reads.

2. Shingled Magnetic Recording

Hard disks have a magnetic recording medium that is orga-
nized into groups of concentric circular tracks that are laid
out with a guard gap between them. A magnetic recording
head containing a separate write head element for writing
and a read head element for reading is positioned above
the recording medium. A successful write requires a higher
magnetic field from the write element and the writing pole
has to be big enough to obtain the required write field
strength. The number of tracks that can be packed per inch
without any overlap has thus been limited by the width of
the write head.

Shingled writing takes advantage of the fact that the mag-
netic field required for a read is smaller than that required
for a write. Hence, the track width required for reading can
be smaller than that required for writing. A data track is
written by partially overlapping the preceding track, with
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Figure 1. Shingled writing overwrites k read tracks. SMR
disks can be divided into many append-only bands and a
small random-access region, if desired.

enough room to read the preceding track’s data by a nar-
rower read head. As shown in Figure[I] the result of the pro-
cess is narrow read tracks and wide write tracks that over-
write k (the value of which is decided by the manufacturer;
different disks may have different values) such read tracks.
Shingled writing achieves a higher areal density by packing
more tracks in the same area than traditional disks.

2.1 Shingled Bands

The SMR disk can be divided into bands, sequentially
writable region made of consecutive tracks, to bound the
region that needs to be written sequentially. As Figure
illustrates, fixed banding could be provided at the time of
manufacture, by not shingling the first tracks of a band, here
tracks 4 and 11. A band can also be formed by sacrificing
the space of £ — 1 (the number of tracks whose data gets
destroyed by a write to the last track in the band) tracks to
serve as a guard band between two neighbor bands. For ex-
ample, in Figure [I] band 1 could be split into 2 bands (4-6
and 8-10) by using 1 track (7) as guard space.

A small random-access region might be available either
from the disk manufacturers or by creating one from the
shingled region with the help of guard tracks for every track.
The rest of the disk contains multiple shingled bands, each of
which can be thought of as containing a sequentially writable
log, either a fixed log or a circular log (Amer et al.|2011).
If a band is used as a fixed log, the band is allocated and
deallocated as one large unit and is written to sequentially
from the physical start to physical end. But if used as a
circular log, writes wrap around the physical end of the band
and restart from the physical start of the band as shown using
band 2 in Figure [I} while data is written to from one end of
the circular log, data could be freed from the other end. If
used as circular bands it will cost an additional £ — 1 tracks
per band to serve as a non-stationary intra-band gap between



the head and tail of the circular band. The challenge lies
in finding a way to efficiently store, retrieve and manage
the data in these large sequentially writable bands without
wasting a lot of space.

2.2 Log Structured Data Management

SMR sequential write restrictions call for log-structured
writes to shingled bands. The Log-structured File Sys-
tem (LFS) (Rosenblum and Ousterhout||1992)) organizes the
disk into a segmented, append-only log and batches writes
to the end of the log, but even LFS writes data sequentially
only to a small unit called the segment and over time the seg-
ments available for writing get scattered randomly all over
the disk. The LFS layout could be adapted to SMR disks by
increasing the segment size to match the SMR band size.
Researchers have pointed out that read performance will be
affected in LFS, and have suggested data reorganization in
the background when data is being moved by the garbage
collector to improve the read performance (Matthews et al.
1997). Nevertheless, scan performance can be expected to be
poor with a traditional LFS layout, without more aggressive
data movement.

The data also needs to be indexed for efficient retrieval.
Traditionally, B-trees have been the index structure of choice
for disk-based systems, and would serve if stored in random-
access bands. Depending on the size of the keys and values
being stored, the index can grow very large and it will not
be feasible to store the index in the random-access region
in entirety. If stored in shingled bands, the leaf node mod-
ifications will force modifications to all nodes till the root,
polluting the log with more dead data. Many copy-on-write
trees have been designed for NAND flash, all aiming to re-
duce the number of nodes to be written on a leaf update.
But the problem of their on-disk placement in large shingled
bands, and their cleaning still remains.

Log Structured Merge trees (O’Neil et al.|1996) offer an
alternative to LFS layout. Systems that require both the write
performance of logging systems and demand a decent range
read (read all keys falling within a given range) performance
typically adopt the LSM tree based approach. An LSM-tree
contains multiple ordered log-structured indexes, one in the
memory and the others on disk. When any index exceeds a
per-determined size threshold, parts of it are merged with the
index in the next level. LSM-trees perform all disk writes
in a log-structured manner, but sacrifice some of the write
performance for additional merge operations, to offer good
range read performance, and do not need a separate index
management as required by the LFS layout.

3. LSM-Tree Based SMR Solution

To meet our scan performance goals, we will need aggressive
data reorganization, as being done in LSM-trees. In this sec-
tion, we present a simple LSM-tree based solution for SMR
disks, based on an open source LSM tree based, embeddable
KV database library, LevelDB (Ghemawat and Dean|2015)).

LevelDB is a user-level library that uses a filesystem to read
and write the key-value pairs to the underlying disk. It fol-
lows the same design as the BigTable (Chang et al.|2006)
tablet. Every key-value pair is first written to a log file, and
then added to an in-memory memtable. The memtable keeps
its contents sorted, and when full, writes them to the disk as
an SSTable (sorted string table) file. An additional metadata
file stores the list of files and high level information about
the files. Our simple solution is to maintain a memtable of
size equivalent to an SMR band, and place each SSTable in
a SMR band, as shown in the Figure 2]
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Figure 2. LevelDB based data access management.
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Data Organization The SSTables are organized into mul-
tiple levels as shown in Figure [3] The level O (LO) SSTables
are the results of memtable dumps, and the key range cov-
ered by each LO SSTable can overlap with each other. Each
level has a size threshold and is increasingly bigger than the
previous level. The SSTables in the other levels have a non-
overlapping key range with respect to the other SSTables in
the same level. Thus, when a key has to be read, the max-
imum number of SSTables that need to be searched is the
number of LO SSTables + the number of non-zero levels.
The defaults in LevelDB are 7 levels, 4 MB memtable (all
level O files are thus 4 MB long), and each file in a non-zero
level is 2 MB long, whereas all SSTables will be as big as
the SMR band in our solution.

|_0

Figure 3. LevelDB style multi-level organization. A key
starting with ’e¢’ could be in any one of the 7 bands
marked (in green) with a line border.

Compaction Periodically, selected SSTables in levels ¢ and
1 + 1 are merged/compacted to form new SSTables in level
1+ 1, to rearrange the KV pairs in lexicographic order and to



free up the space used by dead (deleted/updated) KV pairs.
If the total size of all the SSTables in a level exceed the size
threshold for the level, the level is chosen and an SSTable in
the chosen level is selected in a round robin manner.

Problems When compactions are in progress, the in-
creased read and write amplification, caused by I/O in the
background, affects the incoming read/write performance.
The scheme’s compaction costs are larger for larger SSTa-
bles, as the SSTables chosen for compaction are read, re-
ordered and rewritten entirely. When an SSTable is chosen
to be compacted, all the SSTables in the selected level and
those in the next level, whose key ranges overlap the selected
SSTable’s key range, are compacted. The strict non-overlap
key range requirement reduces the number of SSTables that
needs to be searched during a read, but increases the num-
ber of SSTables that get selected for compaction in the next
level. Most of the time, this can result in copying SSTables
without any major reordering of their contents. For exam-
ple, if an SSTable selected for compaction in a level covered
the key range a — k, but had only 1 key in the range d — j,
all bands in the next level that overlap the range a — k, in-
cluding the band with the d — j range would be selected for
compaction and read and rewritten, though only one key was
inserted to the d — j range.

Recently, stitching has been proposed to solve this prob-
lem (Shetty et al.[2013). Parts of the level’s components were
copied out to new locations and parts which would not be
affected by the merge were not actually copied, but instead
logically stitched with the portions that were newly written.
They showed that an increased random insert performance
could be achieved by sacrificing scan performance, and pref-
erence for either could be given using a stitching threshold.
But they chose to do offline cleaning of invalidated data, and
their results did not include online space reclamation of the
portions that were invalidated. Hence, it is not clear how
effective the scheme would be when the background com-
pactions are done along with background cleaning for space
reclamation and reuse.

LevelDB’s multi-level organization also pushes older
data down, decreasing the amount of data that gets selected
for a compaction run at any given level. But if a new version
of data that is currently in a lower level is inserted, it has to
be copied multiple times and has to travel down each level
through multiple compaction runs to finally free up the dead
space. Though the amount of data that the initial compaction
runs have to read and write might be lowered, it ultimately
increases the the amount of data reads and writes that is
required to keep them all ordered.

4. SMRDB

SMRDB is a variable-length KV database engine for SMR
disks, which strives to keep the KV pairs on the disk physi-
cally ordered by lexicographical key order. While most em-
beddable database engines depend on an underlying local

filesystem to manage the disk, SMRDB is a filesystem free,
direct-on-disk solution that manages the underlying disk in
an SMR-friendly manner. SMRDB is backward compatible
with traditional hard disks, in that it will work and enable
high performance on traditional disks, as it would on a host-
managed SMR disk. This section describes SMRDB’s de-
sign in detail.

4.1 Data Access Model and Management

Our goal is to demonstrate that SMR disks are capable of
meeting modern storage needs in spite of the sequential write
restrictions. To facilitate adoption, SMRDB is designed as
a database engine that does its own data access and stor-
age management, operating on a host-managed SMR drive
without any drive remapping solutions. SMRDB supports
the GET / PUT / DELETE / SCAN data access methods, in
line with the successful KV data access model used in recent
cloud storage systems.

Distributed databases either do their own key-space par-
titioning and KV data access management and offload
storage management and replication to a distributed file
system (DFS), or do their own partitioning and replica-
tion, offloading the data access management to external
database engines. Tablet servers, such as BigTable (Chang
et al.|[2006), HBase (HBase|2015), and LogBase (Vo et al.
2012) belong to the first category and systems such as Dy-
namo (DeCandia et al. [2007) and Voldemort (Voldemort:
2015)) are of the second. SMRDB could be used as a stand-
alone database engine, or existing file systems can use it to
store blocks as fixed-sized KVs (LBAs as keys and block
data as values) in SMR disks.

Random Shingled
Access Bands

Band
Metadata
Sorted Sorted Sorte: d / So rted

Free / / Free
Log KVs KVs KVs / Band ;/ Band /

BF|Index BF|Index BF\Index //% BFllndex

Figure 4. SMRDB’s on-disk layout.

SMRDB does not require any data management by the
drive firmware, only that the drive bands the disk into a
small random-access region and fixed-sized shingled bands
of requested size, as shown in Figure ] If presented with a
traditional hard disk, SMRDB splits most of the disk space
into fixed-sized shingled bands and uses a small amount of
random-access space. The random-access region is used to
store only the high level shingled band information, and not
key-specific metadata. The KV pairs and related metadata
are all stored in shingled bands.



4.2 Data access operations

SMRDB’s primary data access operations are similar to the
simple solution we described in Section[3] and are described
in detail here.

PUT Newly inserted KV pairs are added to an in-memory
memtable, which sorts them in lexicographic key order.
When the size of the memtable reaches the capacity of a
band, it is flushed to an empty shingled band. A Bloom
Filter (BF) storing all the keys in the band, and an index
mapping the keys to their locations inside the band are also
stored in the band after the KV pairs. The in-memory KV
pairs are also added to a much smaller log buffer and per-
sisted in a separate log band. Systems requiring an increased
write throughput could store the log on a NVRAM device
instead. Bands are written to only sequentially, and remain
read-only until a background merger copies data out of a
band and deallocates it. Updating an already existing key
invalidates the previous entry for the key and is handled like
new inserts. During reads, only the most recent entry is re-
trieved. The invalidated entries are removed from the system
by the background band merger.

DELETE KV deletes are handled by inserting tombstone
entries for the deleted keys, thus invalidating the previous
entry for the key. The invalided entries are truly removed and
the space freed when the bands are cleaned by the merger.

GET GET first checks the in-memory table, and then the
bands for the key. All the bands whose key ranges indicate
that they might contain the key have to be searched, starting
from the most recent band to the oldest. A key search first
looks in the BF for the key, skips the band if not found, and
looks in the index if found. The Bloom filters filter most of
the bands, reducing the search cost, and with a low memory
footprint, most of them could be cached in memory, reducing
metadata disk accesses.

SCAN Indexes of bands with overlapping key ranges are
merged in memory and consulted to retrieve the range keys
and their values. Since each band is ordered, and the keys
reside physically close together on the disk due to their
placement in large sequential bands, the only hindrance to
near-optimal SCAN performance is the number of bands
with overlapping key ranges. The background merger strives
to keep this number low.

4.3 Background operations

Background compactions clean invalidated data, and strive
to keep the entire disk’s contents ordered, albeit split into
multiple bands, with physical ordering within a band and
logical ordering across bands, as shown in Figure [5] Com-
pactions enable higher scan performance, but affect insert
performance. SMRDB can be tuned for either higher ran-
dom insert performance by triggering compactions less of-
ten, or higher scan performance by triggering compactions
more often. SMRDB introduces an artificial slowdown fac-

tor, by which the inserts are slowed down if it determines
that a compaction needs to be scheduled, to give the com-
pactions more time to complete. The slowdown factor could
also be tuned to give preference to either background jobs or
incoming writes.

Ideally, the entire disk is ordered, as seen in Figure E}
To achieve this ideal state, the bands are organized into two
levels, a first buffering level which is the result of memtable
dumps, and a second mostly-ordered level.
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Figure 5. On-disk key ordering with physical ordering
within a band and logical ordering across bands.

Band Organization As shown in Figure [6| the SMR
friendly organization only has two levels (0 and 1) and the
bands in both levels can have overlapping key ranges. An
effort to keep all the L1 bands ordered with no overlapping
key ranges, to reach a state similar to the one shown in Fig-
ure [5} is made, but not strictly enforced. By removing the
strict no-overlap rule for L1, we can select bands for com-
paction based on the cost it would incur vs the benefit the
selection provides. We make sure the decision doesn’t affect
range reads, by assigning sequential access based “benefit’
points for the bands, as explained in the following section.
Though we remove the strict upper bound on the number of
BFs that need to be searched to read a value, our compaction
scheme strives to keep the number low.

Figure 6. SMRDB’s two-level organization. A key starting
with ’e’ could be in any one of the 6 marked bands.

Compactions A user initiated manual compaction run will
result in total cleanup and complete re-ordering of KV pairs,
without any overlapping key range across bands. Regular
background compactions select all overlapping bands in a
selected key range and prune them to result in a smaller set
of bands to merge, even if the pruning results in multiple
bands with overlapping key ranges. To aid pruning, we de-
fine a sequentiality metric for each band. The metric mea-
sures how ordered a band already is, with respect to all the
KV pairs stored in the entire database. Say all the KV pairs
in the entire database were reordered, and the reordering did



not result in any KV pairs from any of the other bands to be
inserted into the given bands’ contents, then the band has the
highest sequentiality score.

To estimate the sequentiality of a band, SMRDB builds
an equi-depth histogram (Piatetsky-Shapiro and Connell
1984) for each band. In contrast to regular histograms with
fixed bucket boundaries, an equi-depth histogram deter-
mines the bucket boundaries by keeping the number of val-
ues in each bucket equal, and has traditionally been used
in database systems to perform query size estimation. The
purpose is to specifically measure which sub-ranges hold
the most data, and which don’t, instead of just relying on
the end values of the entire range. An equi-depth histogram
based merely on the number of KV pairs in a sub range will
not take into account the size of the KV pairs. Since we wish
to avoid unnecessary reads and write, the histogram is built
based on the data size, and determines the key sub-ranges,
while keeping the byte size count equal in each sub-range.
The chosen byte size determines the size of histogram meta-
data. Smaller sizes would result in more metadata and better
estimation, but would require more memory utilization. SM-
RDB currently reuses the index information to build a fixed
4 KB histogram, which is used in all the experiments.

Level-0 Table/Band selection: 1If a newer LO band is se-
lected for compaction, all older bands with overlapping key
ranges in the level have to be chosen as well. For example,
in Figure [6 the bands in a level are ordered by write time,
and band 5 is newer than 4, which is newer than 3, etc.,. If
band 5 is selected, then band 4 has to be selected as well, as
a read expects the most recent value to be in the higher level
and within a level, in the most recent band. Therefore, band
5 cannot be chosen, without choosing 4, 3, 2, and 1, while
band 1 can be chosen without the rest. But we don’t want
to copy out older data to a new level, when a newer value
exists. So, SMRDB chooses the oldest band and moves to
newer bands, accumulating those that overlap (at least par-
tially) with the oldest band, until we reach a threshold num-
ber of bands. If the selection resulted in only one LO band
and the L1 selection also turned out to be empty, the Table is
just converted into a L1 Table without an actual copy.

Level-1 Table/Band selection: The L1 band selection has
to minimize the number of bands with overlapping key
ranges, but should not trigger too many unnecessary band
reads and writes. For a LO-to-L1 compaction, SMRDB first
selects all L1 bands that overlap the selected LO bands. For
a L1-to-L1 compaction, triggered by too many bands with
overlapping key ranges in the level, the L1 band that has the
most overlaps is selected, as well as all the bands it overlaps.
SMRDB, then prunes the selected bands and determines the
band that requires the most reordering (in other words, is
the least sequential) among them. The least sequential band
and all L1 bands, that it overlaps, and are newer than it are
selected for the compaction run, as it is safe to select newer

bands in L1. For example, in Figure [6] it is safe to select
band 11 and not band 1 in L1, but not vice-versa.

Hot/Cold data separation Multi-level organization is be-
lieved to provide some amount of hot and cold data separa-
tion, where the upper levels contain hot data and the lower
levels contain cold data. The general assumption is that hot
data in an upper level will be cleaned out in the upper lev-
els, and will not travel down to lower levels. But the order in
which compactions take place is unpredictable, and hot data
in a level could very easily travel down to the lower level,
even when it has been already invalidated in a upper level.
Multiple levels can also easily split sequential data across
multiple bands. A better way to provide hot and cold data
separation with less overhead would be to delay compaction
at LO.

Hotness estimations provide more value in systems where
the key space is limited and the users are forced to use/reuse
the limited keys. But in a variable key length system, the
users can avoid lots of data movement themselves, by simply
making better use of the available flexible key space. We did
not attempt to do any predictive hot data separation in this
work. But our work could be extended to add one or more
hot/warm data levels between LO and L1, with actual KV
hotness prediction and hot/warm KV movement between
these levels.

5. Evaluation

SMRDB’s design is better evaluated on a raw banded SMR
disk without any interference from a drive-managed SMR
disks’s internal remappings, but such a disk is not yet pub-
licly available to evaluate with. Hence, similar to the as-
sumption made by the SMR emulator (Pitchumani et al.
2012), we assume that the performance of a raw SMR disk
will be similar to today’s PMR (standard) disk, and evalu-
ate the performance of SMRDB using a regular hard disk,
by banding it like a SMR disk. For our evaluation, SMRDB
splits the available LBA range into fixed-sized bands, and
reads/writes to the bands with SMR like restrictions, emu-
lating how one would read/write to a SMR disk.

5.1 Experimental Setup

The evaluations were done on a VMware Linux guest run-
ning in a Macbook Pro host laptop. The host machine has a
2.7 GHz Intel Core 17 quad-core processor with a L2 cache
of 256 KB per core, 6 MB L3 cache, and 16 GB RAM made
up of 2 8 GB DDR3 1600 MHz cards. The guest machine
is configured to use 2 cores and 8 GB RAM, and runs Fe-
dora 18. The hard disk used for the tests is a Seagate Bar-
racuda SATA 3 TB 7200 rpm disk. The disk is connected to
the laptop via a high speed USB3 connection using a SATA
to USB3 converter.

Figure [/| shows the raw sequential write performance of
the disk in the setup. The disk performance was measured
using the 10 benchmark tool fio. 10 GB of data was writ-
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Figure 7. Raw sequential write performance of the test disk
in the test environment.

ten sequentially using direct IO to bypass the buffer cache,
buffered IO using the buffer cache and buffered 10 that syncs
every IO to the disk. Two block sizes (4 KB and 1 MB) were
used, each once with the default IO scheduler options and
once with 10 scheduler tuning that is described below. The
goal was to measure the raw sequential write performance in
the test environment to put subsequent results in perspective,
and to demonstrate the effect of IO scheduler tuning.

As shown in the figure, buffered 10 outperforms direct
0. But even though buffered IO with a sync for every IO has
to write to disk the same as direct IO, it is slower than direct
IO due to the buffering layer overhead. We switched from the
default completely fair queueing IO scheduler to the noop
scheduler and kept the queue length small. We also set the
IO merging option to perform only simple one-hit merges
instead of the default IO merging with complex lookups.
The goal was to keep the work at the scheduling layer to
the minimum, as they are not required by sequential writes.
We verified that the tuned scheduler yielded better results for
both LevelDB and SMRDB, and retained the tuning for all
the experiments below.

5.2 Micro-Benchmarks

In this section, we micro benchmark SMRDB against Lev-
elDB, using the dbbench benchmark that is shipped with
LevelDB, and present the results here. LevelDB is run on the
disk described in the previous section with ext4 filesystem
in default configuration. SMRDB was also run on the same
disk without any filesystem. To level the field, we chose the
same memory buffer (memtable) size, 80 MB, for both Lev-
elDB and SMRDB. LevelDB chooses the same amount of
log buffer (80 MB) as memory buffer, giving it an unfair ad-
vantage over SMRDB, which uses a 1 MB log buffer.

5.2.1 Sequential Writes

To measure the sequential write performance of SMRDB
and LevelDB, we inserted key-value pairs with 16 byte keys
in sequence and ran the tests for 3 value sizes: 100 bytes,
4KB and 100KB. 10GB of data was inserted during all
tests, and tests were identical for SMRDB and LevelDB.
Both LevelDB and SMRDB handle an insert operation that
requests a ‘sync’ by syncing the log. We did an insert with

80 - ® ® LevelDB-100B
70| | ®—® SMRDB-100B
V ¥ LevelDB-4K

B—8 SMRDB-4K -
A& -A LevelDB-100K A
@@ SMRDB-100K | , -~

Number of Puts per 'Sync' Put

Figure 8. Sequential ‘Put’ performance for various value
sizes (100 bytes, 4 KB, and 100 KB). Here, LevelDB-100B
refers to Level DB workload with 100 byte values, and so on.
As SMRDB uses a small log buffer that gets flushed to disk
more often, it is outperformed by LevelDB in cases with no
or small amount of synced "Puts’.

‘sync’ for every 1, 10, 100 or 1000 inserts, and also ran
one with no ‘sync’ inserts, and measured the throughputs.
Figure [§] shows the results of the above experiment. As ex-
pected, inserting pairs with larger value sizes resulted in
greater throughput. SMRDB outperforms LevelDB when
there are many synced writes. But in all no sync write cases
and 1 sync per 1000 insert for 4 KB and 100 KB values,
even though both systems were configured with the same
memory buffer, LevelDB outperforms SMRDB, as Level DB
chooses a log buffer as big as the memory buffer. But if log-
ging is disabled in both SMRDB and LevelDB, SMRDB’s
performance doubles its default case, and outperforms Lev-
elDB. Performance can thus be greatly improved, if the log
is moved to another location, such as an NVRAM device.
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Figure 9. Performance of random ’Put’ and sequential
"Get’ after "Put’.

5.2.2 Random Writes and Compaction

Sequential inserts do not trigger any compactions, so per-
formance is, as expected, very good. To illustrate the ef-
fects of compaction to the fullest, out next test performs
uniformly distributed random key inserts. All inserts total
roughly 11 GB of data. All the tests here use 16 byte keys
and 4 KB values and have no user syncs. We compare 3
cases: default LevelDB which has the log buffer advantage
over SMRDB, the LevelDB-based SMR solution described
in Section El (denoted as SMRDB-LOC) and SMRDB with
the SMR friendly organization and compaction described in



Section [] (denoted as SMRDB-SOC). Figures [0] and [I0]
show the overall performance of random inserts, compaction
overhead and the sequential performance immediately after
all the inserts have completed.
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Figure 10. Background compaction overhead measured
both in terms of amount of data read and re-written and time
spent for writing 11 GB of randomly inserted data.

As seen in Figure [9] the insert throughput of SMRDB
with LevelDB style compactions is slightly less than Lev-
elDB, but with our SMR friendly approach, it outperforms
LevelDB, even with LevelDB’s log buffer advantage. Fig-
ure[T0|shows the compaction overhead in greater detail. The
graph on the left shows the time spent, in seconds, doing
compactions for all three cases, and the graph on the right
shows how much data was read and written by the DBs (ex-
cluding the log write) for inserts that total roughly 11 GB of
data. The SMR friendly approach is clearly better than Lev-
elDB style compaction. Further, as seen in Figure [9] SM-
RDB’s sequential read throughput is higher than LevelDB,
because sequential placement in bands ensures physical KV
proximity, and the SMR friendly compaction is even better
for sequential reads than the LevelDB style compaction.
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Figure 11. The insert performance increases when SM-
RDB’s compaction is delayed.

The random write performance is much less than the se-
quential write performance on all setups due to compactions.
The results depict the worst case scenario, and in a natural
workload, where the inserts aren’t completely random and
don’t affect all L1 bands equally, the performance would be
much better. Nevertheless, better random insert performance
would be desirable. As mentioned in the previous section, a

better random write performance could be achieved by de-
laying LO band compactions, and in turn sacrificing the se-
quential read performance.

In LevelDB, the default number of files to trigger a com-
paction is 4 and the default number of files to start slowing
down the incoming writes is 8. We retained the numbers for
SMRDB’s L0 bands in the previous experiments. In this ex-
periment, we varied these numbers in SMRDB and show the
results in Figure [T} As seen in the figure, the random in-
sert performance increases as the number of bands to trig-
ger compaction increases. As the compactions get delayed,
the number of times the same data gets read and re-written
decreases, improving the insert performance. We also mea-
sured the sequential read performance after the inserts. The
results in the figure are best case results, as every time the
previous compaction would have completed and the result-
ing number of LO files after the inserts were complete were
always less than 6.
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Figure 12. SMRDB has better random read performance,
both after inserting the keys sequentially and randomly.

5.2.3 Reads

The sequential read performance was illustrated in the pre-
vious results. The kernel read ahead was not tuned in any
way in the above tests. Increasing the read-ahead will not
only increase the sequential read performance, but will also
improve the compaction runtime and random insert per-
formance, but would affect the random read performance.
Hence, we did not do any tests with read-ahead variations;
users can tune it to their liking based on the expected work-
load. The random read results are shown in Figure [I2] We
measured average per read latency for both LevelDB and
SMRDB, once after inserting the key-value pairs sequen-
tially, and again after inserting them randomly. SMRDB per-
forms much better than LevelDB, especially after random in-
serts, as SMRDB’s organization and compaction mechanism
results in fewer SSTables to be searched.

5.2.4 Band Size

We had fixed the band size to 80 MB in the previous exper-
iments, and also used the same memory buffer size for both
LevelDB and SMRDB. The chosen band size had to be big
enough to demonstrate the effect of big band sizes in SMR



disks, but not too big, to ensure a fair comparison (since Lev-
elDB’s default behavior was to use a log buffer the same size
as memory buffer, very large size would not be fair to SM-
RDB), and our choice was 80 MB.
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Figure 13. Bigger band sizes have better performance.

To illustrate the band size effect, we measured the random
write performance of SMRDB, with LevelDB style com-
paction, and SMR friendly compaction, while varying the
band size, shown in Figure Sequential writes are not af-
fected by varying the band sizes, and bigger bands are bet-
ter for random reads, as the number of bands to search de-
creases. Bigger bands have larger sequential regions and are
also good for sequential reads, and the sequential read per-
formance after random inserts were similar to that of previ-
ous results. Since the main concern is the data movement for
merges, we present only the random write performance.

We did not change the number of LO bands that trigger
compaction, as we varied the band sizes. This resulted in
more data accumulation in L0, as the band size increased and
slightly delayed compactions. The accumulation was justi-
fied as each band is ordered and larger band sizes ensure
more ordering. The slight delay in compaction resulted in
better performance as band size increased even for old Lev-
elDB style compaction. SMRDB with SMR friendly com-
pactions performed much better as band size increased. Big-
ger band sizes not only saves the space wasted for banding,
but also improves performance in SMRDB.

5.3 Macro-Benchmarks

In addition to the above micro-benchmarks, we evaluated
SMRDB against LevelDB, using a macro-benchmark suite,
to gauge its performance on application level workloads.
We use Yahoo! Cloud Serving Benchmark (YCSB) (Cooper
et al|2010), which has become a standard for cloud storage
systems and key-value systems. As both LevelDB and SM-
RDB are embeddable databases, to be able to connect and
communicate with YCSB, we used the MapKeeper server.
We set up both the LevelDB-based and SMRDB-based Map-
Keeper servers to ‘sync’ every KV write, allocate the same
amount of write buffer as previous experiments, and same
default 8 MB cache (as we wanted to measure only the disk
read/write performance).

YCSB was configured to use 4 KB values, and both sys-
tems were first loaded with 2 million entries. We chose
3 workloads: an update heavy workload and a read heavy
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Figure 14. SMRDB consistently performs better than Lev-
elDB in various benchmarks, that are part of the the YCSB
Suite.

workload, with keys selected from a Zipfian distribution, and
a read latest workload, that inserts keys and reads those keys
that were recently inserted. The workloads each performed
200,000 operations to record the performance. Figure [14]de-
scribes the nature of the workloads, and compares the per-
formance of the two systems, during the load phase, and un-
der all 3 workloads. SMRDB clearly performs better than
LevelDB in all cases. Further, SMRDB’s performance in the
update heavy workload, that follows a Zipfian distribution,
disproves the theory that LevelDB style multi-level data or-
ganization is better suited to handle hot data.
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Figure 15. Performance of YCSB’s load phase, which in-
serts uniformly distributed keys, shown over time.

We expand on the load phase performance further, in
Figure [T5] The figure shows the throughput of the system,
measured in number of operations per second, over time.
Though SMRDB delivers much higher throughput than Lev-
elDB most of the time, and completes in less that half the
time it takes LevelDB to load all the KV pairs, it does not
deliver a consistent throughput. Similar to LevelDB, there
are periodic drops in throughput, owing to background com-
pactions. We can give a higher preference to random inserts
than to range reads, and remove a percentage of the through-
put drops by slowing down the compaction rate. But fluctu-
ations in performance, similar to the ones seen in the figure,
will still be there, eventually whenever compaction is being
run. bLSM (Sears and Ramakrishnan|2012) presented a new
merge scheduler to mitigate the throughput impact in multi-
level LSM trees. We consider techniques to mitigate the in-



evitable performance degradation in SMRDB to be future
work.

6. Related Work

In this section, we present previous research related to our
work, covering both alternate data management approaches
for SMR disks and log-structured key-value stores designed
for other existing storage devices.

SMR Data Management The LFS organizes the disk into
a segmented, append-only log and batches writes to the
end of the log. Various ways to adopt the LFS layout for
SMR disks, complete with garbage collection suggestions,
has been proposed (Amer et al.[2011). NAND flash devices
also face update-in-place issues like SMR disks, and employ
a LFS-based indirection system in the device firmware to
hide the access restrictions and present a traditional disk like
block interface. Following suit, the use of a Shingle Trans-
lation Layer (STL) in shingled disk firmware similar to the
Flash Translation Layer (FTL) in solid state storage devices
has been proposed (Gibson and Ganger|2011). But a key dif-
ference between SMR disks and NAND flash is random read
performance: shingled disks face penalties incurred by disk
head arm movement unlike NAND flash, and is one of the
reasons why LFS layout has been more successful in flash
than in disks. And, the LFS layout with segments as large as
bands in SMR disks, which are expected to be in the order
of 100 MB, hasn’t been evaluated yet.

The simplest and most straight-forward solution is to as-
sign fixed logical block addresses to the physical locations
of the shingled bands and perform updates to a sector in
the shingled band by reading all the sectors from the sec-
tor to be updated to the end of the band, modify the sec-
tor content in-memory and rewrite all the sectors that were
read in. This approach would work well for target workloads
without lot of data modifications. For example, SFS (Moal
et al.|2012), a SMR aware file system for video recorders/set-
top boxes takes this approach. For other workloads, perfor-
mance will obviously take a hit. A block-based indirection
system using a buffer band to buffer incoming writes and
read-modify-write based updates to the shingled bands has
been proposed (Cassuto et al.[2010). Intelligent schemes that
combine read-modify-write with track level indirection and
a buffer band have also been proposed (Hall et al. [2012}
Venkataraman et al.|[2012).

However, read-modify-write will result in data loss if
there was a failure after the modified write started, unless
the big chunk that was read into memory was backed up else-
where, or the modified version is written to free band. This
possibility has not been taken into account by most systems
and has often been ignored. The indirection-based schemes’
success will also be heavily dependent on the workload. If
implemented as a drive-managed solution, it will be difficult
for the disk to provide a consistent performance guarantee
and though existing file systems and applications will work,

their basic performance assumptions will no longer be true.
Suresh et al. (Suresh et al.[2012) present a SMR file system
for big data applications that writes to files only sequentially,
never reopen a closed file for a write, and never rewrite a
block in the file.

Log structured Key-Value Stores Key-value storage sys-
tems are abundant; we look only at those that follow a log-
structured approach to writes, because it is a key requirement
for SMR disks. FAWN-KV (Andersen et al.|2009), Flash-
Store (Debnath et al.[2010) and SkimpyStash (Debnath et al.
2011)) are all key-value stores for NAND flash that adopt a
log based storage combined with some sort of hash based
in-memory indexing. Since flash does not pay a random-
access penalty, but pays for write amplification with its life-
time, these systems mostly stick to the LFS style, where
data is sequentially appended once and not rewritten until
the time to clean dead data, with improvements on indexes.
Key-value databases that adopt an LSM-tree based layout
include Bigtable (Chang et al.|2006), HBase (HBase|[2015)),
LevelDB (Ghemawat and Dean|2015), LogBase (Vo et al.
2012), KVDB (Shetty et al.[2013)).

7. Conclusion

Sustaining hard disk areal density growth requires a technol-
ogy transition, and Shingled Magnetic Recording is the most
likely next generation disk technology. SMR squeezes more
data tracks on the existing surfaces by overlapping the tracks
like the shingles on a roof. Since updating a data track over-
writes data written on subsequent tracks, random writes and
update-in-place data management techniques are destructive
and cannot be used on SMR disks. As a result, SMR disks
require new SMR-aware data management solutions.

We presented SMRDB, a key-value database engine for
SMR disks, in this work. We are the first to suggest, optimize
and evaluate an LSM tree based data layout and manage-
ment for SMR disks. We evaluated its performance against
LevelDB and showed that SMRDB outperforms LevelDB
in most cases. Our work proves that SMR disks are capa-
ble of replacing traditional disks in a variety of applications.
Our design could be adopted either as a drive-managed so-
lution, or a host-managed solution and our work enables
the easy adoption of SMR disks. In this work, SMRDB
adopts a fixed-sized band model, with entire band alloca-
tion/deallocation. In the future, we intend to work on more
data layout policies to further improve SMRDB. Design pos-
sibilities using variable sized bands with partial band alloca-
tions/deallocations are yet to be explored.
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