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Abstract
Modern data privacy regulations such as GDPR, CCPA, and

CDPA stipulate that data pertaining to a user must be deleted

without undue delay upon the user’s request. Existing sys-

tems are not designed to comply with these regulations and

can leave traces of deleted data for indeterminate periods of

time, often as long as months.

We developed Lethe to address these problems by pro-

viding fine-grained secure deletion on any system and any
storage medium, provided that Lethe has access to a fixed,

small amount of securely-deletable storage. Lethe achieves

this using keyed hash forests (KHFs), extensions of keyed hash
trees (KHTs), structured to serve as efficient representations

of encryption key hierarchies. By using a KHF as a regulator

for data access, Lethe provides its secure deletion not by re-

moving the KHF, but by adding a new KHF that only grants

access to still-valid data. Access to the previous KHF is lost,

and the data it regulated securely deleted, through the secure

deletion of the single key that protected the previous KHF.

CCS Concepts: • Security and privacy→ Key manage-
ment; • Information systems → Information storage
systems.

Keywords: Secure deletion, storage systems, key manage-

ment, security, privacy
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1 Introduction
Today’s storage systems are tasked with providing timely

secure deletion. Timely secure delete requires ensuring that

data is irrecoverable within short timescales that are outside

the control of the system (ideally within a few seconds). The

feature is increasingly important due to consumer protec-

tion laws (e.g., the European Union’s GDPR [5], California’s

CCPA [2], Virginia’s CDPA [3], etc.), compliance with laws

governing the protection of classified information [4], and

ensuring proper data governance for customers [7].

Unfortunately, traditional data deletion (e.g., rm, unlink)
does not securely delete data, and existing secure delete tech-

niques require impractical resource overhead or constraints.

Physical destruction [15], in which a user drills, shreds, or

melts a storage medium, requires destroying an entire drive

for each deletion and leads to impractical resource overhead.

Overwrite erasure [13, 15], which securely deletes data by

overwriting it in-place, suffers from two issues: (1) it places

impractical constraints on storage media because it only

works on storage that supports in-place overwrites (thus

precluding use of media such as flash [24] and write-once,

read-many (WORM) media [10]) and (2) it places impractical

resource overhead on storage devices because it repetitively

overwrites data and thus degrades device durability.

Cryptographic erasure [15] eases some of the impracticality

of physical destruction and overwrite erasure, but retains

high resource overhead in either high storage or compute

costs. Cryptographic erasure encrypts each chunk (anywhere

from a block to an entire drive) of data in a storage system

using a key and strong cipher; it supports secure deletion

by performing overwrite erasure on the key. Since breaking

the encryption is computationally infeasible (either through

the key or the algorithm), cryptographic erasure ensures

practical secure deletion given enough storage for its keys.

However, existing cryptographic erasure systems intro-

duce impractical resource overheads due to the tradeoff be-

tween computation and storage in managing the encryption

keys. On one extreme, a system could use a single key for

all data blocks (coarse-grained). This approach requires lit-

tle key storage, but imposes high compute overhead since

it requires re-encrypting the entire drive for each deletion,
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no matter the size. On the other extreme, a system could

use a separate key for each data block (fine-grained). This

approach eschews re-encryption, but imposes high storage

overhead since it requires an amount of securely deletable

key storage proportional to the amount of data on the drive.

This paper presents Lethe, a portable system for timely,

fine-grained secure deletion with low storage and compu-

tation overhead. Lethe encrypts keys recursively as a tree

in a hierarchical structure. This design reduces the required

amount of securely deletable storage down to a single root

key (typically 128–256 bits). This storage requirement is

supported by ubiquitously deployed systems such as secure

enclaves (e.g., Apple’s Secure Enclave [1], Intel’s Software
Guard Extensions (SGX) [6], etc.) and smart cards (e.g., Yu-
biKey [8]). Delegating secure deletion of a small, constant

amount of key material to a trusted component allows Lethe

to be agnostic of storage media since there is no requirement

for in-place overwrite of data; all data, including metadata,

is written append-only. Thus, Lethe reframes secure deletion

not as removing the data that is no longer wanted, but as
adding data that only provides access to what remains valid.

Hierarchical key management also enables Lethe to mini-

mize the computational overhead required for each deletion.

Lethe introduces the keyed hash forest (KHFs), an extension

of a keyed hash tree (KHT) [18], which serves as an effi-

cient data structure from which to derive and revoke keys.

Lethe structures KHFs hierarchically: inode KHFs protect
data blocks of a file, a master KHF protects the inode KHFs,

and a single master key protects the master KHF. The master

KHF acts as a data regulator in that it only allows access to

data covered by its subordinate inode KHFs. When Lethe

securely deletes data, it creates a new master key, “rolls for-

ward” the still-valid keys in its master KHF by re-encrypting

them with the new master key, and erases the previous mas-

ter key. Thus, Lethe’s compute overhead is proportional to

the size of the master KHF rather than to the amount of data

in the system. Lethe could further reduce compute overhead

by adding additional layers to its KHF hierarchy.

To evaluate Lethe, we prototyped its design by integrating

it into the Zettabyte File System (ZFS) [9]. The added capabil-

ity for secure deletion in our unoptimized prototype results

in a 17.63% decrease in throughput compared to baseline

ZFS, and a 15.5% decrease in throughput compared to ZFS

with native encryption (which encrypts each block of data

but cannot provide secure deletion).

2 Background
Prior secure delete systems have shortcomings that prevent

them from providing the privacy mandated by legislation

(GDPR, CCPA, CDPA, etc.), as we will describe. Namely, prior

systems do not support media without in-place updates, in-

cluding WORM media and flash devices that use an FTL.

Reardon et al. [22] proposed ballooning and purging in user
space, to address the inability to perform in-place overwrites

on flash memory. Ballooning artificially reduces free space

by occupying it with junk data, and purging periodically fills

up the free space with junk data to ensure the secure deletion

of deleted data blocks. However, these techniques adversely

affect the endurance of flash memory, perform poorly, and

do not work on WORM media.

Decrypting stubs [20] provide per-block encryption keys.

Erasing the block’s decrypting stub securely deletes the block.

This design requires in-place overwrite and cannot be used

on devices without such support (e.g., flash and WORM me-

dia).

File header blocks [17] provide per-file encryption. Conse-

quently, file header blocks provide secure delete for files but

not for individual blocks. Like the decrypting stub design,

this design also requires in-place overwrite and thus cannot

be used on devices without such support.

DNEFS [21] encrypts each data block and stores all data

block keys in a group called a Key Storage Area (KSA).

DNEFS batches block-level secure deletion using purging

epochs. When a block is deleted or overwritten, DNEFS

marks the block’s key to be deleted in the next epoch. Purg-

ing epochs run periodically to roll forward keys that remain

valid in a KSA by copying them to a new KSA. DNEFS over-

writes the previous KSA in-place to securely delete the keys

that weren’t rolled forward to the new KSA. This system thus

requires in-place overwrites and cannot be used on devices

without such support.

No prior system provides portable secure delete, since they

cannot be used on WORM or flash media. Consequently,

prior work is inadequate for fine-grained secure deletion

requirements mandated by legislation.

3 Key Management
We now discuss key management, contrasting different en-

cryption granularities for cryptographic erasure and the

amount of key storage overhead they each produce. By ex-

ploring how keys are stored, we demonstrate how storing

keys in a hierarchical manner reduces the amount of data

that needs to be securely erased for secure deletion of an

arbitrary amount of data to that of a single key.

A cryptographic-erasure based system typically applies

encryption at one of the following granularities, listed in

order of decreasing granularity: full-drive, per-file, and per-

block. Full-drive encryption encrypts every data block with

the same key. While securely deleting all the data blocks

only requires securely deleting that one key, there is the

caveat that even securely deleting a single byte of that data

requires all the data blocks to be re-encrypted with a new key.

Per-file encryption encrypts every data block within a single

file with the same key. This approach suffers from the same

re-encryption issue as full-drive encryption when partially
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deleting a single file, but less pronounced due to how much

smaller files are in comparison to entire drives. Per-block
encryption encrypts every data block with its own key, thus

avoiding the re-encryption penalty paid by full-drive and

per-file encryption.

The issue with the finer-grained encryption approaches,

per-file and per-block, is the problem of key storage. Consider
a relatively small file system with 4 TiB of data, a block size

of 4 KiB, and 16 B encryption keys. Providing a key for each

possible data block results in 16GiB of keys.

A naïve approach for storing these keys is to simply store

them in together in blocks, as would occur if they were stored

as a key file. Assume key 𝐾 resides in block 𝐵. Securely delet-

ing 𝐾 and preserving the other keys in block 𝐵 requires

writing a new version of the block, 𝐵′, that replaces 𝐾 with

a new key 𝐾 ′
and keeps around the still-valid keys. 𝐾 is se-

curely deleted when 𝐵 is securely deleted. Thus, any change

to a block requires 4 KiB worth of keys to be securely deleted,

and deleting all the data blocks in the system requires all

16GiB of keys to be securely deleted. This is equivalent to

the approach used for the KSAs introduced by Reardon et
al. [21].

A different approach would be to employ per-file encryp-

tion, protecting the key file by encrypting all of its blocks

with a single key. While this approach requires all the blocks

of the key file, the key blocks, to be re-encrypted with another
key in order to delete any key in the key file, the only key

that needs to be securely deleted is the single key protecting

all the key blocks.

The next obvious approach is to instead employ per-block

encryption on the key blocks, which makes the recursive

nature of this problem apparent. Encrypting each of the key

blocks with their own key results in more keys, these keys

in which are also stored in key blocks, each of which should

be encrypted as well. This continues until there is a single

key encrypting a block of indirect keys (at however many

levels of indirection).

Thus, due to the hierarchical structuring of keys, the single
top-level key regulates access to all the data that is encrypted
by any key that is indirectly encrypted by it. Secure deletion

of the top-level key is sufficient—and necessary—for the se-
cure deletion of any amount of data covered by that top-level
key.

Lethe uses keyed hash trees to efficiently represent this

hierarchy of keys, reduce the amount of key storage required

for fine-grained, per-block encryption, and to reduce the

amount of effort necessary to roll forward still-valid keys.

4 Keyed Hash Trees
A keyed hash tree (KHT), originally presented by Li et al. [18],
is a logical tree structure that allows for an effectively infi-

nite number of block encryption keys to be generated from

a single key, with the property that it is computationally
infeasible to derive block keys from each other.

The topology of a KHT is defined by a list of integers de-

scribing the fanout (the number of child nodes per parent) at

each level. Crucially, the fanout list describes fanouts start-

ing from level 1 (L1) because the root at L0 has an arbitrary

fanout, allowing the generation of an unlimited number of

keys from a single root.

4.1 Composition
Like typical tree structures, KHTs are composed of nodes.

Each node is defined as a triple:

Node 𝑛 = ⟨value, level, offset ⟩.

The level and offset of a node acts as a unique identifier,

where the level indicates the level, or depth, within the KHT

that the node can be found in and the offset indicates its

position within the level itself.

The value component of the node triple is suitable for

use as an encryption key, which allows a KHT to supply an

infinite number of keys since it may cover an infinite number

of leaf nodes.

4.2 Key Derivation
Aside from the root, each node in a KHT is derived computa-
tionally, from its parent. Critically, this means that only the

root node of a KHTmust be stored in order for the whole tree

to be accessible. To get the value 𝑣 ′ of a node given its level

𝑙 , its offset 𝑜 , and its parent’s value, 𝑣 , we simply compute:

𝑣 ′ = 𝐻 (𝑣 | | 𝑙 | | 𝑜),

where 𝐻 is a cryptographically secure hash function and | |
indicates concatenation. The usage of a cryptographically

secure hash function ensures that the relationship from a

parent node to a child node is a strict one-way relationship,

making it trivial to recursively compute any descendant node

given its ancestor, but computationally infeasible to compute

an ancestor node from any of its descendants. It is computa-

tionally infeasible to compute the values of sibling nodes as

well, since that would require computing the parent’s value.

Figure 1 shows the relationship between connected nodes in

a KHT described by a ⟨3, 2⟩ fanout list.

L3

L2

L1

L0

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5 K3,6 K3,7 K3,8 K3,9 K3,10 K3,11

K2,0 K2,1 K2,2 K2,3 K2,4 K2,5

K1,0 K1,1

K0,0

…

…

…

Figure 1. A KHT described by a ⟨3, 2⟩ fanout list.
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K3,0 K3,1 K3,2 K3,3 K3,4 K3,5

K2,0 K2,1 K2,2

K1,0

K0,0

…

…

…

B0 B1 B2 B3 B4 B5 …

K3,0 K3,1 K’3,3 K’3,4 K’3,5

K2,0 K’2,2

…

…

…

B0 B1 B2 B’3 B’4 B’5 …

K3,2

         stored

         computed

         data block

         to overwrite
  
         key

         encrypts

Figure 2. A KHT before and after key revocation.

4.3 Key Revocation
The primary difficulty with KHTs is key revocation, which
was acknowledged by Li et al. [18] and stated to be future

work. As seen with the KSAs used in DNEFS [21] and in the

discussion on key storage in §3, deleting or modifying a block

requires its key to be securely deleted—revoked—and the rest
of the keys with which it was stored to be rolled forward.

Revoking a single key in a KHT causes it to fragment, since
the roots from which the revoked key can be derived must

be rendered inaccessible. Consider Figure 2, which depicts

the state of a KHT before and after revoking the keys for

the to-be-overwritten data blocks 𝐵3, 𝐵4, and 𝐵5. The new

state of the KHT no longer includes the roots from which

the revoked keys can be derived and includes new roots

from which replacement keys can be derived. Thus, KHT

key revocation fragments the KHT into a forest of KHTs.

Lethe solves this using keyed hash forests.

4.4 Keyed Hash Forests
A keyed hash forest (KHF) describes a forest of KHTs from

which encryption keys can be derived. A KHF is simply

represented as lists of roots, where each root matches the

definition of a node presented in §4.1.

There are two main operations associated with a KHF: key
derivation and update. The key derivation operation, as its

name implies, is used to derive a key using the roots stored

in a KHF. Storing roots in a KHF in order of their offsets

allows for efficient O(log𝑛) search to find the root of the

KHT that covers the desired leaf node.

The update operation is used to revoke keys from a KHF.

It updates the roots in the KHF, replacing the roots cover-

ing the revoked keys with a new set of roots that provide

replacement keys from which still-valid keys can be derived,

but invalidated keys cannot.
KHFs naturally lend themselves to be used in a hierarchi-

cal manner, capable of both providing encryption keys for

data blocks, as well as other KHFs. A single, top-level KHF

thus effectively regulates access to all data covered by any

subordinate KHFs protected by it. By extension, a single key

encrypting this top-level KHF regulates access to the entire

set of data that all of its subordinate KHFs cover.

Lethe provides secure deletion through addition, given

a fixed, small amount of securely deletable storage used

to store the key protecting the top-level KHF. Instead of

overwriting a KHF, Lethe simply writes a new KHF that

allows access to all data that should be kept. Any data that

is not accessible through the new KHF is securely deleted

when the key to the previous KHF is securely deleted.

5 Design
We now present the design of Lethe. We start with how Lethe

uses copy-on-write (CoW) semantics not only to eliminate

the need for in-place overwrites, but also to provide data

consistency. We then describe the hierarchy of KHFs, assum-

ing a traditional Unix file system that uses inodes.
1
Finally,

we present the usage of epochs, time intervals over which

KHFs updates are batched, and consolidation, an operation

performed to address KHF fragmentation.

5.1 Copy-On-Write
All data, including metadata, is written in a copy-on-write

(CoW) manner. This upholds Lethe’s guarantee of secure

deletion through addition, and provides portability. Since

Lethe only writes new data in an append-only fashion, it

is clear that Lethe’s operational security is not dependent on
in-place overwrites. Similarly, because data is explicitly as-

sumed to never be overwritten, Lethe can be considered truly

portable since it works agnostic to the storage medium it

uses.

The usage of CoW enables data consistency. Once a new

copy of data is written, pointers are atomically modified to

point to the new copy instead of the old copy. This is the

same approach that ZFS [9] uses for its data consistency.

5.2 KHF Hierarchy
Lethe maintains a KHF for each inode, which we refer to as

an inode KHF. Each inode KHF is responsible for managing

the encryption keys for the blocks that its corresponding

1
Although the presentation of Lethe’s design assumes a traditional Unix

file system structure, we note that Lethe can be easily modified to allow for

secure deletion on any system.
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inode points to. Persisting an inode KHF requires it to be

encrypted.

To manage the keys for inode KHFs, Lethe maintains a

master KHF. Each inode KHF’s key is identified within the

master KHF by its i-number, and a master key is used to

encrypt the master KHF when persisting it. The master KHF,

and by extension the master key, regulates access to all data

in the system. Securely deleting the master key securely

deletes all data covered by the master KHF that has not

been rolled forward to being covered by a new master key

and KHF. Figure 3 shows an example of the described KHF

hierarchy.

The hierarchy established by inode KHFs and the master

KHF is no different from the tree structure established by

directories in a traditional file system. While only two levels

of KHFs are shown in Figure 3, it is possible to stack KHFs

as many times as is desired.

5.3 Master Key Storage
The master key must be stored on a device that provides

for secure deletions that occur once per epoch. The amount

of storage on the device can be quite small, since it only

needs to store one or two keys. The best option for this is a

secure enclave such as the one coupled with Intel’s Software

Guard Extensions [6] or Apple’s Secure Enclave [1]. A more

accessible option would be a smart card designed specifically

for this purpose, such as a YubiKey [8].

master KHF

inode KHF0 inode KHF1

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5 K3,6 K3,7 K3,8 K3,9

K2,0 K2,1 K2,2 K2,3

K1,0

K3,0 K3,1 K3,2 K3,3 K3,4

K2,0 K2,1

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5

K2,0 K2,1 K2,2

K1,0

master key

B0 B1 B2 B3 B4

B5 B6 B7 B8 B9 B10

K3,10 K3,11

K2,5

Figure 3. The hierarchy of KHFs in Lethe.

time t’

data

time t

data …B0 B1

inode KHF

master KHFmaster key

…B0 B1 B’0

master KHFmaster key

inode KHF’

master KHF’ master key’

inode KHF

         stored

         free block

         used block
  
         key

         encrypts

         inaccessible

Figure 4. State before and after “overwriting” a block.

5.4 Epochs
Epochs are time intervals over which updates to KHFs are

deferred and batched together, much like the approach of

purging epochs used by DNEFS [21], and similar to the group

commit technique employed by ZFS [9] and WAFL [14].

Lethe accumulates the updates that are made to KHFs

throughout an epoch and applies them at the end of an epoch;

the updated inode KHFs are encryptedwith new keys derived

from the updated master KHF and persisted, and the updated

master KHF is then encrypted with a new master key and

persisted. Securely deleting the previous master key, or epoch
key, ensures the secure deletion of any data deleted during

the previous epoch. Thus, Lethe provides secure deletion

guarantees at an epoch granularity.

By increasing epoch duration, we gain performance by

avoiding the cascade of KHF updates and persists that oc-

cur on any data modifying operation. Figure 4 shows the

occurrence of this cascade of KHF updates and persists when

“overwriting” just a single block. Time 𝑡 in Figure 4 shows the

state of Lethe before overwriting block 𝐵0. Since Lethe uti-

lizes CoW, overwriting block 𝐵0 requires a new block, block

𝐵′
0
, to be written. This requires a new version of the KHF

covering block 𝐵0 to be written with its contents updated

to replace the key for block 𝐵0, thereby removing access to

block 𝐵0. In turn, a new version of the master KHF is then

written with its contents updated to replace the key for the

updated KHF. Finally, a new master key for the updated mas-

ter KHF is generated. Securely deleting the previous master

key takes us to the state shown at time 𝑡 ′ in Figure 4, in

which the “overwritten” block 𝐵0 is inaccessible and consid-

ered securely deleted. Handling this cascade of KHF updates

5
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and persists for each write is inefficient, which provides the

motivation for the usage of epochs, since they allow the

updates to be batched and persisted together.

Epoch duration can either be based on time, amount of

data written, or simply manually triggered. Importantly,

epoch duration trades off performance for the frequency

of secure deletion. In general, the longer the epoch, the more

performant the system. The shorter the epoch, the more

rapid the guarantee of secure deletion.

5.5 Consolidation
KHFs become fragmented as writes occur over time, with the

degenerate case for a KHF being that it contains a root for

each key that it provides. This is typically not a concern for

an inode KHF since files tend to be written sequentially [23]

and will have multiple blocks covered by a common root,

but is a concern for the master KHF.

The leaves of a master KHF provide the encryption keys

for the inode KHFs. Unless inodes are modified sequentially

by i-number during an epoch, the master KHF will generally

fragment into the degenerate case. The size of the master

KHF as it fragments becomes unwieldy given that the master

KHF must be re-encrypted and persisted after every epoch.

Consolidation addresses the issue of fragmentation. Con-

solidation is a KHF compaction operation that incurs the

penalty of re-encrypting data in exchange for a reduction

in KHF size. For an inode KHF, consolidation requires re-

encrypting a range of data blocks using a common root

that will then replace the roots covering the re-encrypted

data blocks. For the master KHF, consolidation requires re-

encrypting a range of inode KHFs and updating the master

KHF with a single root that covers those re-encrypted inode

KHFs. Although paying the cost of consolidation to improve

performance may be occasionally necessary, it is important

to note that delaying consolidation indefinitely has no impact

on the security of Lethe.

6 Evaluation
Our goals for the evaluation of Lethe were:

1. To measure the performance of Lethe integrated into

a widely-used system using real-world workloads.

2. To measure the performance overhead incurred in pro-

viding secure deletion with Lethe.

6.1 Implementation
For goal (1), we integrated Lethe into the Zettabyte File Sys-

tem (ZFS) [9]. The choice of ZFS over other file systems

such as Ext4 and BtrFS was motivated by its structure, its

mechanisms for ensuring data consistency, and its native

encryption feature.

Structure. ZFS operates on objects, logical groupings of
data blocks such as files and directories, which are then logi-

cally grouped into object sets (e.g. a file system). We added a

KHF per-object to provide keys for an object’s data blocks,

and added an master KHF to provide the per-object KHF

keys for a single file system.

Mechanisms for Data Consistency. ZFS uses copy-on-

write and atomic transactions to ensure data consistency,

both of which are desired by Lethe. ZFS handles any write

operation by treating it as a transaction. Transactions are

further grouped into transaction groups, which are batched

together and committed to disk periodically. This mechanism

of batching transactions together and committing them to-

gether aligns perfectly with Lethe’s use of epochs. Thus, not

only does ZFS provide copy-on-write semantics, it also hap-

pens to already include a periodically-run procedure to flush

data to disk that can be extended to update KHFs and flush

them to disk as well.

Native Encryption. Native encryption in ZFS provides a

unique encryption key for each data block in a zpool using

HKDFs [16], allowing for encrypted data sets. We note that,

despite having per-block keys, ZFS native encryption does not
provide fine-grained secure deletion. This is due to the fact

that the public HKDF parameters used for deriving block

keys are stored in unencrypted block pointers on disk, and

erasing the parameters is not possible due to ZFS’ usage

of CoW. Furthermore, it is untenable to swap out the main

HKDF keying material, as it would require every other block

in the system to be re-encrypted using keys derived from

the new keying material.

ZFS delegates all I/O operations to its ZIO layer, which

requests encryption keys for each data block it acts on. In-

tegrating Lethe into the ZIO layer was straightforward: we

only modified it to request for a Lethe-managed encryption

key for each data block instead of its native encryption-

provided key.

We note that, at the time of writing, the prototype of

ZFS does not yet handle partial block truncations. A partial

block truncation occurs when a file truncation operation

leaves behind part of a block, and as such ensuring secure

deletion of the truncated block requires that the remaining,

untruncated bytes be rolled forward via re-encryption with

a new key. Forcing ZFS to issue this additional write, though

possible, is complex and remains future work. We note that

this does not critically threaten the validity of our evaluation

since files tend to be written to sequentially [23] and do not

typically encounter partial block truncations; there wouldn’t

be a big performance hit even if this issue was handled by

rewriting partial blocks.

6



Lethe: Secure Deletion by Addition CHEOPS ’23, May 8, 2023, Rome, Italy

A B C D E F
Workload

0

20000

40000

60000

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Throughput of YCSB workloads
zfs
zfs-enc
lethe

Figure 5. Result of YCSB benchmark with 5 second epochs.

6.2 Methodology and Experimental Setup
For goal (2), we compared ZFS integrated with Lethe against

baseline ZFS and ZFS with native encryption enabled. Com-

paring the throughput of these three file systems allows us to

see the relative performance overhead incurred through the

addition of native encryption and secure deletion, ultimately

making it easier to evaluate whether or not secure deletion

is performant enough for adoption.

Our experiments were conducted on a 10
th
generation

Intel NUC equipped with an Intel CPU i5-10210U (1.60 GHz,

4 cores) and 32GB of memory. A Samsung 970 EVO 500GB

SSD was used as the storage device. Lethe was configured

to statically use a ⟨16, 32, 8⟩ fanout list for each constructed

KHF. The duration of an epoch was set as 5 seconds—exactly

the default duration between commits of ZFS [9] transac-

tions. It remains future work to experiment with different

epoch durations and epoch durations, measuring key storage

overhead, and optimizing our implementation.

6.3 Results
We ran RocksDB [12] over each file system and measured the

throughput of each using the YCSB [11] cloud serving bench-

mark on workloads A–F, each with 1 million operations, 1

million 1 kB records, using the Zipfian distribution. Each of

the workload benchmarks were conducted using Pilot [19],

a statistics-driven benchmarking framework. Figure 5 shows

the result of the experimentation.

We see that the relative throughput of each file system

across all the workloads is consistent. On average, going

from baseline ZFS to natively encrypted ZFS yields a 2.6%

decrease in throughput, going from baseline ZFS to Lethe-

integrated ZFS yields a 17.63% decrease in throughput, and

going from natively encrypted ZFS to Lethe-integrated ZFS

yields a 15.5% decrease in throughput. Enabling native en-

cryption on top of baseline ZFS understandably introduces

a decrease in performance due to the need to generate en-

cryption keys, encrypt data blocks, and store generated keys.

Enabling secure deletion on top of baseline ZFS understand-

ably introduces even more of a decrease in performance due

to the increased cost of deriving keys, running the per-epoch

KHF updating procedure, and storing KHFs.

Although the prototype of Lethe sees this degradation

in performance compared to ZFS with native encryption,

we expect to see less of a difference in performance as op-

timizations are made in the future. In any case, it is clear

that the performance with secure deletion enabled on ZFS is

comparable to baseline ZFS and ZFS with native encryption

despite the relatively short epoch duration.

7 Conclusion
Lethe is the first system that provides fine-grained secure

deletion on any storage medium, including those that make

in-place overwrites difficult or even impossible, such as flash

and WORM media. We first explored prior work in this de-

sign space and shown existing issues with prior systems that

make their adoption for use in response to legislation like

GDPR, CCPA, and CDPA unlikely. From there, we provided

the notion of needing a hierarchy of keys for fine-grained se-

cure deletion, which Lethe efficiently represents using KHFs.

We then presented the design of Lethe, demonstrating how

it provides secure deletion through addition of KHFs, and

how it provides timely, fine-grained secure deletion of any

selective amount of data through the secure deletion of just

a single key. This further emphasizes the efficiency of Lethe,

since it is impossible to achieve secure deletion by securely

deleting any less than a single key; any less would be inse-

cure. Our evaluation of a Lethe integrated into a real-world

system also yields promising results despite lack of tuning

and optimizations, demonstrating that Lethe can be seri-

ously considered as a portable solution for timely guarantee

of secure deletion.
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