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Abstract

We have developed a scheme to secure network-
attached storage systems against many types of attacks.
Our system uses strong cryptography to hide data from
unauthorized users; someone gaining complete access to
a disk cannot obtain any useful data from the system, and
backups can be done without allowing the super-user ac-
cess to cleartext. While insider denial-of-service attacks
cannot be prevented (an insider can physically destroy
the storage devices), our system detects attempts to forge
data. The system was developed using a raw disk, and
can be integrated into common file systems.

All of this security can be achieved with little penalty
to performance. Our experiments show that, using a rel-
atively inexpensive commodity CPU attached to a disk,
our system can store and retrieve data with virtually no
penalty for random disk requests and only a 15–20% per-
formance loss over raw transfer rates for sequential disk
requests. With such a minor performance penalty, there
is no longer any reason not to include strong encryption
and authentication in network file systems.

1 Introduction

Computer storage is an increasingly important part of
the Internet, and ensuring the security and integrity of
stored data is a crucial problem. Attacks by hackers and
insiders have led to billions of dollars in lost revenue and
expended effort to fix the resulting problems. Most or-
ganizations rely heavily on their distributed computing
environment, which usually consists of workstations and
a shared file system. This file system is typically stored
on a centralized file server that is managed by a system
administrator with super-user privileges, leaving the data
vulnerable to anyone who can obtain (legitimately or oth-
erwise) super-user access.
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Recently, however, network-attached storage has be-
gun to replace traditional centralized storage systems [1,
12]. In such systems, disks are attached directly to a net-
work, and rely upon their own security rather than using
the server’s protection. This arrangement makes secu-
rity more difficult because the disk is directly exposed to
potential attacks instead of being hidden behind a single
server that can be “hardened.”

Most existing secure storage systems provide either
authentication or encryption, but not both. For exam-
ple, CFS [3] encrypts data, but does not easily permit au-
thentication of data or sharing with other users. Systems
such as SFS-RO [18] and NASD [12, 13] use encryption
to provide network security and authentication, but store
data in the clear. Recently, systems such as TCFS [6]
and SUNDR [19] have incorporated both authentication
and encryption, but at a relatively high penalty to perfor-
mance.

We have developed a security system for network-
attached storage that relies upon strong cryptography to
protect data stored in a distributed storage system. Our
system stores and transfers all data encrypted, only de-
crypting it at a client workstation. The drives lack suffi-
cient information to decrypt the data they hold or to un-
detectably forge new data, so physically stealing the me-
dia will not enable an attacker to gain access to the data
or to plant false data. Similarly, an administrator backing
up the storage system has access to only encrypted copies
of the data; the authorized users of a particular file are the
only ones with access to its unencrypted contents.

Despite this level of security, our system does not im-
pose much overhead on the file system. Our experiments
using raw disks show that the encryption and verification
provided by our system imposes almost no penalty for
small random accesses to blocks on disk and less than
a 20% penalty for large sequential transfers. Integration
into a file system will further reduce this overhead by
increasing the “base” time due to other file system over-
heads.



We begin by describing previous work in securing
storage systems, discussing the strengths and weaknesses
of each system. We then describe Secure Network-
Attached Disks (SNAD), our system for protecting data
on network-attached disks. Next, we describe the ex-
periments we ran to test our systems performance and
show that security for network-attached storage is pos-
sible without much performance penalty. We conclude
with a description of our plans for integrating strong se-
curity into modern file systems.

2 Related Work

Many systems have been designed to address the secu-
rity problems of modern distributed file systems. How-
ever, these systems have suffered either from weak se-
curity, poor performance, or both. It is only recently
that CPU performance has advanced to the point where
strong cryptography can be done quickly with inexpen-
sive processors. This allows its use on low-cost proces-
sors that can be associated with each disk in a distributed
file system [12].

2.1 Controlling Access to File Systems

Most file systems include some measure of security.
However, systems such as xFS [1] and Petal [16] pass
nearly all of their data in the clear, relying on relatively
insecure networks and trusted hosts for data protection.
Such a tactic works well if a network is totally discon-
nected from the rest of the world, but is a poor solu-
tion for modern systems that are exposed to the Internet.
Some protection can be provided via firewalls or secure
network protocols [4, 15], but these mechanisms do not
protect data stored on disk. NFS offered little security
until recently [22]; the new NFSv3 and NFSv4 protocols
promise additional security, but there is little experience
with the performance overheads of providing such secu-
rity.

Other systems, such as AFS [14, 24] and NASD (Net-
work Attached Secure Disk) [12, 13] use Kerberos [20]
to provide security. These systems provide stronger se-
curity by requiring users to obtain “tickets” from a third
party. The tickets are then presented to the file server
(AFS) or NASD disk as proof of identity and access
rights. These systems are considerably stronger than
those that rely upon simple authentication, but they still
suffer from several problems. First, files are left in the
clear on the disks themselves, and may be transferred in
the clear as well. Second, Kerberos-based systems rely
upon a centralized security authority that is separate from
the disks themselves. This is advantageous for sharing
within a well-connected organization, but can become
more difficult for widely distributed systems.

SCARED [21] is another file system that uses en-
cryption to authenticate remote network storage. The
SCARED design supports the use of end-to-end encryp-
tion of data, and, similar to SNAD, uses timestamps
and counters to protect against replay attacks. How-
ever, SCARED does not implement end-to-end data en-
cryption, leaving that for the underlying file system.
SCARED, like the highest-performance version of our
security system, uses secure hashes for authentication.

The Secure File System (SFS) [11, 18] provides strong
authentication and a secure channel for communications.
It also allows servers to authenticate their users and
clients to authenticate servers. However, the general im-
plementation of SFS [11] requires that users trust file sys-
tems to store and return file data correctly. SFS-RO [18]
does not impose such a requirement, but it also forbids
remote clients from writing to the file system, limiting
writes to users on the server with access to the server’s
private key. The SUNDR file system [19] will address
these issues by providing strong encryption and authenti-
cation for all file system users; however, its use of public-
key encryption will subject it to the same performance
issues we discuss in this paper.

2.2 Protecting Data on Disk

While most file system security has focused on access
control and protecting data in transit, there have been a
few file systems that have protected data on disk as well.
There has been some work on protecting data on disk by
making it impossible to delete [25]; however, our focus is
on protecting data on disk from discovery by an intruder.

Many users have implemented their own “secure file
system” by simply encrypting their files using standard
encryption software. This provides confidentiality and,
if the user also signs the file, a mechanism for ensuring
that the server did not corrupt the data. However, this
is an ad hoc mechanism, and does not deal with many
issues such as sharing files between users.

The Cryptographic File System (CFS) developed at
AT&T Bell Laboratories [3, 5] encrypted all data and
potentially sensitive metadata stored on disk. When a
user desired access to an encrypted directory, he issued
a command to attach the encrypted directory to a sub-
directory of /crypt . If the correct password was en-
tered, the data was subsequently available in decrypted
form. Because the structures to support this were stored
in a “normal” directory structure, they could be used with
NFS and other file systems. However, CFS also required
that the server be trusted to “actually store (and eventu-
ally return) the bits that were originally sent to it.” In
the Internet era, there is no guarantee that a server will
do this, so there must be a mechanism to ensure that the



server has not maliciously altered the data. In addition,
CFS does not discuss mechanisms for distributing keys
among users for sharing files. A more recent crypto-
graphic file system, Cryptfs [27] works in a similar way
and has similar sharing and authentication issues.

Recently, TCFS [6] has provided strong security and
authentication for file system users. However, TCFS
is relatively slow, reducing file system performance by
more than 50%.

The design of a trusted database system such as
Trusted DataBase (TDB) [17] could be adapted to file
systems; however, TDB is not easily scalable, making it
less useful for large-scale file systems.

3 System Design

The goal of our system is to address the security
shortcomings of previous file systems while preserving
the flexibility and performance of standard distributed
file systems. We propose three security alternatives for
network-attached storage; the first two are considerably
more CPU-intensive because they make extensive use of
public-key encryption, but are also more secure. The
third alternative avoids the use of public-key encryption
on each block transfer, resulting in high performance on
current low-cost CPUs while providing nearly as much
security as the first two alternatives.

3.1 Design Goals

Our security schemes provide several important fea-
tures for a secure file system. The first feature is end-to-
end encryption of all file system data, including storage
on disk. This is necessary to restrict access to data to
only authorized users, specifically excluding system ad-
ministrators and backup systems. An adversary with full
access to all of the bits on the disk or the network should
be unable to decipher any user files—the disk must not
contain sufficient information to decrypt the data stored
on it. Rather, data should only exist in unencrypted form
on the client.

A second desirable feature is data integrity. A user
reading data from the server must be sure that the files
received are those originally stored. It is no longer a good
idea to trust that a disk is secure against intruders; data
modified at the disk or introduced into the system by an
malicious intruder must be detectable. Storing a non-
linear checksum over the cleartext in a block along with
the ciphertext, as described in Section 3.4.3, allows any
authorized user to detect a change made to the encrypted
block by an intruder who did not have the symmetric key
to encrypt the file.

Flexibility is a third feature that is desirable in a se-

cure file system. While it would certainly be possible
to simply encrypt each file with a user’s password, this
approach is impractical because it makes file sharing dif-
ficult. Instead, a file system should have sharing at least
as powerful as that in standard UNIX and preferably as
flexible as the access control lists provided by AFS [14].

High performance and scalability is the fourth feature
desirable for a secure distributed file system. Though
it may be possible to build a secure file system, users
may avoid using it if performance is poor. If encryption
and decryption are performed at the client, encryption
throughput will limit a single client’s bandwidth, but not
the bandwidth of the entire system. By minimizing the
effort required by the network-attached disk’s CPU, how-
ever, it is possible to build a distributed storage system
that can be used by hundreds of clients, each of which
can decrypt the data intended for itself.

3.2 Basic Mechanisms

The basic mechanism behind our security system is to
encrypt all data at the client and give the server sufficient
information to authenticate the writer and the reader suf-
ficient information to verify the end-to-end integrity of
the data.

SNAD relies upon several standard cryptographic
tools. The client uses the RC5 algorithm [23] to encrypt
the data before it leaves the client, though any strong and
fast algorithm such as Rijndael [7] would also be accept-
able. This ensures that the data is unreadable by anyone
until it is decrypted by the client that reads it. Public-key
cryptography is used to allow disks to store information
that can be used to decrypt their files; because public-key
encryption is asymmetric, however, only a user with the
appropriate private key can use this information. This
process is described in Section 3.4. The security pro-
vided by SNAD is very strong; the symmetric algorithms
use 128 bit keys—the key length Schneier recommends
for highly secure information with a lifetime longer than
40 years [23]. If 128 bit keys are too short, longer keys
may be used.

SNAD also makes extensive use of cryptographic
hashes and keyed hashes. Cryptographic hashes such as
MD4, MD5, and SHA-1 [23] use a one-way function to
compute a large number (128 or 160 bits) from a block
of data. Any modification in the input data will cause
the resulting hash value to change. While it is possible
to find two sets of input data that will result in the same
MD4 hash (weak collision) [8], there is still no known
way to produce a second input that hashes to the same
value as a given first input. MD5 and SHA are varia-
tions on MD4 for which it is currently believed NP-hard
to find two input texts that result in the same hash value.
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Figure 1: Relationships between objects in a Secure
Network-Attached Disk.

Keyed hashes such as HMAC [2] use a cryptographic
hash in conjunction with a shared secret to check in-
tegrity and authenticate a writer. If the sender and re-
ceiver share a key, the key can be included in the crypto-
graphic hash, preventing anyone who intercepts the data
from undetectably modifying it unless they know the
shared key.

3.3 SNAD Data Structures

All of the SNAD security schemes use four basic
structures: secure blocks, file objects, key objects, and
certificate objects. Although these objects are all shown
as contiguous blocks of data, there is no requirement that
they be stored contiguously on disk.

3.3.1 Overall Data Structure Organization

The overall data structure organization of SNAD is
shown in Figure 1. The diagram shows multiple file ob-
jects using a single key object; this corresponds to a sit-
uation where two files have the same access controls. It
is likely that there will be relatively few key objects on
a disk, just as there are relatively few unique groups in a
standard UNIX file system.

All of the objects shown in Figure 1 require rela-
tively little overhead. Each data object requires 36–100
bytes of overhead, depending on which security scheme
is being used. Even for 100 bytes of overhead, using
4 KB blocks requires just 2.4% overhead for crypto-
graphic metadata. File objects require little overhead just
a pointer to a key object. Key objects are also small: a
key object requires 76 bytes for the header and 72 bytes
for each user. If each of 10,000 users is part of 200 differ-

Block security information

Block ID (may be part of file metadata)

User IDs (may be part of file metadata)

Timestamp

Data (encrypted)

Figure 2: Secure block.

ent groups, there will need to be 148 MB of key objects,
or 0.37% of a 40 GB disk. The certificate object requires
less than 300 bytes per user, adding just 3 MB to the total.
Thus, all of the security information for SNAD occupies
less than 3% overhead for a 40 GB disk. For compari-
son, the inodes in a UNIX file system typically consume
1–2% of total storage.

3.3.2 Secure Blocks

A secure block (SB) is the minimum unit of data that
can be read or written in the secure file system, and cor-
responds to a file block in a standard file system. Files
are composed of one or more secure blocks; a sample
secure block is shown in Figure 2.

The block security information is different for each of
the three security schemes discussed in Section 3.4, but
is on the order of 32 bytes long. The block ID is a unique
identifier for the block in the file system, and is a com-
bination of the unique file identifier and block number in
the file. The user ID is the creator of the secure block
and is used by the SNAD server to determine which pub-
lic key or writer authentication key to use to check the
security of the block. If the server is an object-based
storage device or file server, the user ID list need not be
stored for each secure block; instead, it can be retrieved
from the file or object to which the secure block belongs.

The data stored in the data object is encrypted using a
symmetric encryption algorithm such as RC5. The key
used to encrypt the data is obtained from the key object
associated with the file, as described in Section 3.3.4.
An initialization vector (IV) consisting of the file ID and
block offset within the file is used to prevent identical
plaintext blocks encrypted with the same key from en-
crypting to the same ciphertext. Knowledge of the IV
does not aid in cryptanalysis of the block’s ciphertext;
rather, it prevents an attacker who cannot decrypt a se-
cure block from determining which secure blocks con-
tain the same plaintext.
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Figure 3: Key object.

The timestamp is used simply to prevent replay at-
tacks; it need not be an actual timer, but instead could
simply be a counter incremented at each client.

If a secure block is too large, each file will waste rel-
atively large amounts of space on average, half of the
last secure block. However, minimizing both storage
and operational encryption overheads requires that ob-
jects not be too small. Like file blocks, secure blocks
could be variably sized within a single file system; how-
ever, we assumed fixed sized secure blocks. We explore
the performance tradeoffs with respect to object size in
Section 4.

3.3.3 File Objects

File objects are composed of one or more secure
blocks along with per-file metadata. In addition to the
usual file metadata such as block pointers, file size, and
timestamps, a file object contains a pointer to a key ob-
ject. This pointer is used to find the keys that may be
used to access the file. Except for the pointer to the key
object and perhaps pointers to the extra information for
secure blocks, the structures for file objects are identical
to those for standard files.

3.3.4 Key Objects

Each key object, shown in Figure 3, contains several
types of information. The key file ID is just the unique
identifier for the key object on the system. The user ID
in the header of the key object is that of the last user to
modify the key object. The reference count is kept by the
system to know when the key object is no longer needed.

When a user writes the object, he hashes the entire
object except for the reference count and signs the hash
with his private key, storing the result in the signature
field. Anyone using the key object verifies the integrity
of the object by performing the same hash and verify-
ing the provided signature. This mechanism prevents the
disk, or anyone with access to it, from undetectably mod-
ifying the security fields of a key object a client using the
key object can check to ensure that the signature on a

TimestampHMAC keyPublic keyUser ID

TimestampHMAC keyPublic keyUser ID

TimestampHMAC keyPublic keyUser ID

...

Figure 4: Certificate object.

key object belongs to someone authorized to change the
key object. Because someone who modifies a key object
must sign it, there is a way of tracing illegitimate modi-
fications to a particular user.

Each tuple in the body of the key object includes a user
ID, encrypted key, and permissions for that user. The
user ID need not correspond to a single user; it could, in-
stead, be an equivalent to a UNIX group and correspond
to several users with shared access to a single private key,
similar to the mechanism in TCFS [6]. The second field
in the tuple contains the key for the symmetric RC5 al-
gorithm. Rather than storing this key in the clear, the key
object stores the key encrypted with the user’s public key.
The disk cannot decrypt any key unless it obtains a user’s
private key, but the only way to get a user’s private key is
to steal it from a client or the user himself because keys
are kept on the client and never sent to the disk. The per-
missions field is used by the disk to determine whether
the user is allowed to write the key object.

A key object may be used for more than one file. If
this is done, all files that use the key object are encrypted
with the same symmetric encryption key and are acces-
sible by the same set of users. In this way, a key object
corresponds to a UNIX group.

3.3.5 Certificate Objects

Each network-attached disk contains a single certifi-
cate object, shown in Figure 4, which contains adminis-
trative and cryptographic information about each SNAD
user. The disk uses the information in the certificate ob-
ject to authenticate users and do basic storage manage-
ment.

The certificate object contains a list of tuples, each of
which includes a user ID, public key, HMAC key (for
Schemes 2 and 3), and timestamp. The user ID identifies
the user or group to which the remainder of the tuple
pertains. The public key is stored on the disk for two
reasons: as a convenience so that the disk and those using
it need not consult a centralized key server, and for writer
authentication in one of the security schemes described
in Section 3.4.

The HMAC key is used in two of the schemes to ver-



ify the identity of the user writing data, and is stored
encrypted, with the decryption key for the HMAC keys
held in non-volatile memory on the disk. Storing the
HMAC keys encrypted allows them to be backed up
without compromising them. When the certificate ob-
ject is loaded into memory on disk startup, the HMAC
keys are decrypted and cached in volatile memory.

The timestamp field is updated each time a user writes
a file object, and is used to prevent replay attacks. A cen-
tralized clock is not necessary unless requests for a par-
ticular user ID may come from several clients at about
the same time. This can occur if a user ID actually cor-
responds to a group, or if a user is logged on to several
systems at once. The sole purpose of the timestamp is
to prevent replay attacks; clocks may be synchronized
using any number of common approaches, or replay at-
tacks may be thwarted as described in Schneier [23]. An
attacker who obtained a decrypted copy of the certificate
object would be able to write to any block of the disk as
if he had physical access to the disk. Attacks of this sort
could destroy valid data by overwriting it, but could not
plant undetectable fakes unless the attacker were also an
authorized reader of the file (and even this is impossible
if a block must be signed by its writer, as we require in
two of our security schemes).

3.4 SNAD Security Schemes

Our security schemes all use symmetric encryption to
encrypt data objects, but vary in the mechanisms used to
provide end-to-end data integrity. This variation trades
off slight reductions in integrity guarantees for signifi-
cantly higher performance by varying the number, type,
and location of the cryptographic operations. We focus
on the operations performed in each of the schemes; de-
tails on the security of the schemes can be found in an
earlier paper [10].

All of the SNAD protection schemes provide strong
security by encrypting each block of data using RC5 at
the client; other encryption algorithms may also be used.
Because the RC5 keys are stored on the drive encrypted
with the public key of any user permitted to access the
file, even gaining access to both the ciphertext on the
disk and the encrypted keys would be of no use without
the necessary private key. As a result, the disks provide
an encrypted block of data and encrypted keys to any-
one who requests them. Assuming that the encryption
is sufficiently strong, the encrypted information will not
benefit an attacker, so there is little use in having the disk
attempt to verify the identity of a requester. If the user
can decrypt the symmetric key, he can obtain the block’s
plaintext.

Writing blocks in all three schemes is controlled in

much the same way as a standard file system, but with
strong writer authentication. Only authenticated users
with permission to write a block are allowed by the disk
to do so. Traditional file systems, however, are vulnera-
ble to attackers placing bogus data on the disk by gaining
access to low-level write routines. SNAD guards against
this with encryption and checksumming; secure blocks
written without knowledge of the symmetric key for the
object will give a checksum error when decrypted by a
client. The only way for an unauthorized write to occur
is for an authorized reader to gain physical access to the
disk, use the file’s symmetric key to write a secure block,
and (for Schemes 1 and 2) sign the cryptographic hash.
This weakness is present in any security scheme that uses
symmetric key encryption to protect files: anyone that
can decrypt the file can encrypt it as well. Reading and
writing data in each of the three schemes have much in
common. First, the user must give his private key to the
client, which is assumed to be trusted by the user. This
can be done via password, authentication server (e.g., as
is used in Kerberos [20]), or smartcard. For each file, the
user opens the file and reads the key object for the file;
for this operation as any others, file system caching may
be transparently used. The appropriate field of the key
object is then decrypted the to obtain the symmetric en-
cryption key for the file. This key is then used to encrypt
the data before sending it to the server and after decrypt
it after receiving it from the server.

3.4.1 SNAD Scheme 1

The first SNAD scheme provides security on each
block of data similar to that provided by some cryp-
tographic electronic mail security schemes such as
PGP [28]. Writes in this scheme encrypt each data block,
compute a hash over the entire data object (including the
metadata), and sign the hash using the user’s private key.
This hash can then be verified by anyone with the user’s
public key. In particular, the disk can recompute the hash
and compare it against the hash signed by the user who
sent the block. If they match, the disk successfully veri-
fies the provided signature, and the user has the permis-
sion to write the file, the SNAD server writes the block
to disk. The block security information for this scheme
thus consists of a signed secure hash.

Reads in this scheme require no operations by the
SNAD server CPU, but do require that the client CPU
check the hash and signature just as the SNAD server
did on a write. Additionally, the client must decrypt the
data.

Table 1 summarizes the operations that must be done
for each read and write request. Note that this scheme
requires relatively expensive signature and verification
operations for each disk request; in particular, the CPU



Read WriteOperations
Client NAS Client NAS

En/Decrypt � �

Hash � � �

Signature �

Verification � �

Table 1: Cryptographic operations used in Scheme 1.

Read WriteOperations
Client NAS Client NAS

En/Decrypt � �

Hash � � �

Signature �

Verification �

Table 2: Cryptographic operations used in Scheme 2.

on the network-attached disk must perform an expen-
sive signature verification for each block write. Because
this CPU is likely to be slow, the verification will reduce
write performance

3.4.2 SNAD Scheme 2

Scheme 2 replaces the SNAD server’s signature veri-
fication with an HMAC. In this scheme, the client per-
forms a cryptographic hash on the block and signs it.
However, this signed hash, which is stored with the se-
cure block, is only verified by the client when it reads
the block. The client also calculates an HMAC on
the secure block using the secret HMAC key it shares
with the server and sends the HMAC to the SNAD
server. The SNAD server computes an HMAC using the
shared secret key from the certificate object and checks
it against the HMAC received from the client. Recalcu-
lating the entire hash including the HMAC key would be
time-consuming; instead, the client simply performs an
HMAC over the hash.

The replacement of a signature verification by an
HMAC reduces the load on the SNAD disk CPU, but
does not reduce the load on the client CPU, which still
must perform signatures on writes and verifications on
reads. Table 2 shows the operations that the client and
server perform for secure block reads and writes

3.4.3 SNAD Scheme 3

The previous two schemes use a public-key signature
to identify the originator of a data block and ensure that
the block hash has not been modified. The third scheme
uses a keyed-hash (HMAC) approach to authenticate a

Read WriteOperations
Client NAS Client NAS

En/Decrypt � �

Hash � � � �

Signature
Verification

Table 3: Cryptographic operations used in Scheme 3.

writer of a data block and verify the block’s integrity.
HMACs differ from signed hashes in that a user able to
verify a keyed-hash is also able to create it. Scheme 3
still uses public-key authentication for key objects be-
cause writing key objects, while slower with public-key
controls, is very infrequent.

Write operations in this scheme require the client to
encrypt the secure block and calculate an HMAC over
the ciphertext. This information is then sent to the
disk, which authenticates the sender by recomputing the
HMAC using the shared secret key from the certificate
object. If the write is authentic and the user has the per-
missions to modify or create the secure block, the SNAD
disk commits the write to disk, updating structures as
necessary. Note that the disk does not store the HMAC
because it must recalculate a new HMAC if the reader is
a different user from the user who wrote the block.

Unlike the previous two schemes, this scheme requires
the SNAD disk to perform a cryptographic operation on a
read: the disk must calculate a new HMAC using the key
from the user requesting the data. The data object, along
with the new HMAC, is then sent to the client requesting
the data. If the disk were forced to write blocks without
the proper encryption key, a client could detect this dur-
ing a read by recomputing the non-linear checksum over
the cleartext and comparing it to the stored checksum.

The operations performed by the client and SNAD
disk are summarized in Table 3. Note that this scheme re-
quires no signature generation or verification operations;
however, the SNAD disk must now compute an HMAC
on both reads and writes

3.5 SNAD Design Issues

There are many design issues that must be considered
when building a secure file system, particularly in the
area of key management. Mazières,et al. discuss many
of these issues in more detail [18, 19]; however, we feel
that there are a few problems of particular importance
that should be mentioned here. These issues include cre-
ating key objects, adding and removing users from a key
object, and providing a key escrow system.



3.5.1 Creating a Key Object

The creation of file objects and data objects is rela-
tively straightforward, assuming that an appropriate key
object and certificate object already exist. However,
there must be a way to create new key objects.

The primary requirement for a new key object is a new
RC5 key that will be used to encrypt files that use the
key object. The key object creator must ensure that the
RC5 key is truly random (not merely pseudo-random),
and then encrypt it with his own public key as well as that
of anyone else he wishes to have access to the file. Once
this is done, the key object may be stored on a SNAD
disk, and is ready for use. This procedure is relatively
simple, and only relies on the ability to generate truly
random numbers for the RC5 key.

3.5.2 Modifying Access Permissions

One of the largest difficulties with many systems for
maintaining security is dealing with the modification of
access groups. Adding users to an access group is rela-
tively straightforward a user with the rights to add a new
user can simply use his private key to obtain the RC5 key,
and encrypt that key with the new user’s public key. The
new user can now access the files associated with this key
object.

Revoking permissions is a more difficult problem for
which there are several possible solutions. The first so-
lution is to simply delete the user’s line from the key ob-
ject; if this is done, the user will be unable to obtain a
new copy of the RC5 key, though he may still have the
RC5 key cached somewhere. A second solution is to im-
mediately reencrypt the associated files using a different
key object containing only those users who should still
have access to the file. This solution is slower, but will
ensure that the revoked user cannot access the file. A
third solution is to apply the second solution lazily. This
allows the revoked user to continue to access old data un-
til the files are reencrypted, but denies him access to any
new data, which is encrypted with a different key.

The choice of revocation method is still an open is-
sue with no well-accepted solution. We are currently in-
vestigating tradeoffs between these three mechanisms for
changing access permissions.

3.5.3 Key Escrow

One potential problem with an encrypted file system is
that a user may abscond with his key (or simply lose it),
making it impossible to access files that only he was al-
lowed to see. In many organizations, this is an important
argument against encryption.
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Figure 5: Performance of cryptographic algorithms on
low-cost CPUs. Block size is 32 KB except for sign &
verify, which are done on 128 bit inputs.

However, this problem can be solved with key escrow:
including an escrow “user” in every key object. This pri-
vate key for this escrow “user” may be kept in a safe
(or even spread across multiple safes); the system only
requires that the corresponding public key be available
for the creation of entries in new key objects. This solu-
tion in no way weakens the strong security present in the
file system; an intruder would still need the private key
(which is not kept online) to break into any file.

Note that escrow isnot required in SNAD, though it
may be included if desired.

4 Performance

All of the security schemes we presented would go a
long way towards securing data in distributed file sys-
tems. However, few would use such strong security
if doing so meant crippling the file system’s perfor-
mance. Our measurements show that strong security
can be achieved without sacrificing performance. Using
slightly longer keys has relatively little effect on encryp-
tion speed, but doubles the time required for brute-force
cryptanalysis for each bit added to the key length.

4.1 Cryptographic Overhead

We first tested the raw speed of the cryptographic al-
gorithms used by SNAD; this provided insight into how
fast each of our schemes was likely to be. We previously
found that using encryption in time-critical systems is
feasible [9]; performance tests on additional (newer)
hardware are summarized in Figure 5.

As Figure 5 shows, the most expensive operation by
far is signature generation. We used a modulus of 512
bits in the RSA algorithm, with 32,767 as the public
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Figure 6: Cryptographic overhead for SNAD using a
360 MHz MPC750 for both client and disk, assuming
32 KB data blocks.

exponent, which allowed verification times to be much
faster than signature generation times. Similar tests on a
200 MHz Pentium Pro with 1024 bit keys [26] required
43 ms for a public key signature; the faster processors
available today should be able to complete this operation
in times similar to those we measured for 512 bit keys.

The length of time required to compute a signature
suggests that Schemes 1 and 2 are likely to be con-
siderably slower than Scheme 3 on a workload that in-
cludes many writes. On a read-mostly file system, how-
ever, the long time required to calculate a signature is
less important and the benefits of the stronger protection
available from Schemes 1 and 2 may be more impor-
tant. While this data was measured on relatively mod-
ern CPUs, progress marches on. As a result, a 500 MHz
AMD K6 is currently available for $20 retail; a 300 MHz
K6 is even less expensive, and both are inexpensive
enough to serve as an embedded processor.

By combining Tables 1, 2, and 3 and Figure 5, we can
derive the theoretical overhead for each security scheme.
Figure 6 shows the overhead for each scheme if the
MPC750 (PowerPC G3) is used in both client and server;
different processors will have different overheads, but the
ratios between the schemes will be similar.

From Figure 5, we can derive the theoretical “speed
limit” for performance using a 360 MHz MPC750 (Pow-
erPC G3) for both client and disk. Schemes 1 and 2 are
limited to nearly 6.4 MB/s for reads, but only 1.4 MB/s
for writes. Scheme 3, on the other hand, can read at up to
10 MB/s and write even faster—12.7 MB/s. These rates
are based on cryptographic overhead only; they do not in-
clude network and disk delays. However, they are useful
in showing how fast a cryptographic file system could go
given sufficiently fast disks and networks. Note, too, that
Schemes 1 and 2 are limited primarily by the amount of
time needed by the client to compute the signature; thus,

they may work well in environments with many clients
and relatively few disks.

4.2 SNAD Performance Measurements

Though measuring the performance of cryptographic
operations is useful, it does not show the full impact
of end-to-end security on a distributed file system. We
constructed prototype SNAD disks and clients, and ran
experiments to see how much performance degradation
was incurred when cryptographic overhead was added
to a block-level SNAD server. The observations in this
section present the worst-case scenario for cryptographic
overheads because real file systems will likely have other
overheads not present in a raw block server, allowing the
cryptographic overheads to be partially overlapped with
file system overheads.

Our workload consisted of reads and writes to logi-
cal blocks on disk with two access patterns: random and
sequential. For the random access pattern, the client ac-
cessed a randomly selected a sequence of secure blocks.
In the sequential access pattern, the client made 4 MB se-
quential requests, broken up into individual requests for
secure blocks. This access pattern minimized seek and
rotational latency but still incurred cryptographic over-
head for each secure block.

Our experimental setup consisted of multiple VME
boards running a real-time kernel (Wind River’s
VxWorksTM). Each board was based on the MPC750
running at either 333 or 360 MHz. The VME chassis was
used only for power; the boards were connected to each
other by 100 Mbit/s Ethernet switched through a Cisco
2900XL switch. In addition, each server was connected
to a Seagate Cheetah 10K RPM UltraSCSI disk drive.
We used 360 MHz boards for both client and server for
the one-to-one tests; our multiple client and server tests
used different configurations that are detailed later.

4.2.1 Baseline: No Security

Our first set of tests stressed the system without any
cryptography, showing how fast the system could read
and write data unencrypted and unencumbered by any
security mechanisms. Figure 7 shows the performance
of a one client, one disk SNAD system without any
cryptographic overhead. There is a knee in the perfor-
mance curve around 8 KB, and a block size of 32 KB
delivers nearly the maximum performance permitted by
a 100 Mbit/s Ethernet for sequential access. As ex-
pected, random accesses are slower than sequential ac-
cesses, though the large write buffer on the disk allows
write performance for random writes to approach that of
sequential writes for large blocks.
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Figure 7: SNAD performance without cryptographic
controls.
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Figure 8: SNAD performance using Scheme 1.

We used the performance measurements shown in Fig-
ure 7 as a baseline for our other performance measure-
ments, showing the effect of strong cryptographic secu-
rity on file system performance for each security scheme
in Section 3.4.

4.2.2 Performance of Scheme 1

As described in Section 3.4.1, Scheme 1 provides the
best security, albeit at the cost of lower performance. Our
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Figure 9: SNAD performance using Scheme 2.

experiments showed that, as expected, Scheme 1 suffers
greatly on both sequential and random writes. However,
Scheme 1 can keep up with random reads of blocks up to
32 KB, though it cannot keep up with sequential reads.
These results are shown in Figure 8.

The performance shown in Figure 8 indicates that,
with current processors, Scheme 1 is unsuitable for dis-
tributed file systems that require good performance with
one exception: file systems that are dominated by small
random (non-sequential) reads. For most access pat-
terns, though, we must use other security schemes un-
til processor speeds increase sufficiently to permit use of
Scheme 1.

4.2.3 Performance of Scheme 2

Scheme 2 improves upon the first scheme by chang-
ing the write operation to be less CPU-intensive at the
SNAD server with little loss in security. The read opera-
tions in both Schemes 1 and 2 are identical, and the graph
in Figure 9 indeed shows that the two schemes perform
identically, with sequential reads suffering a significant
performance loss and random reads running at the same
speed encrypted and in the clear. However, the hoped-
for performance gains on writes did not materialize with
a single client because the bottleneck was in the gener-
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Figure 10: SNAD performance using Scheme 3.

ation of the public-key signature at the client. Instead,
the write performance of Scheme 2 is similar to that of
Scheme 1; neither is currently suitable for systems with
large sequential writes.

4.2.4 Performance of Scheme 3

Scheme 3 replaces the signed hash for block integrity
and writer authentication with a keyed hash (HMAC).
While this results in slightly less security, performance
for this scheme is greatly improved over the first two
schemes, as shown in Figure 10. This graph shows that,
for Scheme 3, random I/O operations (read and write)
suffer little or no performance penalty for cryptographic
controls with block sizes between 2 KB and 32 KB. Long
sequential transfers, on the other hand, do suffer a small
performance penalty: large sequential writes with en-
cryption run at 88% of the bandwidth of unencrypted
writes, and large sequential reads run at 81% of the band-
width of unprotected reads. We believe that this rela-
tively small performance penalty is an acceptable price
to pay for a large increase in file system security.
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Figure 11: Performance of three security schemes and
unsecured operations for 8 KB blocks.

4.2.5 Performance Summary

Figure 11 shows the performance of all three security
schemes and unsecured storage in a system using 8 KB
blocks. We chose this block size because, although many
current UNIX systems use 4 KB blocks, we believe that
8 KB (or even larger) is an appropriate size in an envi-
ronment where 40 GB disks are common. In a system
dominated by small reads, any of the security schemes
would be acceptable, and would not reduce performance
significantly.

In systems with many sequential operations or even
a moderate number of writes, however, only the third
scheme maintains performance within 20% of unsecured
storage. The first two security schemes require the client
to generate a public-key signature on writes, limiting per-
formance. Sequential reads under the first two schemes
also have reduced performance due to the public-key sig-
nature verification required on the client. This operation
is much faster than signing, and does not slow down ran-
dom reads, though it is not fast enough for sequential
reads.

5 Future Work

We are currently building a large-scale file system us-
ing object-based storage devices that use the security
system described in this paper. Using this testbed, we
are investigating the scalability of the different security
schemes. Schemes 1 and 2 are slow in part because the
clients must generate a signature. With one client and
one server, this reduces performance. However, with
many relatively low-bandwidth clients, the overhead of
generating signatures is distributed to many machines.



In such a system, even a relatively slow CPU on a SNAD
server can handle several clients simultaneously.

The performance of SNAD is quite good: it can pro-
vide strong security and authentication for a penalty of
between 1% and 20%, depending on workload. This
overhead can be reduced further by placing special-
purpose encryption hardware on CPUs, making it pos-
sible to do cryptographic operations considerably faster
than the general purpose processors used in this study. If
this is done, SNAD with the stronger Scheme 1 security
would be feasible.

There is still much work to do on cryptographically
secure file systems, particularly with real implementa-
tions. Systems such as TCFS [6] are a step in the right
direction; however, issues such as performance, key re-
vocation and security infrastructure in general need to be
explored further.

6 Conclusions

We presented a design for Secure Network Attached
Disks and demonstrated that strong security for storage
need not drastically reduce system performance. Ran-
dom access reads and writes in our system suffered al-
most no performance penalty, and large sequential op-
erations ran at 88% of maximum for writes and 81% of
maximum for reads. This performance was achieved us-
ing inexpensive CPUs which could be included on each
secure disk.

This security mechanism for distributed storage sys-
tems solves many of the performance and security prob-
lems in existing systems today. This system provides
user data confidentiality and integrity from the moment
it leaves the client computer. The distributed storage
system should perform substantially better than central-
ized file servers, and provide better reliability. Having
the security functionality decentralized will improve per-
formance and scalability and remove the single point of
failure that plagues many proposed centralized security
schemes to date.

Integrating SNAD security schemes into modern dis-
tributed file systems is essential. Unsecured data is vul-
nerable to threats ranging from security holes in the op-
erating system to unscrupulous users with access to raw
storage devices. Implementing the security schemes we
have described in a storage system costs relatively little
in performance while providing tremendous advantages
in security. Given the hostile environment on the Inter-
net, distributed storage systems can no longer afford to
be without strong security.
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