Adverse Filtering Effects and the Resilience of
Aggregating Caches

Ahmed Amer and Darrell D. E. Long
Computer Systems Laboratory
Jack Baskin School of Engineering
University of California, Santa Cruz

a.amer@acm.org, darrell@soe.ucsc.edu

ABSTRACT

Cache hit rates can be dramatically affected by the pre-
filtering effects of successive cache stages. Where the in-
tervening cache is of comparable size to the target cache,
this effect can render traditional replacement policies to-
tally ineffective. We propose that such scenarios are in-
creasingly common in distributed and mobile environments.
We present a study of the effects of intervening cache fil-
tering on hit rates, demonstrating the rapid degradation of
performance for traditional cache replacement schemes. We
also compare the performance of a mechanism we have re-
cently developed, the aggregating cache. The aggregating
cache exhibits tremendously improved performance degra-
dation under even the most problematic scenarios.

Keywords
aggregating cache, prefetching, implicit prefetching, cache
filtering effects

1. INTRODUCTION AND MOTIVATION

Caching algorithms are most often tested as a management
system of an intermediate store of limited capacity, lying
between a data client and a storage server. Indeed, this is
the most common scenario for a cache, where it is often used
as an intermediate store, faster than a larger, slower, main
store. This is true of caching between levels of a memory
hierarchy, or caching of data retrieved through slow, or high-
latency, interfaces such as a distant network server. Such a
model we will refer to as a single-stage caching model (Fig-
ure 1(a)). With the growing complexity and scale of dis-
tributed data storage environments, we can now see exam-
ples of caches that do not follow this single-stage model. The
important distinction of a multi-stage cache is the location
of the high-cost (high latency, and/or low throughput) inter-
face. Figure 1(b) shows a simple two-stage model. The data

*Supported in part by the National Science Foundation
award CCR-9972212, and the Usenix Association.

client is considered a source of data access requests, which
are then filtered through two caches before being passed on
to the main store (request sink).

The filter cache is logically near to the data client, and
the second cache is located logically closer to the storage
server. Our main concern is the effectiveness of such a sec-
ond cache in light of the filtering effects of the first stage
cache. Throughout this paper we will refer to the first stage
cache of the two-stage model as the “filter,” while the second
stage will simply be described as the “cache.” This scenario,
two comparable caches with a limited cost for inter-cache ac-
cess, can be found in many distributed computing environ-
ments. Examples include mobile file hoards when on a LAN,
where the access requests to a server cache have already been
pre-filtered through an increasingly large intervening cache
— the mobile computer’s local storage. Another example in-
cludes distributed storage systems having large client-side
caches, and high-speed network interfaces to a high perfor-
mance storage server. In such a system, client accesses to
local storage are comparable to remote data retrievals, and
so we are questioning the usefulness of server-side caching.
In a system like Sprite [14], with a high performance net-
work, we would therefore be considering the effects of a client
cache on a server cache’s hit rate.

We will demonstrate how an LRU filter, when comparable in
size to the cache, can render straightforward LRU and LFU
caching useless, with hit rates rapidly approaching zero. We
go on to describe how a caching mechanism based on predic-
tive grouping of related access events, the aggregating cache,
is much more resilient to this filtering effect.

2. THE AGGREGATING CACHE

The most prominent feature of the aggregating cache is the
retrieval of groups of related files from the remote storage
server. Although originally intended to reduce the impact of
high latency data retrieval requests, the aggregating cache
was found to increase cache hit rates in addition to its in-
tended use of reducing the aggregate number of demand
fetches [1]. Figure 2 presents a conceptual view of this
scheme. File access requests go through the local file system
interface and, if not satisfied locally, are forwarded through
a local cache manager to the file store managed at a remote
server. The major difference from prior art in distributed
caches is the mechanism of maintaining server-side relation-
ship information, and its use to retrieve multiple related

Data Client Original

Local
Requests
REQUEST Cache
SOURCE
Storage Server Final
- Requests
REQUEST
SINK
High-cost
Interface

(a) Simple one-stage caching model.

Data Client
i Filter
REQUEST Original
SOURCE Requests Cache
Filtered
Requests
Storage Server
Final Second
REQUEST
Q | Requests Cache
SINK
High-cost
Interface

(b) Two stage cache configuration.

Figure 1: Single and two stage caching models.

files per request. This allows the client and server to trans-
parently utilize available bandwidth to fetch groups of files
based on observed access patterns.

The server component maintains per-file relationship infor-
mation, keeping track of a strictly limited group of related
files. When a client is forced to perform a high-latency re-
mote request, the server and client components of the aggre-
gating cache can cooperate to opportunistically “transmit” a
group of related files. This offers the opportunity to fully uti-
lize the transport medium, while avoiding traditional prob-
lems with predictive techniques at reducing latency effects.
For example, with file prefetching there is a risk of increas-
ing perceived latencies by initiating incorrect prefetches. Re-
cent experience with file prefetching implementations [8] has
demonstrated the negative impact of user-level prefetchers,
contending with user-generated requests, and the need for
system-level preemptible mechanisms.

We build groups by tracking a fixed number of successors

\— Server
- - File Store
Relationship
Single Request Metadata
and Retrieval

Local File System Interface J I

Single Request
— s T -
Cache Manager -~ Storage Server
Group Retrieval

Single Request
and Retrieval

Limited Local Storage

Mobile/Local System

Remote File Server

Figure 2: General aggregating cache model.

for all files accessed. A successor is simply a file accessed
immediately following the current file. This information can
easily be maintained as file metadata.

3. EXPERIMENTAL RESULTS

Simulations were run on file system traces gathered using
Carnegie Mellon Univeristy’s DFSTrace system [13]. The
tests covered five systems, for durations ranging from a sin-
gle day to over a year. The traces represent varied work-
loads, particularly mozart a personal workstation, and sves,
a system with the largest number of users. These traces
provide information at the system-call level, and represent
the original stream of access events, not filtered through a
cache. For these CMU traces we are measuring the hit-rate
for a whole file cache calculated based on file open requests.
This assumes a coarse granularity for the analysis, focus-
ing on patterns of file requests, more representative of file
hoarding scenarios.

For a finer level of analysis we also considered individual
requests for file data, drawn from the traces provided by
Drew Roselli at the University of California, Berkeley [15].
To eliminate any interleaving issues, these UCB traces were
processed to represent the workloads of individual worksta-
tions, and simulations were run against both instructional
and research machines.

The most interesting results occurred when the filter capac-
ity grows comparable to the cache size, with the usefulness
of a traditional cache disappearing as the filter capacity ex-
ceeds the cache size. The critical point for relative cache
and filter sizes appears to be the equality point. For one
set of graphs we fix an arbitrary filter size, and observe the
performance of the cache as we increase its capacity. For the
other set of results we will fix an arbitrary cache size, and
observe the effect of increasing the intermediate filter capac-
ity on cache performance. For the following graphs we chose
to fix cache capacity at 300 items, and to fix filter capacity
at 100 items. These capacities were chosen arbitrarily, but
the critical nature of the equality point was observed at all
capacities tested.

Figure 3 shows the effects of varying the capacity of the filter
on the hit rate of our cache. We compare three cache man-
agement schemes: LRU replacement, LFU replacement, and

g
)
3
.4
I
20 - 1
e
L Tk ~ 1
10 e
0 1 1 I B — Heoo * *
50 100 150 200 250 300 350 400 450 500

Filter Capacity (files), cache capacity = 300

(a) mozart

Hit Rate (%)

ol

0 I I I I | e,
50 100 150 200 250 300 350 400 450 500

Filter Capacity (files), cache capacity = 300

(b) ives

Figure 3: CMU trace cache hit rates for varying
filter sizes.

a basic aggregating cache (that tracks and retrieves groups
of up to five related files). It is no surprise that LRU outper-
forms LFU replacement, but the most important observation
from the figure is how rapidly the performance of the cache
degrades. As the filter size approaches the fixed cache size,
we see a dramatic drop in the hit rate for our cache. This is
consistent both for the dedicated workstation mozart, and
the more populous system ives. Regardless of the nature
of the request source (multi-user or dedicated system) this
degradation appears very rapidly, and both LRU and LFU
caching quickly become useless. In contrast, the aggregating
cache maintains consistent performance, and shows a much
milder degradation in hit rate. All independent locality of
reference is quickly masked by the intervening cache, ren-
dering straightforward LRU caching useless while the ag-
gregating cache manages to maintain a higher hit rate in
spite of this. This is thanks to the ability of this scheme
to capture inter-file relationships. Although the intervening
cache masked all observable locality for LRU and LFU, these
schemes assume an independence of access. Fortunately, the

€
g 30t A
4
£
- ’X‘(
20 e e
,,,,,, e
e
e
10 | e . *- 1
P
P Mg
50 100 150 200 250 300 350 400 450 500

Cache Capacity (files), filter capacity = 100

(a) mozart

Hit Rate (%)

30 | i T o 4

10 |

0 - I I I I I I I I
50 100 150 200 250 300 350 400 450 500

Cache Capacity (files), filter capacity = 100

(b) ives

Figure 4: CMU trace cache hit rates for varying
cache sizes.

interdependence among file access events is not completely
masked by filtering, allowing the aggregating cache to sus-
tain a hit rate even when requests are filtered through a
filter larger than the cache.

It should be noted that the aggregating cache is being sup-
plied with exactly the same information as the LRU and
LFU schemes. The design of the aggregating cache allows
for the forwarding of relationship information, gathered at
the data client (request source), to the storage server. If this
scheme were used we would expect higher hit rates (above
90% for these workloads), equivalent to an aggregating cache
free of the filtering effects of an intervening cache. These
results represent the performance of an aggregating cache
when confronted with the same problematic access behavior
as presented to the LRU and LFU schemes.

Figure 4 shows the improvement in cache hit rates as cache
size is increased relative to a fixed filter size. Again we
see a rapid recovery of LRU and LFU performance as the

Hit Rate (%)

g -

0 I I I I I N ——
50 100 150 200 250 300 350 400 450 500
Filter Capacity (files), cache capacity = 300

(a) Instructional Worsktation

80 :
a-cache ——
Ity —=x---
Ifu ------
oFE— 1
60 [—
50 [—
g
g 40+ E
.4
I
30 —
20 | —
10 —
s S
o . P — S « " % "
50 100 150 200 250 300 350 400 450 500

Filter Capacity (files), cache capacity = 300

(b) Research Workstation

Figure 5: UCB trace cache hit rates for varying filter
sizes.

cache size increases. The aggregating cache remains ahead
of both, and will remain so, as the limit is a simple one-stage
cache scenario for which the aggregating cache is known to
outperform the other two schemes.

A trend observable in both Figures 3 and 4 is the rate of
decline for the LRU/LFU caches vs. the aggregating cache.
Other experiments have shown us that the mozart workload
tends to be more predictable than ives. The mozart trace,
with fewer users and subsequently fewer independent sources
of requests, degrades more rapidly due to filtering, and yet
the aggregating cache is better able to maintain hit rate.
While with ives we see a more gradual degradation in LRU
and LFU, while the aggregating cache is slightly less adept
at tolerating the filtering. This supports the reasoning that
the aggregating cache’s performance is due to its ability to
capture higher-level dependencies between file access events.
More independent accesses result in reduced filtering impact
and reduced improvement through use of the aggregating
cache.

70

T
a-cache —+—

20 |

10 |

0% I I I I I I I I
50 100 150 200 250 300 350 400 450 500

Cache Capacity (files), filter capacity = 100

(a) Instructional Workstation

70 T T T

60 - q

40 | R

Hit Rate (%)

30 —

20 | —

10 | —

- I
50 100 150 200 250 300 350 400 450 500
Cache Capacity (files), filter capacity = 100

(b) Research Workstation

Figure 6: UCB trace cache hit rates for varying
cache sizes.

The CMU traces are most useful for their extensiveness, as
they cover well over a year of recorded workloads, but may
be too old for to be fully representative of current work-
loads. Also, they often lack recordings of more detailed
access events, e.g. specific read and write system calls.
For these reasons we repeated our experiments on the UCB
traces [15]. Specifically we will present results of a typical
research workstation and an instructional system. Figures 5
and 6 illustrate the same results as Figures 3 and 4 respec-
tively.

Both figures demonstrate the same trends we observed for
the CMU traces, with a notably higher performance for the
aggregating cache, especially for the more predictable re-
search workload. In fact, the aggregating cache could be
considered to have been only slightly affected by the growing
size of the filter, while the LRU and LFU are even more seri-
ously affected. Our hypotheses appear to hold more strongly
for the more recently recorded workloads.

4. RELATED WORK

Our work has drawn from work in distributed file systems,
predictive prefetching, and working set identification. In
particular, our model is based on ideas of cache management
introduced with such systems as Sprite [14], AFS and later
Coda [7]. These systems have undergone analysis of their
caching behavior, with Sprite the subject of a particularly
detailed analysis [2]. In this context our work has looked to
server-side cache hit rates, an area not directly considered
by these studies.

Griffioen and Appleton presented a file prefetching scheme
based on graph-based relationships [6]. Their probability
graphs are very similar in nature to our relationship model,
but are limited to tracking frequency of access within a par-
ticular “lookahead” window size. Our model, on the other
hand, is primarily based on immediate recency (succession),
and requires no minimum probability to initiate a prefetch,
but opportunistically fetches related files. Our aggregating
caches are also independent of any concept of lookahead win-
dow size. Later work by Kroeger and Long [9] compared the
predictive performance of the last successor model to Grif-
fioen and Appleton’s scheme, and more effective schemes
based on context modeling and data compression. The use
of the last successor model for file prediction, and more elab-
orate techniques based on pattern matching, were first pre-
sented by Lei and Duchamp [12]. The first proposed applica-
tion of data compression techniques to file access prediction
was presented by Vitter and Krishnan [18]. Earlier work on
the automatic detection of working sets includes the work of
Tait and Duchamp [17]. “Dynamic Sets” presented another
model for using file groups, but instead of automatic de-
tection, dynamic sets provides mechanisms for applications
to specify groups of files in which they are interested [16].
The Seer project also attempted to use file groups for mo-
bile file hoarding [11]. Seer used the notion of a semantic
distance coupled with shared-neighbors clustering to build
file hoards.

Our study has considered the general case of requests being
filtered through a client/intervening cache of comparable ca-
pacity to the server cache. In the Web domain, especially
cooperative caching and web proxies, Wolman et ol have
addressed similar issues [20, 19]. In that context, the au-
thors were specifically interested in the usefulness of coop-
erative caching schemes at different system scales. Other
recent work in this area includes the Hummingbird file sys-
tem, which is very effective at improving the performance
of caching web proxies [5]. The prefetching nature of the
aggregating cache is similar to Bestavros’ work on the use
of speculation [3] to reduce server loads and improve service
times, and later work by Duchamp on “Prefetching Hyper-
links” [4]. Specifically, the similarity lies in the non-volatile
maintenance of relationship information at the server, and
its use to reduce server loads and service times. In con-
trast, our study targets general file system workloads, and
is based on a more general scheme for relationship tracking.
We should also point out that we do not make any assump-
tions about the access information used to build file groups,
and the results presented in this study were based solely on
the “filtered” file accesses, with detailed information about a
client’s access behavior being fully masked from the server.
In a WWW environment, the server (or proxy) cache has

the advantage of being able to receive more detailed client
access information, and the additional luxury of embedded
relationship hints (the hyperlinks found in most HTML doc-
uments).

5. CONCLUSIONSAND FUTURE WORK

We have confirmed the intuitive result that multiple stages
of comparable caches can have negative interactions, result-
ing in the uselessness of the latter stages. With the aggregat-
ing cache we have seen considerable resilience to such effects,
implying its suitability when an effective caching strategy is
required closer to the server. This result has also shown
that the aggregating cache can remain effective in terms of
hit rates, regardless of the placement of the data gathering
components. Client forwarding of relationship information
is not essential.

It is likely that other predictive prefetching techniques may
exhibit similar graceful degradation in performance, though
we doubt that any system can guarantee avoiding filtering
penalties completely. Even with prefect prediction systems
there are strict performance limits, imposed by the general
caching architecture under which you operate. This was
made clear in an earlier study on the bounds of latency re-
duction in web proxy caches [10]. The performance of other
predictive approaches, and alternative filtering mechanisms
are subjects of future study. Further investigation of al-
ternative performance metrics, especially aggregate remote
fetches, and workloads incorporating higher levels of inter-
leaving are still required.

6. ACKNOWLEDGMENTS

We are especially grateful to Tom Kroeger and Randal Burns
for valuable feedback, reviews and discussions. We also wish
to thank the anonymous reviewers for their helpful feedback
and valuable insights. We are grateful to all the members
of the Computer Systems Laboratory, for their continuous
feedback, support and valuable discussions. Our lengthiest
traces were kindly made available by M. Satyanaryanan of
Carnegie Mellon University, through the greatly appreciated
efforts of Tom Kroeger in processing and conversion. We are
also grateful to Drew Roselli for providing the UCB traces
used in this study.

7. REFERENCES
[1] A. Amer and D. D. E. Long, “Aggregating caches: A
mechanism for implicit file prefetching,” in
Proceedings of the Ninth International Workshop on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS 2001),
IEEE, Aug. 2001. (to appear).

[2] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W.
Shirriff, and J. K. Ousterhout, “Measurements of a
distributed file system,” in Proceedings of 13th ACM
Symposium on Operating Systems Principles,
(Asilomar, Pacific Grove, CA), pp. 198-212,
Association for Computing Machinery SIGOPS, Oct.
1991.

[3] A. Bestavros, “Using speculation to reduce server load
and service time on the WWW,” in Proceedings of
CIKM ’95: Conference on Information and Knowledge

[4]

[6]

[7

[9]

[11]

Management, (Baltimore, MD), pp. 403-10, ACM,
Dec. 1995.

D. Duchamp, “Prefetching hyperlinks,” in Proceedings
of the Second Useniz Symposium on Internet
Technologies and Systems, (Boulder, CO), pp. 127-38,
USENIX Association, Oct. 1999.

E. Gabber and E. Shriver, “Let’s put NetApp and
CacheFlow out of business!,” in 9th ACM SIGOPS
European Workshop, (Kolding, Denmark), ACM,
Sept. 2000. Proceedings are yet to be published.

J. Griffioen and R. Appleton, “Reducing file system
latency using a predictive approach,” in USENIX
Summer Technical Conference, pp. 197207, June
1994.

J. J. Kistler and M. Satyanarayanan, “Disconnected
operation in the Coda file system,” in 13th ACM
Symposium on Operating Systems Principles (SOSP),
(Pacific Grove, CA, USA), Oct. 1991.

T. M. Kroeger, Modeling File Access Patterns to
Improve Caching Performance. PhD thesis, University
of California, Santa Cruz, Mar. 2000.

T. M. Kroeger and D. D. E. Long, “The case for
efficient file access pattern modeling,” in Proceedings
of the Seventh Workshop on Hot Topics in Operating
Systems (HotOS-VII), (Rio Rico, Arizona), IEEE,
Mar. 1999.

T. M. Kroeger, D. D. E. Long, and J. C. Mogul,
“Exploring the bounds of web latency reduction from
caching and prefetching,” in Proceedings of the First
Useniz Symposium on Internet Technologies and
Systems, (Monterey, CA), pp. 13-22, USENIX
Association, Dec. 1997.

G. H. Kuenning and G. J. Popek, “Automated
hoarding for mobile computers,” in Sizteenth ACM
Symposium on Operating Systems Principles, (Saint
Malo, France), pp. 264-75, Oct. 1997.

H. Lei and D. Duchamp, “An analytical approach to
file prefetching,” in 1997 USENIX Annual Technical
Conference, Jan. 1997.

L. Mummert and M. Satyanarayanan, “Long term
distributed file reference tracing: Implementation and
experience,” Software - Practice and Ezperience
(SPE), vol. 26, pp. 705-736, June 1996.

M. N. Nelson, B. B. Welch, and J. K. Ousterhout,
“Caching in the Sprite network file system,” ACM
Transactions on Computer Systems, vol. 6, no. 1,
pp. 134-154, 1988.

D. Roselli, “Characteristics of file system workloads,”
Technical Report CSD-98-1029, University of
California, Berkeley, Dec. 23, 1998.

D. C. Steere, Using Dynamic Sets to Reduce the
Aggregate Latency of Data Access. PhD thesis, School
of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, Jan. 1997.

[17]

[18]

[19]

C. D. Tait and D. Duchamp, “Detection and
exploitation of file working sets,” Tech. Rep.
CUCS-050-90, Computer Science Department,
Columbia University, New York, NY 10027, 1990.

J. S. Vitter and P. Krishnan, “Optimal prefetching via
data compression,” Journal of the ACM, vol. 43,
pp. 771-93, Sept. 1996.

A. Wolman, G. Voelker, N. Sharma, N. Cardwell,
M. Brown, T. Landray, D. Pinnel, A. Karlin, and
H. Levy, “Organization-based analysis of web-object
sharing and caching,” in Proceedings of the Second
Useniz Symposium on Internet Technologies and
Systems, (Boulder, CO), pp. 25-36, USENIX
Association, Oct. 1999.

A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell,
A. Karlin, and H. M. Levy, “On the scale and
performance of cooperative Web proxy caching,” in
Proceedings of the 17th ACM Symposium on Operating
Systems Principles (SOSP), (Charleston, SC),

pp- 16-31, Dec. 1999.

