SIVSHM: Secure Inter-VM Shared Memory

Technical Report UCSC-SSRC-16-01
May 2016

Shesha B. Sreenivasamurthy Ethan L. Miller
shesha@ucsc.edu elm@cs.ucsc.edu

Storage Systems Research Center
Baskin School of Engineering
University of California, Santa Cruz
Santa Cruz, CA 95064

http://www.ssrc.ucsc.edu/

SIVSHM: Secure Inter-VM Shared Memory

Shesha B. Sreenivasamurthy
Univ. of California, Santa Cruz
shesha@ucsc.edu

Abstract

With wide spread acceptance of virtualization, virtual ma-
chines (VMs) find their presence in various applications
such as NAT servers, firewall servers and MapReduce ap-
plications, where a data manager collects data from the
external world and distributes it to multiple workers for
further processing. Currently, application managers can
share data with workers either using network or inter-VM
shared memory (IVSHMEM). Network provides security
due to isolation at the cost of reducing throughput and
IVSHMEM provides better throughput sacrificing secu-
rity as manager and untrusted workers have full access to
the shared memory region. SIVSHM solves the security
problem by segmenting inter-VM shared memory, so that
manager has access to all the segments and each worker
has access to segment that belongs only to it, thereby en-
abling security without sacrificing throughput. Secondly,
IVSHMEM uses a central distributor to exchange eventfd
— afile descriptor to an event queue of length one, which is
used for inter-VM signaling. Central distributor becomes
a bottleneck and increases boot time of VMs. SIVSHM
enables direct exchange of eventfds amongst VMs elim-
inating the need for an eventfd distributor per service re-
ducing boot time of a service to (7/10)" compared to
IVSHMEM.

1 Introduction

In cloud, a collection of VMs provide a service. In a
multi-tenant environment, each tenant runs multiple such
services. MapReduce services will have a manager (map-
per) that farms incoming data to multiple workers (reduc-
ers), making routing decisions, and the workers run the

Ethan L. Miller
Univ. of California, Santa Cruz
elm@cs.ucsc.edu

computation using programs provided by untrusted third
party computation providers and return the result back to
the manager [18]. In the rest of the document, manager
and mapper are used interchangeably and so are work-
ers and reducers. The goal is to ensure that each reducer
has access to only its portion of data thereby preventing
any information leak amongst the reducers. Data sharing
using traditional network provides that natural boundary
whereby data of one reducer is inaccessible to another. If
mapper and reducer VMs run on the same physical host,
data can be shared by inter-VM shared memory [11, 13].
Though this improves performance significantly, it is the
vulnerable to information leak among the VMs.

SIVSHM solves this problem by slicing the shared
memory and mapping only a slice to each reducer VM
in the hypervisor. Thus, each reducer VM has access to
only its slice. Any illegal access of memory by the guest
kernel impacts only the adversary VM without affecting
host, mapper or other reducer VMs.

Inter-VM interrupts are used between mapper and re-
ducer VMs to signal data availability and task com-
pletion. This is accomplished by exchanging eventfds
[20, 21] during startup with the aid of an eventfd dis-
tributor [11, 13]. One eventfd distributor per service is
required for services using IVSHMEM. However, in a
multi-tenant multi-service environment, eventfd distribu-
tor becomes a bottleneck during VM startup, thereby in-
creasing boot time. Additionally, this extra software com-
ponent needs to be managed by cloud service manage-
ment software and is a management overhead.

SIVSHM makes inter-VM shared memory more con-
ducive to the cloud environment by enabling direct ex-
change of eventfds between mapper and reducers thereby
eliminating eventfd distributor from the architecture. This
enables SIVSHM to boot a service with 32 VMs in

(7/10)™ the time compared to TVSHMEM [11, 13].
SIVSHM makes the following two contributions:

1. secure inter-VM shared memory architecture
2. improved boot-time of services

SIVSHM is built using the same underlying mechanism
(virtual-PCI device) as that of IVSHMEM and therefore
performs similarly during data transfer as shown in fig-
ure 3. The advantage of SIVSHM over IVSHMEM is se-
curity, improved boot time, manageability and not data
transfer throughput. Data between mapper and reducers
are predominantly transferred using high speed network
interfaces. Therefore, throughput of SIVSHM is com-
pared with VirtIO [1] and to the best of our knowledge no
prior work has made such a comparative study in MapRe-
duce context. To process 32 GB, SIVSHM takes (3/5)h
and (2/5)™ the time compared to VirtIO for small (3) and
large (31) number of reducers.

2 Background

In general, MapReduce applications fall into Recognition,
Mining and Synthesis (RMS) framework proposed by In-
tel [10]. They find their presence in various applications
such as database engines, virtual routers, virtual firewalls,
load balancers, video stream processing and numerous
other applications including neural prostheses [9]. There
can be applications where intermediate results produced
on one machine are processed on another, either simulta-
neously or later in time [12]. SIVSHM can be used by all
applications that fall under this category.

There have been efforts to improve the performance of
MapReduce type of applications. Phoenix [2] is an im-
plementation of MapReduce for shared-memory systems
that includes a programming API and an efficient runtime
system. However, the drawback of Phoenix is, both map-
per and reducers run natively on physical system, which
makes it less conducive to cloud environment. SIVSHM
solves this problem by enabling mapper and reducers to
run on different VMs and also opens opportunity to have
multi operating system environment where reducer appli-
cations can be running on different type of operating sys-
tems. Additionally, mapper or reducers’ failure will or
affect other VMs in the system and the failed VM can

be restarted without unlinking the shared memory thereby
not losing any running VMs’ work.

IVSHMEM is similar to SIVSHM that can be used
to share memory between VMs. Both are implemented
as virtual-PCI (vPCI) devices in QEMU and map shared
memory region to PCI device memory. SIVSHM and
IVSHMEM perform similarly during data transfer as they
are built using the same underlying vPCI mechanism. The
advantage of SIVSHM over IVSHMEM is security, im-
proved boot time and manageability.

Several applications such as efficient inter-VM com-
munication mechanisms [15, 16, 17] have been devel-
oped using IVSHMEM infrastructure. Gordon has modi-
fied Phoenix MapReduce application so that each Phoenix
MapReduce thread runs inside a VM and have used
IVSHMEM to share memory among mapper and all re-
ducers [14]. However, this suffers from information leak
as explained earlier.

Data transfer throughput of SIVSHM is compared with
VirtlO and IVSHMEM as VirtIO is the predominant way
to transfer data between VMs. Non IVSHMEM/SIVSHM
MapReduce services distribute data between mapper and
reducers over the network using one of the two popular
virtual network devices — e1000 or VirtIO. VirtIO is a vir-
tual network device that enables high speed data transfer
between any two VMs. Simple iperf [8] test shows Vir-
tIO has 10x bandwidth compared to virtual e1000 device
(4.12 Gbps Vs 406 Mbps).

Airavat [18] runs on SELinux [19] to provide security
to MapReduce applications in cloud environment without
shared memory. Data is exchanged over the network and
therefore would perform similar to VirtlO. SIVSHM im-
proves performance with the use of shared memory and
provides security by memory segmentation.

QEMU [3, 4] is a user space hardware emulator com-
bined with KVM [6] provides complete virtualization en-
vironment in Linux. Hardware devices are emulated in
QEMU while memory management and guest instruction
execution is performed by KVM. QEMU triggers guest
instruction execution using a blocking KVM_RUN ioctl to
KVM. When guest I/O instruction such as reading and
writing to a vPCI 10-registers are encountered by KVM,
it returns from ioctl for QEMU to emulate those hard-
ware operations. During the time when control is within
QEMU, guest instruction execution has stopped. Simi-
larly, when a user signal is sent to QEMU process, KVM

returns from ioctl and after handling the signal, guest
instruction execution is resumed by QEMU by issuing
KVM_RUN ioctl. We can notice that a read/write to vPCI
IO-registers by the guest, results in a VM-exit and a con-
text switch, which are expensive operations [25, 26].

Eventfd forms the backbone of both IVSHMEM and
SIVSHM’s interrupt architecture. The eventfd() system-
call creates a kernel object that can be used as an event
wait/notify mechanism between user-space applications
and kernel. The system-call returns a file descriptor (fd)
associated with the kernel object called eventfd to the user
application. The kernel object contains an unsigned 64-
bit integer counter that is maintained by the kernel. In
IVSHMEM and SIVSHM, eventfds are used by QEMU
— a user-space application and host-kernel. Eventfds are
mapped to VPCI IO-registers by QEMU, which enables
the hypervisor (host-kernel) to directly notify VM, while
executing guest instructions of VM,. These fds are ex-
changed between VMs for efficient inter-VM signaling
during startup, by placing them in the control field of
a unix-socket message. Placing fds in the control field
of a message, is the standard linux way of fd exchange,
whereby the sender process (QEMU,) is instructing the
host-kernel to ensure that the receiving process (QEMUy})
receives a fd unique in its name space. Eventfd exchange
mechanism among VMs is improved in SIVSHM (ex-
plained in the next section), but the core signaling mecha-
nism is very similar to [IVSHMEM and we refer the reader
to IVSHMEM [13] for detailed explanation.

All applications developed using IVSHMEM can also
be developed using SIVSHM without having any of the
above mentioned drawbacks. In this work, a simple IO in-
tensive MapReduce application is chosen to demonstrate
its feasibility.

3 Design

SIVSHM architecture contains a trusted mapper VM and
a farm of untrusted reducer VMs. Guest user-space map-
per and reducer applications run inside mapper and re-
ducer VMs respectively. SIVSHM architecture is as
shown in figure 1. Polling or interrupt mechanism is used
between mapper and reducers to signal data availability
and task completion. Mapper application stripes the data
received from external world to respective memory slices

of the reducers and signal the reducers of data availabil-
ity. The reducers process the data by accessing their re-
spective slice and inform the mapper when their task is
completed. Mapper consolidates the data and presents the
result. The main advantages of SIVSHM, security and
improved boot performance are explained below.

Security: To share memory among VMs and for inter-
VM signalling, we implemented a vPCI device called
“sivshm” in QEMU. Mapper is always the first VM to be
instantiated, which gets ID O and reducers are assigned
non-zero IDs. Mapper’s sivshm device (sivshm,,) creates
a shared memory region and maps the entire region to its
PCI device memory. In IVSHMEM, reducer too maps the
entire shared memory region similar to mapper. In con-
trast to IVSHMEM, reducer’s sivshm device (sivshm,) in
SIVSHM gets shared memory ID and the size of its mem-
ory slice from sivshm,,. It offsets into the shared memory
region using its own ID as the key and maps only its slice
to the PCI device memory before booting the guest. This
ensures that guest running inside reducer VM has access
to only its slice, thereby providing superior security over
IVSHMEM shared memory architecture.

Boot performance: Inter-VM signaling between VMs
is achieved by eventfds[20, 21] in both SIVSHM and
IVSHMEM. In IVSHMEM, a mapper and reducers ex-
change eventfd through an eventfd distributor (man in
middle). Eventfd distributor becomes a bottleneck when
a service containing large number of reducers is instan-
tiated. SIVSHM removes this bottleneck by direct ex-
change of eventfd between mapper and reducer VMs.
Mapper and reducer VMs exchange information such as,
shared memory size, number of clients and client ID via
a unix-socket messages. Eventfds are piggybacked on
those messages by placing them in the message’s control
field. The format of the message exchanged is as shown
in figure 2. The exchanged eventfds are added to their re-
spective poll list, waiting to be notified by the hypervisor
of any events. This design eliminates eventfd distribu-
tor used by IVSHMEM from SIVSHM’s architecture en-
abling better boot performance as shown in section 5.

4 Implementation

System implementation is explained by taking a bottom-
up approach. Physical PCI devices have an on board

Guest User

~— »Reducer

(A%) (ID:1)

. Reducer

D:2)

Layer
Guest Kernel Kernel
Layer .-
Device | maro |¢__|__Interrupt | J BARO BARO
Memory _
SHM vPCIDEY| BART Emulated HW, PARL T BARL ™
K (sivshm,,) Layer sivshm,_.| BAR3 sivshm, | BAR3

Host User Address

presented as 0x00000000

Device Memory Ox10000000

HOST

0x20000000

.

0x30000000

Memory Slices

Figure 1: SIVSHM Architecture

CONTROL DATA

64 bits
length eventfd
4 type

32 bits
data
(eventfd)

3 bits
reserved

1 bit
needefd

4 bits 64 bits

shm size

8 bits
clients

8 bits
D

Figure 2: Format of the message exchanged between sivshm,, and
sivshm, during startup

RAM called device memory. The address of the device
memory is provided in PCI register called Base Address
Register (BAR). PCI standard [24] supports 6 BARs and
SIVSHM uses two of them — BARO for 10 register space,
BAR1 for mapping its own slice. A vPCI device in QEMU
emulates device memory by allocating host memory. In
sivshm, the vPCI device memory is a shared memory ob-
ject created using MAP_SHARED flag. The shared mem-
ory is LOCKED to prevent it from being swapped out
along with the VM by the host OS as it is not just used by
one VM but shared by many. The address of the shared
memory object is provided in the emulated BAR. The ad-
dress in the BAR is perceived as physical address by the
guest that is mapped to kernel virtual address by the guest
driver.

A guest kernel driver (sivshm.ko) to drive this new vPCI
device was implemented, that claims this device and maps
the vPCI device memory address to the guest kernel vir-
tual address. The user applications can use this device
to map the device memory to user address space, retrieve
device information and to generate interrupts. To aid of
user applications, we implemented a shared library (lib-

sivshm.so) that hides the driver interface details from the
user applications and exposes a simple API to user appli-
cations.

sivshm requires a shared memory ID, a unix socket
path, VM ID, size and maximum number of reducers as
its input. Size and number of reducers are only used by
the mapper. These parameters are implemented as device
specific variables, which are specified as command line
arguments to QEMU. Mapper is instantiated first and is
always assigned an ID 0. Specified shared memory ID is
deleted (if it is present in the system) and recreated. Op-
tionally, unlink=0 can be passed instructing sivshm not to
delete it. Reducers are assigned a non-zero ID. sivshm,,
communicates the size of the slice to sivshm, over the unix
socket.

The shared memory region is sliced into equal sized
segments: slice_size = total_shm_size / Total VMs. Total
VM includes mapper as it gets a slice too, which is used
as a message box during polling. The design does not
preclude reducers from having different sized segments.
However, for the workload used in our experiments, it
was apt to have equal sized segments. sivshm, uses its
own ID (r;) as key to calculate the start address (s;) of
device memory region: s; = shm_start_address + (r; X
slice_size). s; is mapped to BARI of sivshm, that allows
reducer r; to access only its slice. A predefined location in
the reducers’ slice is used as mailbox to exchange signals
between mapper and reducers in polling mode.

All guest instructions are executed by the hypervisor
on guests’ behalf. A write by the guest to a vPCI 10O-
register mapped to an eventfd’s kernel object, triggers an
event to be delivered to the QEMU process waiting on
the corresponding user level fd. If mapper’s guest writes
to its IO-register, the hypervisor directly notifies sivshm,.,
which sets the interrupt bit. An interrupt is delivered im-
mediately to the reducer VM via eventfd that gets handled
by the guest vPCI driver. MapReduce applications regis-
ter a signal (SIGUSR1) to be delivered when an interrupt
is handled by the vPCI kernel driver. Similarly, reducers
can also send signals to the mapper.

When the VM boots, the guest kernel driver (sivshm.ko)
claims the sivshm device. It maps the device memory to
guest-kernel address and creates a device in the system de-
vice tree. Mapper and reducer guest applications commu-
nicate with the guest-kernel driver using simple APIs of
SIVSHM'’s shared library (libsivshm.so). Mapper signals
the reducers after distributing the data so that the reduc-
ers can start processing it. Similarly, after reducers have
completed their job, they signal the mapper to perform re-
sult consolidation. A pre-defined memory location in the
shared memory region is monitored in polling mode for
signal exchange. In interrupt mode, mapper and reducer
guest-applications request the guest-kernel to send inter-
VM interrupts by using sivshm_notify APIL. These appli-
cations register a callback handler with the guest-kernel
driver, which are called when an interrupt is fired.

S Experiments and Results

The system is implemented using Linux 3.2.0-23 kernel
as both host and guest operating system, KVM hyper-
visor and QEMU version 2.3.0 device emulator. The
setup was tested on a system with 128 GB RAM and
four 10-core processors with 2 hyper-threads per phys-
ical core, seen as 80 processing units by the operating
system. Each VM was allocated 6 GB RAM. SIVSHM
was experimented with one mapper VM and {1, 3, 7,
15 and 31} reducer VMs. Each vCPU was bound to a
physical processing unit. Reducer VMs were allocated 2
vCPUs, one dedicated to the reducers’ guest application
and another one for kernel activities. Mapper VM runs
a multi-threaded application that distributes data to mul-
tiple reducers. Hence, more vCPUs were allocated to it

IRes‘p‘ —
Xferm_

2
:ezg.;.:.z.

XX

s

o

T
T
R
R
%
(X
ilels

XXRXT

(aivtelolviolols
s
S
SOTOTOTY
g

R

fotet

s
X
%

5
s
i
i

S
Sanotess

T

Time Consumed (sec)

T
fetedel
o
i
3
o
7
s
=5

%

z

T

e

S

S

e

et

o
2
ot

7
%
-
X
o
S
%
....g:g. et tetet
%
fated

o5

%
%
ool
=5
XX
%

7
z
=
5
Soxe!
atatats?
25

%
5!
Sefls

.:‘.

K

K
e
2%

o

K

oot

,.
K
<
A
et
K
S

53
olsoenst

s

SR TE IR
Shoteens

==
7
L

%
FEs
Rafele?

o 2 8o s 7o 725 T8 Ty f0p 225

%00%
X %
XX
30

i

O = Q> o> a > O & Q> O & a >
LT PSSy Ffs FFEE
S SEFT SEFF SFFF
oS & g X g gL
59 S 55 J5e ¥gs

1Reducer 3Reducers 7Reducers 15 Reducers 31 Reducers

Figure 3: Performance comparison of VirtIO, IVSHMEM and
SIVSHM to process 32 GB of data with 1 GB shared memory.
Xfer — Time taken by all mapper threads to complete data transfer
Resp — Time the mapper waits to receive response from all reducers
‘T" denotes Interrupt, ‘P’ denotes Polling

compared to reducers. With 31 reducer VMs, we have 62
CPUs allocated to reducers, 2 for the host hypervisor and
the rest 16 to the mapper VM.

Entire set of experiments was repeated 10 times and the
average of transfer and response times (explained later) is
as shown in figure 3. The error bars denote the standard
deviation of the 10 values of each experiment. In each run,
a total of 32 GB of random data was processed and perfor-
mance of VirtlO, IVSHMEM and SIVSHM is compared.
During VirtlO performance measurements, all VMs were
networked using Linux bridge. Maximum possible band-
width for VirtIO interfaces is achieved with this setup as
no packets leave the compute node. 128 MB application
buffer was allocated, as this was the maximum slice size
that SIVSHM was experimented with.

We were interested in comparing 10 performance.
Therefore, a non-CPU intensive workload such as count-
ing the number of occurrences of a specified character
and storing the result in mapper’s slice was chosen as our
workload. Transfer time (Xfer) in VirtIO is the time taken
by all mapper threads to copy data from application buffer
to kernel buffer. In SIVSHM and IVSHEMEM,, it is the
time to copy data from application buffer to reducer slices.
Response time (Resp) is the time the mapper waits to re-
ceive responses from all reducers.

In our experiments, 32 GB of data was processed with 1
GB shared memory region. Slice sized data is transferred
by mapper in parallel to all reducers. With increased num-
ber of reducers, amount of data processed by each reducer
decreases, reducing the time taken to complete the work,
especially response time, as shown in figure 3. This ef-
fectively shows performance improvement due to paral-
lelism.

The response time of SIVSHM and VirtlO are very
similar as the workers in both the cases perform simi-
lar task — counting number of occurrences of a charac-
ter. However, transfer time of SIVSHM and IVSHMEM
is significantly lower than VirtIO as both avoid a data copy
from kernel buffer to VirtlO device queue in addition to
TCP/IP stack overhead. Compared to VirtlO, SIVSHM
takes (3/5)" and (2/5)" the time at low and high reducer
counts in both polling and interrupt modes.

The response time of SIVSHM is marginally better than
IVSHMEM at lower reducer count and the gap gradually
decreases with higher reducer count. This is attributed to
lower interrupt latency in SIVSHM — amount of time be-
tween an interrupt is delivered to the device to the time
the application handles that interrupt. SIVSHM has a ker-
nel vPCI driver that signals the user process (SIGUSR1)
when an interrupt is delivered to it. This is faster than
IVSHMEM driver that is implemented using Linux UIO
driver [22] infrastructure, where an user-space process
that is blocked on a read of a fd has to be woken up. The
interrupt latency of SIVSHM and IVSHMEM, on aver-
age, was measured to be 55 usec and 120 usec. Though
the number of interrupts increase at higher reducer count,
the latency gap decreases due to interrupt coalescing.

The transfer time remains approximately the same in all
methods for different number of reducers. This is due to
network saturation in VirtlO and memory bandwidth sat-
uration in case of SIVSHM and IVSHMEM. In figure 4,
we can notice that, at higher reducer count the data trans-
fer rate of VirtIO interface saturates at 6 Gbps. This sat-
uration translates to constant transfer time when reducer
count is greater than one. The performance drops multi-
ple times as the mapper is waiting for all the reducers to
process the data and report completion. For example — a
total of 32 GB of data is transferred from mapper to re-
ducers and in case of 31 reducers, each reducer processes
~1 GB of data and since the buffer size is 128 MB, we
can notice in figure 4 that the performance drops 8 times.

=

rn

o

3Reducers

VYAV

15 Reducers

VYTV

31 Reducers

Network Utilization (Gbps)
onN R OO®

L= - B S =]

Figure 4: VirtlO network performance (Mapper)

=
MJ [¥)]
woo;

Elapsed Time
oh w
(V)] (73]

W
w

0s

0 4 8 12 16

Figure 5: Mapper CPU concurrency performance. x-axis denotes
number of simultaneously utilized logical CPUs. Graph by
Intel® VTune™ [23].

To substantiate our claim of memory bandwidth satu-
ration, we show that limited concurrency and virtualiza-
tion are not limiting factors, and only thing left — memory
bandwidth, should be the limiting factor. We ran the same
mapper and reducer applications on the physical host and
noticed that transfer time was less than 1% better than
running in a VM. This shows virtualization is not a lim-
iting factor. Secondly, we measured concurrency of our
mapper application using Intel’s VTune Amplifier 2016
[23]. The histogram produced by VTune with 15 map-
per threads is as shown in figure 5. The graph is denot-
ing that 15 logical CPUs were simultaneously utilized for
12 seconds, which demonstrates high concurrency of our
mapper application.

We can infer from figure 3 that the improvement in
transfer and response time of SIVSHM is not very signifi-

Boot Performance

120 :
SIVSHM =

IVSHMEM ====3
100

80 -

By

7

2545
X
24

o

etatatetititatotatitittatets)

fatatityt

TR
e
SR

60 -

R
e

<]
=
e
XK
ssiie

R
e
e

.
o
o

Time to boot all VMs (sec)

T
254t
ot

7
2%
&
255
—
i
Soet

i [0

T

5

a2
O
5

A..
S
ot

o
Seirtsiotet
2

,.
K
ot
5
-
e
%

<

%

o

[l [etesd [fieied

20 cssse [s S
Frd Fossd s L

e e 2000 fecase]

o o] o) b

esses k] sssed) [

resses] i) e

o ot b Fei] L

2 4 32

Number of VMs including mapper

Figure 6: Time to boot different number of VMs using SIVSHM and
IVSHMEM. Shorter bar is better.

cant when compared to IVSHMEM. This is because both
are implemented as VPCI devices in QEMU, mapping
shared memory region to PCI device memory. However,
elimination of eventfd distributor in SIVSHM has elim-
inated eventfd exchange bottleneck during VM startup.
This can be seen as improvement in boot-time in figure 6.
At lower reducer count, no improvement is noticed as the
number of eventfds exchanged is less. However, as the re-
ducer count increases, we can notice that SIVSHM takes
(7/10)™ the time to boot all the VMs when compared to
IVSHMEM. This is significant, especially in a data cen-
ters where services are instantiated and torn down very
frequently.

Cloud pricing model is based on resource consump-
tion. Therefore, we wanted to measure SIVSHM'’s perfor-
mance with reduced vCPU count for the mapper. We re-
duced to 8 vCPUs, half of the original count. As expected,
it can be inferred from figure 7 that SIVSHM performs
better with increased vCPU count. With half the num-
ber of vCPUs, 1.25x increase in transfer time is noticed.
Improvement is seen even when the number of reducers,
and hence number of mapper threads, are less than num-
ber vCPUs. This is attributed to vCPU resource sharing
mechanism in the hypervisor. However, the gap increases
when the ratio of reducer count to vCPU count increases.

Another interesting observation is that SIVSHM shows
similar performance in both polling and interrupt mode
as seen in figure 3. With similar performance, the moti-

Time to transfer 32GB data in different SIVSHM configurations

20 T
SIVSHM-P8

19 SIVSHM-18

SIVSHM-P16
SIVSHM-116

Xfer time (sec)

1 3 7 15 31
Number of reducers
Figure 7: SIVSHM performance with different number of vCPUs. ‘T’

denotes Interrupt, ‘P’ denotes Polling, 8 & 16 denote number of vCPUs.

Eg: SIVSHM-I8 — SIVSHM in interrupt mode with 8 vCPUs.

Mapper % CPU utilzation (Polling)

100
80
60

20

% CPU Utilization

o] 5 10 15 20 25 30

Mapper % CPU utilzation (Interrupt)

10 15 20 25

% CPU Utilization
&

[=]

(4]

Time in seconds

Figure 8: CPU utilization between polling and interrupt

vation to implement more complex interrupt architecture
is the improvement in CPU utilization — 100% in polling
mode and hovers around 60% in interrupt mode as shown
in figure 8. The rest 40% is available for other processes,
which is a huge benefit of using interrupt driven architec-
ture.

6 Conclusion
Shared memory is used to significantly boost the perfor-

mance of regular applications from a long time. However,
sharing memory among VMs is a recent thing. SIVSHM

is a secure inter-VM shared memory architecture that can
be used to boost performance of many cloud applications.
SIVSHM takes 0.6x and 0.4x the amount of time com-
pared to VirtIO for small and large number of reducers as
VirtlO involves extra data copying and additional TCP/IP
stack overhead.

The main restriction of SIVSHM is that the VMs
should be running on the same compute node. In spite
of this, applications can still be benefitted by SIVSHM as
many of these applications run multiple copies for perfor-
mance and to insulate customers from software bugs, both
of which can be achieved by running VMs carrying these
applications on the same compute node. However, we be-
lieve that we can overcome this restriction if we build an
architecture where SIVSHM is used when VMs are co-
located on the same compute node and utilize RDMA [7]
technology when VMs are on different compute nodes.
This hybrid architecture can then be used in any data cen-
ter or cloud environment to improve the performance of
variety of applications without the restriction that VMs
should be running on the same compute node.

References

[1] Russell, Rusty. “virtio: towards a de-facto standard for virtual I/O
devices.” ACM SIGOPS Operating Systems Review 42.5 (2008):
95-103.

[2] Ranger, Colby, et al. “Evaluating mapreduce for multi-core and
multiprocessor systems.” High Performance Computer Architec-
ture, 2007. HPCA 2007. IEEE 13th International Symposium on.
IEEE, 2007.

[3] Bellard, Fabrice. “QEMU, a Fast and Portable Dynamic Trans-
lator”” USENIX Annual Technical Conference, FREENIX Track.
2005.

[4] Bartholomew, Daniel. “QEMU a Multihost Multitarget Emulator.”
Linux Journal 2006.145 (2006): 3.

[5] Jujjuri, Venkateswararao, et al. “VirtFS-A virtualization aware File
System passthrough.” Ottawa Linux Symposium (OLS). 2010.

[6] Kivity, Avi, et al. “kvm: the Linux virtual machine monitor.” Pro-
ceedings of the Linux Symposium. Vol. 1. 2007.

[7]1 Recio, Renato, et al. A remote direct memory access protocol spec-
ification. RFC 5040, October, 2007.

[8] iperf. Retrieved from http://iperf.sourceforge.net on
May 02, 2015.

[9] Linderman, Michael D., and Teresa H. Meng. “A low power merge
cell processor for real-time spike sorting in implantable neural
prostheses.” Circuits and Systems, 2006. ISCAS 2006. Proceed-
ings. 2006 IEEE International Symposium on. IEEE, 2006.

[10] Dubey, Pradeep. “Recognition, mining and synthesis moves com-
puters to the era of tera.” Technology @ Intel Magazine 9.2 (2005):
1-10.

[11] IVSHMEM: Inter VM Shared Memory. Retrieved from
http://dpdk.org/doc/guides/prog_guide/ivshmem_lib.html on May
02, 2015

[12] Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. “The
Google file system.” ACM SIGOPS operating systems review. Vol.
37. No. 5. ACM, 2003.

[13] Macdonell, A. Cameron. Shared-memory optimizations for virtual
machines. Diss. University of Alberta, 2011.

[14] Gordon, Adam Wolfe. Enhancing cloud environments with inter-
virtual machine shared memory. Diss. University of Alberta, 2011.

[15] Ke, Xiaodi. Interprocess communication mechanisms with Inter-
Virtual machine shared memory. Diss. University of Alberta, 2011.

[16] Diakhaté, Francois, et al. “Efficient shared memory message pass-
ing for inter-VM communications.” Euro-Par 2008 Workshops-
Parallel Processing. Springer Berlin Heidelberg, 2009.

[17] Mohebbi, Hamid Reza, Omid Kashefi, and Mohsen Sharifi.
“Zivm: A zero-copy inter-vm communication mechanism for cloud
computing.” Computer and Information Science 4.6 (2011): p18.

[18] Roy, Indrajit, et al. “Airavat: Security and Privacy for MapRe-
duce.” NSDI. Vol. 10. 2010.

[19] B. McCarty. SELinux: NSA’s Open Source Security Enhanced
Linux. O’Reilly Media, 2004

[20] eventfd. Retrieved from http://man7.org/linux/man—
pages/man2/eventfd.2.html on Sep 02, 2015.

[21] Kerrisk, Michael. The Linux programming interface. No Starch
Press, 2010.

[22] Koch, Hans J., and H. Linutronix Gmb. “Userspace I/O drivers in
a realtime context.” The 13th Realtime Linux Workshop. 2011.

23] Intel® VTune™ Amplifier 2016: Downloaded from
https://software.intel.com/en-us/intel-
vtune-amplifier—-xe on Sep 29, 2015.

[24] PCI Local Bus Specification Revision 3.0: Downloaded from
http://www.xilinx.com/Attachment/PCI_SPEV_
V3_0.pdf on Sep 29, 2015.

[25] Kivity, Avi, et al. “kvm: the Linux virtual machine monitor.” Pro-
ceedings of the Linux symposium. Vol. 1. 2007.

[26] Zhang, Binbin, et al. “Evaluating and optimizing I/O virtualiza-
tion in kernel-based virtual machine (KVM).” Network and Parallel
Computing. Springer Berlin Heidelberg, 2010. 220-231.

