
Store, Forget, and Check: Using Algebraic Signatures to Check Remotely
Administered Storage

Thomas Schwarz, S.J. Ethan L. Miller
Department of Computer Engineering Storage Systems Research Center

Santa Clara University University of California at Santa Cruz
tjschwarz@scu.edu elm@cs.ucsc.edu

Abstract

The emerging use of the Internet for remote storage and
backup has led to the problem of verifying that storage sites
in a distributed system indeed store the data; this must of-
ten be done in the absence of knowledge of what the data
should be. We use m/n erasure-correcting coding to safe-
guard the stored data and use algebraic signatures—hash
functions with algebraic properties—for verification. Our
scheme primarily utilizes one such algebraic property: tak-
ing a signature of parity gives the same result as taking the
parity of the signatures. To make our scheme collusion-
resistant, we blind data and parity by XORing them with
a pseudo-random stream. Our scheme has three advan-
tages over existing techniques. First, it uses only small
messages for verification, an attractive property in a P2P
setting where the storing peers often only have a small up-
stream pipe. Second, it allows verification of challenges
across random data without the need for the challenger to
compare against the original data. Third, it is highly resis-
tant to coordinated attempts to undetectably modify data.
These signature techniques are very fast, running at tens to
hundreds of megabytes per second. Because of these prop-
erties, the use of algebraic signatures will permit the con-
struction of large-scale distributed storage systems in which
large amounts of storage can be verified with minimal net-
work bandwidth.

1. Introduction

As the Internet has increased in speed and bandwidth,
remote storage of data over the network has become fea-
sible. Peer-to-peer (P2P) storage systems, especially those
based on the so-called Distributed Object Location and Re-
trieval (DOLR) systems [11] such as Oceanstore [18] are an
important class of such systems. Systems like these face a
number of challenges such as data privacy, protection of the

data against alteration, data loss due to node unavailability
and the free rider problem. In this paper, we introduce new
techniques based on algebraic signatures that allow a “data
origination site” to verify that a a remote site is storing data
correctly, or whether a number of sites that collectively store
a collection of objects is doing so correctly. Our scheme
does not need the original data for its check, and only two
small messages need be exchanged for each check. Both of
these properties should be attractive to designers of remote
storage schemes.

As peer-to-peer technology has matured, a number
of systems such as Oceanstore [18], Intermemory [13],
Ivy [27], PAST [32], Starfish [12], FarSite [1] have been
built to utilize remote data storage. To protect against fail-
ure, this data is stored redundantly using either pure replica-
tion or m/n erasure coding. Similarly, Lillibridge, et al. [19]
propose a scheme where participants mutually store each
other’s backup data. All these schemes store data on sites
that cannot be trusted. In addition to peer unavailability,
they must face the problem of free riders. Free riders only
pretend to store others’ data and thus enjoy the benefits of
remote storage of their data without incurring any costs of
their own. Our approach can be used to address the free
rider problem as well as the more general problem of invol-
untary data loss or generic data corruption by using a system
of challenges and responses. The naı̈ve algorithm requests
random blocks of data from the storage site, verifying them
against the locally-stored data. This is particularly easy in
a remote back-up scheme, since the original of the data is
still available, but becomes quite difficult in remote storage
systems where the original is not retained. DOLR and other
P2P storage systems that use redundancy in storage face an
additional problem of assuring that all data reflects the same
state. While stale data in a replicated system might still be
useful, stale parity data in a scheme based on erasure coding
usually prevents the reconstruction of the application data in
case of need.

In a peer-to-peer system, nodes might not have a high
bandwidth connection; furthermore, many such nodes, in-

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

cluding those in homes, have an asymmetric connection that
limits uploads but has ample download capacity. A peer
with such a connection can still store archival data that has
little likelihood to be read, albeit storing such data slowly. A
naı̈ve challenge scheme, however, will regularly use the nar-
row upstream path and thus lead to noticeable performance
losses.

An “ideal” versatile challenge-response scheme should
use only small challenges and responses. It should allow the
challenger to test unpredictably so that the responder cannot
just simply precompute and store all challenges instead of
the data. It should be able to detect changes in the stored
data and in particular should discover the most frequent data
corruptions, such as very minute changes or permutation of
blocks. Finally, it should be able to check whether parity in
a storage scheme using erasure correcting codes is coherent
with the data without regenerating the parity data from the
application data.

Our scheme fulfills all these criteria as long as the era-
sure correcting code is calculated using only XOR oper-
ations; such codes include X-codes [35], EvenOdd [2, 3],
row-diagonal parity [9], and linear codes over a Galois field
such as the popular Reed-Solomon codes [24]. Our signa-
tures are algebraic signatures [22, 33]—hashes or check-
sums with algebraic properties. These are sometimes called
“Rabinesque,” after Michael Rabin who used a similar for-
mula in the Karp-Rabin pattern matching algorithm and an-
other similar formula to identify similarities between docu-
ments.

Our techniques work for systems that store data redun-
dantly at a remote site by adding some parity data, gener-
ated by a linear erasure-correcting m/n code. For added
security, the data or parity can be “blinded” (encrypted) by
XORing it with with a pseudo-random stream. Both the
erasure-correcting code and the pseudo-random stream can
be easily regenerated by anyone knowing a secret. When a
system wants to verify the data, it asks the storing sites to
each return a signature calculated over a specified part of
the data. The requesting system can then determine, solely
based on the secret and the returned signatures, whether the
returned values can reflect valid data. A random chosen an-
swer has a probability of 2−l of being correct, where l is the
length of the answer in bits. Thus, with just a few random
queries, our techniques can verify that a remote site or set
of sites is indeed likely to be storing data correctly.

In this paper, we first discuss previous work in DOLR
systems, focusing on techniques used to verify that remote
data is correctly stored. We then describe the algebraic sig-
natures that our approach uses. Next, we describe the pro-
tocols that we use to request and verify signatures, followed
by implementation and performance results. We conclude
with future directions for our work.

2. Related Work

Using hashes or signatures to condense the contents of
stored data blocks into a few bytes for comparison pur-
poses is a generic technique that has been used for a long
time. The particular formula for the single symbol signa-
ture is similar to the one that was used by Harrison [15]
for pattern searches. Rabin used the same type of for-
mula for fingerprinting [28] and later analyzed it with Karp
for remote pattern matching [17]. In another context, the
calculation of a supersignature from page signatures used
for file comparison was used by Schwarz, Bowdidge, and
Burkhard [34] and further expended and analyzed by Litwin
and Schwarz [22] for use in Scalable Distributed Data
Structures. Broder, et al. use fingerprinting and a tech-
nique called shingling to measure the difference of docu-
ments [5, 6].

There are many schemes that make extensive use of the
Internet for wide-area storage. For example, Lillibridge, et
al. propose a scheme to back up user data over the Inter-
net [19]. They verify the honesty of the storage providers
by a simple challenge-response scheme, where the data
owner asks the storer to retrieve a randomly chosen block
to the owner. Other peer-to-peer storage systems, especially
those based on Distributed Object Location and Retrieval
(DOLR) [11] can similarly benefit from the algorithms we
provide to check remotely stored data using techniques such
as those proposed by Caronni and Waldvogel [7].

OceanStore [18] uses anonymity of the data owner to
protect the data as well as periodic checks by Oceanstore
itself that all data is still available. It uses erasure correct-
ing codes (m/n codes with relatively high values for m, n,
and r = n/m) to protect the data against site unavailabil-
ity and failure, and performs checks to ensure that all data
is accessible. It protects against malicious deletion by us-
ing global sweeps in which the data owners sweep through
data under their control. The correctness of the data is ver-
ified by checking every byte of the data; this requires that
OceanStore either trust the remote nodes to correctly verify
their information or that the remote nodes return the data
and checksums to a trusted node for verification. Intermem-
ory [13] is another large-scale, distributed, fault-tolerant
archival system that encrypts and erasure-encodes data and
stores them on untrusted sites. PAST [32] and CFS [10]
are also global-scale storage systems, but of read-only data
protected by replication. Ivy [27] is a read-write P2P file
system in which malicious failures are discovered “after the
fact;” the use of our techniques might enable such a system
to proactively discover failures. Starfish [12] replicates data
items three-fold and uses a write quorum of two of the three
sites to update them, though the parameters can of course be
generalized. Like OceanStore, PASIS [14] uses m/n codes
to store data, but it also uses m/n codes to provide some

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

level of security. Unlike more recent systems, first gener-
ation file sharing systems such as Napster, Gnutella [31],
and Freenet [8] also store data remotely, but tend to not
pay attention to the validation and availability of the data.
LOCKSS [25] replicates data among multiple library sites
and uses voting techniques based on the exchange of cryp-
tographically strong signatures of each library’s copy of a
particular file. This technique works in LOCKSS because
each library must keep a copy of the file, allowing it to ver-
ify the cryptographic hash against its own copy. Because
these P2P systems store data on remote untrusted nodes,
they could all benefit from the use of algebraic signatures
for remote storage verification.

3. Random Parity and Signatures

We propose to use a conjunction of algebraic
signatures—small strings calculated from substrings of
stored data in a way that has exploitable algebraic
properties—and redundant storage generated with the help
of linear, maximum distance separable error control codes.
We use the same mathematical structure, a Galois field
GF (2 f) to define both.

In order to operate on the data, we treat it as a stream
of symbols that are bit strings of length f , with typical val-
ues f = 8 or f = 16. The 2 f different symbols form the
elements of a Galois field G F (2 f) in which we can add,
multiply, divide by, and subtract with the same rules as are
valid for these operations in the better known field of real
numbers. In G F (2 f), addition is the same as subtraction
and both are the same as the XOR operation. The zero in
this field is the string with only zeroes (e. g., 0000 0000
for f = 8). The definition and implementation of multipli-
cation is somewhat more involved, but there are standard
implementation techniques [24] for it.

The most important property of algebraic signatures for
our purposes is that calculating parity and taking a signature
commute. In other words, the algebraic signature of a parity
container can be calculated solely using the signatures of the
data containers. This is true as long as we use the same field
in calculating the signature and the parity, and the erasure
correcting code is a linear code. Such codes include the
simple parity code that calculates parity as the XOR of data.
The remainder of this section describes algebraic signatures
in detail and how the parity codes are generated.

3.1. Algebraic Signature Definition

An algebraic signature of a string (of symbols) x0,x1,
. . .xN−1 is simply defined by

sigα(x0,x1, . . . ,xN−1) =
N−1

∑
ν=0

xν ·αν

, and is itself a single symbol. Sometimes, it is useful to
have slightly larger signatures, as can be obtained by con-
catenating several signatures:

sig(n,α) = (sigα0 ,sigα1 ,sigα2 , . . . sigαn−1)

sign,α for certain α can detect any changes of up to
n symbols [22]. The simple as well as the concatenated
signature are linear in the string over which they are
calculated. An interesting consequence of linearity is that
we can combine signature calculation with blinding the
data by XORing the data with a pseudo-random string.
Basically, if X is the plaintext and Y the pseudo-random
string, then sigα(X ⊕Y) = sigα(X)⊕ sigα(Y). Signatures
interact in a similar way with various erasure and error
correcting codes that use only the XOR operation, as do
Hellerstein’s proposal [16], EvenOdd[2], row-diagonal
parity [9], and convolutional array codes [3]. More impor-
tantly, linear m out of n codes also have this property. More
precisely, assume that we have an erasure correcting code
that calculates k parity containers P1, . . .Pk from the m data
buckets D1,D2, . . .Dm as Pi = ℘i(D1,D2 . . .Dm). Then
sigα (℘i(D1, . . . ,Dm)) = ℘i (sigα(D1), . . . ,sigα(Dm)).
Another way of putting this property is that
(sigα(D1), . . . sigα(Dm),sigα(P1) . . . sigα(Pk)) is a code
word in the code. The proof of this and other properties can
be found elsewhere [22, 33].

These algebraic signatures are called often Rabinesque
after Michael Rabin, who used a formula of similar type
to define fingerprints [17, 28] in a similar setting and make
use of their algebraic properties for what is now known as
the Karp-Rabin pattern matching algorithm and for finger-
printing. The same formula was also used for fast file com-
parison [34]. Fingerprinting and a technique called shin-
gling can also be used to measure the difference of doc-
uments [5, 6]. Our use of algebraic signatures essentially
compresses the contents of a large portion of data into a very
small entity that changes if the data is changed a little bit.
In this way, it is similar to “cryptographically secure” hash
functions such as MD5, SHA-1, and SHA-256, though al-
gebraic signatures are not cryptographically secure because
it is easy to deliberately construct two strings that have the
same algebraic signature. Using a SHA-type hash function
allows for the comparison of files with very small messages,
but only if the local system maintains a copy of the objects
whose remote storage is to be verified.

3.2. Generating Random Linear Codes

Our proposal includes security in its more ambitious
variant, described in Sections 4.2 and 4.3, from custom-
tailoring the parity generating code to the stored object. We
use a systematic, linear erasure correcting code [24] over a

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Galois field such as G F (28) or G F (216) in a fairly stan-
dard way. We create m data containers of approximately
equal size; the m containers can be filled with parts of the
same object or unrelated objects. To this, we add k parity
containers of the same size as the data containers using the
algorithm described in this section. We refer to the collec-
tion of n = m + k data and parity containers as a reliability
group. If a single object is distributed among the containers,
this is similar to a variant of Rabin’s Information Dispersal
Algorithm [29].

Our codes are defined by a m×n generator matrix G that
has the following two properties: (1) Every m×m subma-
trix of G (formed by selecting m columns) of G is invertible.
(2) The first m columns of G is the identity matrix. Let D1,
D2, . . .Dm be the contents of the data containers written as
a column vector with symbols as the coefficients. Then

(D1,D2, . . .Dm) ·G = (D1,D2, . . .Dm,P1,P2 . . .Pk)

defines the contents P1, P2, . . .Pk of the k parity containers,
again as a column vector of symbols. Property 1 insures that
the multiplication reproduces the data container columns.
Property 2 means that given any m of the n containers in the
reliability group, we can solve a linear equation to recal-
culate the remaining k containers, i. e., our code is an m/n
erasure correcting code. As such, it also has error correct-
ing capabilities: given all n containers, we can identify one
or a few altered containers and repair them.

As mentioned earlier, we must be able to generate dif-
ferent codes. To do this, we first define a family of m× n
matrices that has Property 1. Next, we observe that elemen-
tary row transformations (adding a multiple of one row to
another row, exchanging two rows, and multiplying a row
with a non-zero Galois field element) leave Property 1 in-
tact. Using these transformations, we can use the Gaus-
sian elimination algorithm (for linear equations) in order
to transform the matrix into a generator matrix in the right
form

Ga1,...an =

⎛
⎜⎜⎜⎝

1 0 · · · 0 P̂1,1 · · · P̂1,k

0 1 · · · 0 P̂2,1 · · · P̂2,k
...

...
. . .

...
...

. . .
...

0 0 · · · 1 P̂m,1 · · · P̂m,k

⎞
⎟⎟⎟⎠

In addition to elementary row transformations, multiply-
ing any column of a matrix with a non-zero Galois field
element also retains Property 1. Thus, if required, we can
additionally multiply the last k columns by a non-zero Ga-
lois field element in order to create even more generator
matrices.

For our starting point, we use Vandermonde matrices

Va1,...,an =

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1
a1 a2 · · · an

a1
2 a2

2 · · · an
2

...
...

. . .
...

a1
m−1 a2

m−1 · · · an
m−1

⎞
⎟⎟⎟⎟⎟⎠

These have Property 1 if the a1, a2, . . .an are all different.
Thus, there are (2 f)(2 f −1) . . .(2 f −n + 1) ways to gener-
ate such a Vandermonde matrix over G F (2 f). In lieu of a
Vandermonde matrix, we can use an m× n Cauchy matrix
C = (ci, j) in which ci, j = 1

ai+b j
. This matrix has Property 1

if the m + n parameters a1, a2, . . . ,am, b1, b2, . . . , bm are
all pairwise different. This condition imposes a limit on the
number of parameters of the m/n code, namely m+ n ≤ 2 f

for Cauchy matrices with coefficients in G F (2 f) and n ≤
2 f for Vandermonde matrices. In both cases, the contents
of the parity matrix (P̂i, j)—the right half of Ga1,a2,...an—
can be given as a complex function of the parameters, but
in practice, calculating the parity matrix with the Gaussian
elimination algorithm is simpler and faster. The algorithm
starts by selecting the coefficient in the first row and col-
umn as a pivot. It multiplies the first row in order to turn the
pivot into 1. It then adds a multiple of the first row to gen-
erate zeroes elsewhere in the first column. It then proceeds
row by row, selecting the coefficients in the main diagonal
as pivots. It turns out that because we start with a matrix
with Property 1, none of the pivots will ever be zero. This
leads to a slightly streamlined generator matrix generating
algorithm. In consequence, the total number of arithmetic
operations is always less than or equal to 2m2n.

The generation of parity data themselves is also reason-
ably efficient. As with all linear codes over G F (2 f), parity
calculation involves multiplying data symbols by the matrix
coefficients pi j and XOR operations. There are erasure cor-
recting codes that only use XOR operations [23], but as it
turns out, extensive use of look-up tables for matrix multi-
plication gives competitive parity generation performance.
This type of code has been used for LH*RS [20, 21] and
gave reasonable performance times.

The number of possible parity matrices is quite large.
There are 2 f !/(2 f − n)! possible ways to generate a se-
quence of n different values among the 2 f symbols in the
Galois field. Even if we use the tiny G F (28) and generate
only one parity chunk, then there are 28 −1 possible parity
encodings. If we only generate one parity chunk, then we
can generate the parity matrix ad hoc as any single column
matrix with non-zero coefficients. This gives us 2 f −1 pos-
sibilities for each parity matrix coefficient. In addition, by
multiplying the columns, we can increase the possibilities
further. Again, for security considerations, one has to keep
in mind that any false guess by an attacker leads to a false

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

answer to a challenge, and that, in the secure versions of
our protocol, a malicious storage site cannot easily check
the correctness of its made-up answers.

4. Signature-Based Challenges

Data origination sites typically want to check whether
remote sites actually store the data entrusted to them. Of-
ten, origination sites maintain their own copy of the data.
For such situations, Lillibridge, et al. [19] propose to ask
the storage site to send a small, randomly-selected chunk of
stored data to verify that the remote site is storing all of the
data that has been sent to it. By selecting the start and end
locations randomly, the test ensures that the storage site did
not simply precompute and store signatures and discard the
actual data. This approach has three drawbacks, however.
First, the storage site must return the entire range of data, re-
quiring a lot of upstream bandwidth. Second, this approach
reveals the data; Lillibridge, et al. note that a malicious user
could retrieve its data in this way. Third, the originating site
must retain the original data for comparison, though this is
not an issue if the originating site can ask all of the storage
sites for the same range of their storage.

4.1. Basic Algorithm

We improve on existing approaches that require all of the
data to be returned by asking the storing site to simply cal-
culate and return an algebraic signature for a range chosen
by the requester rather than the data that it covers. The orig-
inating site can verify that data has been stored correctly by
combining this signature with signatures from other stor-
ing sites. Since the parity of the signatures is the same as
the signature of the parity, the originating site can check
the signatures and, if there is sufficient redundancy in the
error-correcting code, even identify the site that presented
an incorrect signature. Unlike previous approaches, these
signature calculations do not require that the originating
site retain the data for comparison; the signatures alone suf-
fice for verification. Additionally, this approach reduces the
amount of message data that must be sent and reveals little
information about the original data, allowing a third party to
conduct the verification without fear of compromising data.
This approach is shown in Figure 1.

This simple procedure withstands two basic attacks.
First, each response reveals some data and an attacker read-
ing network traffic might be able to reconstruct the data,
assuming that neither neither data nor messages are en-
crypted. As we will see, even if we do not use encryp-
tion, the information leakage is rather small because sig-
natures are small and stored objects large. Second, and
more importantly, a storing site could precompute answers
to all possible challenges and store them instead of the

Figure 1. Basic storage, signature request
and verification protocol.

data. This only benefits the cheating storage site if the an-
swers take less place than the actual data itself. This can
be overcome by using a simple challenge request that sup-
plies 〈x,n,s〉 for a given block, or set of blocks, where x
is the starting offset, n is the number of samples, and s is
the stride (all values in words). The storage site then cal-
culates sig[α](dx,dx+s,dx+2s, . . . ,dx+(n−1)s), where dk is the
kth word of the block or set of blocks. Since the number
of possible signatures is much higher than the actual size
of the block, the storage site saves space by doing the right
thing and simply storing the data rather than potential sig-
natures. Note that, if needed, the number of signatures can
be further increased by also specifying the α-parameter in
the signature challenge.

Using the above scheme, the data originator can eas-
ily check that all of the remote data covered by the
signatures has been stored correctly. The data origina-
tor, or anyone else who gets the signatures, can com-

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

pute parity[sig(d0), . . . ,sig(dk−1)] and compare the result to
sig(parity), which was received from the system storing the
parity for d0, . . . ,dk−1. Since parity calculations and alge-
braic signature operations commute, as discussed in Sec-
tion 3, the two results should be equal. If they are not
equal, and there is sufficient error correcting information,
it is even possible to identify the signature that is incorrect.
Note that anyone can perform this check, not just the data
originator, since the verification does not require original
data. In addition, the verification does not release much in-
formation about the original data, since only a few bytes of
signature information are returned from each storage site.
This prevents a malicious system from using this technique
to retrieve data surreptitiously—it would take thousands of
randomly-selected queries to retrieve sufficient signatures
to be able to solve for the original data. If necessary, storage
sites can refuse to answer “clustered” signature queries that
might be used to derive the underlying data. Alternatively,
storage sites may refuse to provide signatures for fewer than
n of data words; recovery of the underlying data will require
O(n) signatures.

The technique we describe—calculating signatures on a
portion of the data and returning just the signatures—can be
done using more conventional hash algorithms such as MD5
and SHA-1. However, this approach suffers from a signifi-
cant problem: the system requesting the signature must ei-
ther keep the original data or precompute and store the sig-
nature values for any queries it plans to make. For example,
a system might decide to precompute the hash values for
1,000 queries to each of twenty systems storing either data
or parity. This approach could be done without algebraic
signatures. However, if the 1,000 queries are exhausted,
perhaps after a few months of use, the storage sites could
simply remember the results of the previous 1,000 queries
and discard the actual data, knowing that they would not
receive any “new” queries for which they would have to re-
trieve data. Our approach has no such limitation because
the results of any signature query can be verified mathe-
matically, eliminating the need to precompute queries and
results.

4.2. Collusion Resistance

The technique in Section 4.1, while it avoids the prob-
lems inherent in existing approaches, still suffers from a
drawback: sites that collude can modify data or even make
up signatures as long as they are internally consistent. In
other words, a site receiving signatures can verify that the
parity matches the data, but it cannot tell whether all of the
sites colluded to provide fake signatures and then generated
parity for them. To address this shortcoming, we devel-
oped a modification of the original protocol that allows a

data originator to safeguard the signature verification pro-
cess with a minimum of storage overhead.

In our storage scheme, we store data in containers of
equal size. We form a reliability group out of m of these
containers to which we add an additional k parity chunks of
the same size, so that the group contains n = m+ k chunks.
This configuration can tolerate k unavailable sites by recal-
culating any missing data chunks from a total of m data or
parity chunk. It can also find up to �k/2� chunks in er-
ror and correct them. Even if we are not interested in era-
sure protection, we still generate some parity chunks to en-
able remote storage checking. The code used for the gen-
eration of the parity chunks uses the same Galois field as
our signatures, but is different for each reliability group. It
is always a linear, m/n code, and is described in detail in
Section 3.2. We envision reasonably large chunks, so that
the overhead of generating the codes is small. For exam-
ple, we can derive the code from a secure hash function
h(object id,server secret,use parameter), where object id
identifies the reliability group, the server secret is used to
prevent remote sites from deriving the same function, and
use parameter varies for each use of the hash function, as
described below.

If enough of the storage sites collaborate, they can foil
our scheme by first calculating the parity code, which
amounts to solving a system of linear equations. To do so,
they use about m ·k symbols from the data and parity chunks
to solve for the m · k coefficients of the generator matrix,
as described in Section 3.2. An initial, and rather difficult
challenge for the attackers would be to identify the data and
parity chunks that make up a reliability group. A “secu-
rity by obscurity” mindset would consider the difficulties in
finding related storage blocks sufficient protection, but we
can do better with very little overhead.

To prevent multiple sites from collaborating to fabri-
cate consistent data and the signatures that go with them,
we use two techniques: randomly-generated transformation
matrices for parity, and “blinding” the parity values using a
pseudo-random stream of data. The latter transformation is
accomplished by using a stream-based encryption algorithm
such as RC4 with a seed derived from the hash function de-
scribed above. By blinding the parity information using a
pseudo-random stream, multiple sites cannot uncover the
parity code because they no longer have all of the values
needed for the set of linear equations. The transformation
functions must still be kept secret, however, since malicious
sites that knew the transformation function but not the en-
cryption stream could calculate the expected parity and thus
recover the stream values, allowing them to substitute new
values. It is only the combination of encrypted parity and
secret parity matrices that prevents collusion.

The first step in generating parity under this scheme is
to generate random parity matrices, as described in Sec-

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

tion 3.2. These matrices are generated using the output
of the hash function described above; each data chunk in
each “row” has its own parity matrix. The specific matrix
used for each chunk is thus a secret that the data originator
knows, but that the storage sites do not know and have no
way of solving for. Using these parity matrices, the orig-
inating site calculates the kth parity word in the jth parity
chunk:

p j,k = P̂0, jd0,k ⊕ P̂1, jd1,k ⊕·· ·⊕ P̂m−1, jdm−1,k

The parity chunk is then XORed with a pseudo-random
stream generated by RC4 or a similar algorithm, seeded
with a value derived from the above hash function; thus, the
value stored for the parity word above would be p j,k ⊕ r j,k,
where r j,k is the kth value of the pseudo-random stream for
parity chunk j. If the chunks are large, it may be helpful to
reseed RC4 every 4 KB or 8 KB to make verification faster.

Verification of the parity in this approach is similar to
verification in the basic, insecure approach. As before, the
data origination site sends a challenge of the form 〈x,n,s〉
to each of the storage sites and has them return the alge-
braic signature as before. However, the originating site must
now remove the blinding factor from the parity signature.
This is done by computing the signature of the values in the
pseudo-random stream selected by 〈x,n,s〉 and XORing it
with the parity signature. The result should be the parity of
the data signatures. Since it is difficult to generate only the
desired values from the random stream without generating
the other values, this approach typically requires that the
verifying system produce the entire pseudo-random stream
from the start. By allowing the stream to restart every 4 KB
or 8 KB, this time can be reduced by allowing the stream to
be generated from the nearest block boundary.

Note that this technique blinds the parity, but stores the
data unencrypted. It is also possible to store the data en-
crypted but leave the parity unencrypted, or to leave both
the data and parity encrypted. If the data is to be stored en-
crypted, a data word stored as d j,k ⊕ r j,k, where r j,k is the
kth word of the pseudo-random data stream for the jth data
chunk. Parity is still calculated on the raw, unencrypted
data. This approach has nearly the same security as en-
crypting the parity; collaborating storage servers only have
the encrypted data, but they need the unencrypted values
as well as the P̂ matrices to construct valid parity. How-
ever, when there are more parity chunks than data chunks. it
would be possible to solve for the unencrypted data values;
essentially, this would involve using k > m cleartext parity
chunks to reconstruct m cleartext data chunks. In such a
situation, the parity chunks must be encrypted regardless of
whether the data chunks are encrypted.

4.3. Verifying Storage on a Single Server

Because the collusion-resistant technique described in
Section 4.2 cannot be broken by multiple entities, each of
which holds part of the data, it is also resistant to subversion
attempts from a single storage system. This property makes
it attractive for storage verification for remote storage sys-
tems. Traditionally, remote storage on a single device is ver-
ified in one of two ways. First, the remote storage system
might return an entire chunk of data. If this data is stored
with appropriate protections [26, 30], the originating sys-
tem can verify that the data was indeed stored and retrieved
correctly and not corrupted. However, this approach suf-
fers from the need to actually return the entire data chunk,
and is not appropriate for verifying large amounts of storage
because of the network bandwidth required. Typically, the
entire chunk has to be retrieved because there is no way to
verify less than a full chunk. A second approach would be
to simply return the signature of a chunk rather than the
data itself. As described earlier, however, this approach
only requires that the storage server keep the signature, and
provides no guarantee that the underlying chunk is actually
stored.

Algebraic signatures provide a third alternative that has
the advantages described earlier: verification of a relatively
large data chunk by randomly sampling the data that make
it up and returning the signature. Since the data is all stored
on the same device, there is little benefit to having multiple
parity chunks; a single parity chunk is sufficient to allow
verification. A system that wants to store m data chunks
computes parity across them as described in Section 4.2,
and then stores the m data chunks and single parity chunk
on the one server. The overhead is thus 1/m, and can be
very low if m is relatively large. Since all of the chunks are
stored on the same server, m could be kept large by breaking
up any chunk into m equal size pieces and computing parity
across them.

To verify that the storage server is maintaining the data
chunks, the data originator can send an 〈x,n,s〉 request to
the storage server, which then computes and returns the sig-
natures of the data chunks and parity chunk. These val-
ues are returned to the data originator, which can verify the
integrity of the randomly-selected sequence of data as de-
scribed in Section 4.2. As an added benefit, the data origi-
nator can correct errors in a single chunk if there are media
errors on the storage system’s disk.

5. Implementation and Performance Issues

We implemented a large number of different signature
calculation algorithms to calculate compound signatures of
size 4 B and of 8 B using underlying fields of G F (28) and
G F (216). We then tested them on two systems running

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

void MultiplyByAlpha(GFElement x)
{
if(x != 0) {

x = antilog[log[x]]+1];
}
return x;

}

Figure 2. Explicit multiplication by α method
using logarithms and antilogarithms

Windows XP SP2: a desktop, with a 3 GHz Pentium 4 dual
processor with 512 MB memory, and a laptop with a 2 GHz
Pentium 4 Centrino processor and 1 GB of memory.

For completeness sake, we describe in broad strokes the
best algorithms to calculate signatures. Recall that our sig-
nature consists of different component signatures. For ex-
ample, if we calculate a 8 B signature using G F (28) over
a (non-contiguous) substring B of a container, we actually
calculate in parallel

(sig1(B),sigα(B),sigα2(B), . . . ,sigα7(B)) .

Here, the first signature, sig1(B), is the XOR of all the sym-
bols in B.

We can of course calculate a component signature
sigα i(B) according to its definition. It is slightly faster to
calculate signatures from the back, i.e. to calculate sigop

α i(B)

= ∑N−1
ν=0 bi ·αN−1−ν . We can now use a Horner scheme to

calculate

sigα i(Bop) =
((

(b1α i + b2)α i + b3 . . .
)

α i + bN−1
)

α i + bN

Thus, we build the signature processing a symbol at a time.
At each step, we multiply the current result with α i and then
add the next symbol to it. Addition is done with XOR and
hence fast; thus, the problem is fast multiplication by α i.

One simple possibility for implementing multiplication
by α is to use a table. This turns out to be efficient if the
tables fit into the L1 cache, i. e., for G F (28). For multi-
plication with α in G F (216), we break a 16 bit symbol s
into the left and the right part of 8 bits each. Using shift
operations in C, we calculate them as left(s) = s � 8 and
right(s) = s&0xff, respectively. We generate two tables
with entries between 0 and 0xff, tleft and tright, defined
by tleft[i] = (i 	 8) · α and tright[i] = i · α . Therefore,
α · s = tleft[left(s)] + tright[right(s)]. For example, if s =
0xabcd, then left(s) = 0xab, right(s) = 0xcd, tleft[0xab] =
0xab00 ·α , and tright[0xcd] = 0x00cd ·α . It turns out that
this “double table” method is somewhat faster than a sin-
gle multiplication table because both tables can now reside
in the L1 cache. However, we also need to optimize multi-
plication by powers of α . For example, if we calculate an

8 B signature over G F (28) we multiply with α , α2, . . . α6;
the first component signature only uses XORing. We can
save space and implement all multiplications by a power of
α by successive look-ups to a single multiplication-by-α
table. This strategy works reasonably well in the case of
G F (216), but results differ based on the cache sizes. For
the smaller field G F (28), individual tables seem to be al-
most always better.

An alternative is the use of logarithms and antiloga-
rithms. We pick an α that is a primitive element. Ac-
cordingly, each Galois field element β can be written as
β = α i and the power i—uniquely determined between 0
and 2 f − 1—is the logarithm of β . Conversely, β is the
antilogarithm of i. We can now exploit the properties of
logarithms to calculate generic products with a logarithm
and antilogarithm table. Figure 5 gives the idea in pseudo-
code applied to multiplication with α , which also extends
to other powers of α . The test for zero can be avoided by
defining log(0) to be a small, negative number and extend-
ing the antilogarithm table accordingly. Often, the resulting
variant is slightly faster.

Another technique for signature calculations uses a
scheme invented by Broder [4], and is based on the most
basic way of defining multiplication in G F (2 f) as poly-
nomial multiplication modulo a generator polynomial. The
multiplication by the unknown X can then be performed by
a left shift and XORing with an entity corresponding to the
generator polynomial. We can identify α with the unknown
so that multiplication by α consists of a left shift operation
followed by an conditional XOR. It turns out that evaluat-
ing the condition is quite expensive and that the resulting
implementation can have terrible runtimes. Broder recog-
nized that one can perform several shift operations at once,
consult a table that incorporates a number of decisions and
use the table contents as the XOR-operand. The resulting
implementations in general have excellent run-times, even
though, in contrast to the table method, we must also mul-
tiply with X2, and sometimes with X3 and X4 as well, since
we use compound signatures.

In our experiments, particular implementations of
Broder’s method were always the best, but were sometimes
equalled by table-based methods. Their speed came close
to just calculating the 4 B XOR checksum of the data. Cal-
culating a signature over 32 B in every 512 B block reached
a throughput of over 900 MB/sec on the 2 GHz laptop and
over 700 MB/sec on the desktop machine, falling to about
40 MB/sec on both once data had to be accessed from the
disk. Based on our experiments, the performance bottle-
neck for algebraic signatures is clearly the data transfer rate
between disk and memory.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

6. Conclusions and Future Research

In this paper, we introduced the use of algebraic sig-
natures to check on distributed data stored outside of the
owner’s control. Algebraic signatures offer two primary ad-
vantages. First, algebraic signatures compress a large block
in a short byte string. The byte string can be made large
enough to make an accidental fit extremely unlikely. For
example, a 32 bit signature will suffer a collision with prob-
ability 2−32 and a 64 bit signature with probability 2−64.
This compression saves network bandwidth. Second, alge-
braic signatures interact well with linear error and erasure
correcting codes. Thus, algebraic signatures may be used to
verify that the parity and the client data are coherent without
the need to obtain the entire data and parity. Furthermore,
if the underlying code has error correcting capabilities, then
the signatures alone can diagnose which data is incorrect,
perhaps from an incorrectly performed update or a mali-
cious storage site.

We use these properties to verify remote storage in two
different ways. If data is stored across a number of sites
using an m/n erasure correcting code, the use of a linear
code to generate the k = n−m parity chunks permits chal-
lenges based on algebraic signatures to check whether the
storage sites together store the same data. Using the error
correcting capacity of such a code, we can also determine
that one or a few sites which are in error. Second, and per-
haps more intriguing for a system such as OceanStore, we
can check whether a set of colluding sites or even a single
site accurately stores the data entrusted to it. We do so by
breaking the object stored there into equal size data chunks,
adding a few parity chunks to it, and blinding all the data
stored there by XORing with a pseudo-random stream. Our
scheme then allows issuing challenges that only a site that
faithfully stores its data can answer correctly; it is proba-
bilistically impossible for a site that does not know the se-
crets to generate a coherent set of signatures. This allows
inexpensive verification of large amounts of data with rela-
tively low network communication costs.

Our signature scheme is flexible enough to easily gener-
ate such a diversity of challenges that storing precomputed
data instead of the data makes no sense to a cheating stor-
age site. At the same time, each signature is small and
thus reveals little information about the stored data, even
if signatures are sent in cleartext. Furthermore, the signa-
ture generation process is fast, running at tens to hundreds
of megabytes per second. Thus, this approach can permit
the verification of very large quantities of remote storage
with minimal network bandwidth and acceptable amounts
of computation at the remote site.

We are currently implementing a simple peer-to-peer
storage system that uses algebraic signatures for verifica-
tion, and expect to measure the reduction in bandwidth as

well as the increased ability to do verification in such a
system. We are also developing a scheme that uses alge-
braic signatures to check on the consistency of replicated
databases. It might even be possible to consider the use of
signatures as a means of concurrency control, since they can
detect inconsistencies between data and parity information.

While algebraic signatures are unsuitable as crypto-
graphically secure hash functions such as MD5 or the SHA
family of secure checksums, they are ideally suited for use
in verifying remotely stored data in distributed systems.
The combination of low network bandwidth, reasonable
computation load, and resistance to malicious modification
make algebraic signatures ideal for verifying that data en-
trusted to remote storage systems is actually being main-
tained. By allowing the verification of large amounts of
stored data with minimal network impact, algebraic signa-
tures have the potential to enable very large-scale verifiable
distributed storage systems.

Acknowledgments

We would like to thank the faculty and students of the
Storage Systems Research Center for their help and guid-
ance. Support for this research was provided by SSRC
industrial partners, including Engenio, Hewlett Packard,
IBM, Intel, Microsoft, Network Appliance, Rocksoft, Veri-
tas, and Yahoo.

References

[1] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cer-
mak, J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer,
and R. Wattenhofer. FARSITE: Federated, available, and
reliable storage for an incompletely trusted environment.
In Proceedings of the 5th Symposium on Operating Sys-
tems Design and Implementation (OSDI), Boston, MA, Dec.
2002. USENIX.

[2] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVEN-
ODD: An efficient scheme for tolerating double disk failures
in RAID architectures. IEEE Transactions on Computers,
44(2):192–202, 1995.

[3] M. Blaum, P. G. Farrell, and H. C. A. van Tilborg. Array
codes. In V. S. Pless and W. C. Huffman, editors, Hand-
book of Coding Theory, volume 2. North-Holland, Elsevier
Science, 1998.

[4] A. Z. Broder. Some applications of Rabin’s fingerprint-
ing method. In R. Capocelli, A. D. Santis, and U. Vac-
caro, editors, Sequences II: Methods in Communications,
Security, and Computer Science, pages 143–152. Springer-
Verlag, 1993.

[5] A. Z. Broder. On the resemblance and containment of docu-
ments. In Proceedings of Compression and Complexity of
Sequences (SEQUENCES ’97), pages 21–29. IEEE Com-
puter Society, 1998.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

[6] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.
Syntactic clustering of the web. In Proceedings of the 6th
International World Wide Web Conference, pages 391–404,
Santa Clara, California, United States, Apr. 1997.

[7] G. Caronni and M. Waldvogel. Establishing trust in dis-
tributed storage providers. In Proceedings of the Third In-
ternational Conferences on Peer-to-Peer Computing, pages
128–133. IEEE, Sept. 2003.

[8] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:
A distributed anonymous information storage and retrieval
system. Lecture Notes in Computer Science, 2009:46+,
2001.

[9] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,
J. Leong, and S. Sankar. Row-diagonal parity for double
disk failure correction. In Proceedings of the Third USENIX
Conference on File and Storage Technologies (FAST), pages
1–14, 2004.

[10] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. In Proceed-
ings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), pages 202–215, Banff, Canada, Oct.
2001. ACM.

[11] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Sto-
ica. Towards a common API for structured peer-to-peer
overlays. In Peer-to-Peer Systems II: Second International
Workshop, IPTPS 2003, Springer Lecture Notes in Com-
puter Science 2753, pages 33–44, Berkeley, CA, USA, Feb.
2003.

[12] E. Gabber, J. Fellin, M. Flaster, F. Gu, B. Hillyer, W. T. Ng,
B. Özden, and E. Shriver. StarFish: Highly-available block
storage. In Proceedings of the Freenix Track: 2003 USENIX
Annual Technical Conference, pages 151–163, San Antonio,
TX, June 2003.

[13] A. V. Goldberg and P. N. Yianilos. Towards and archival in-
termemory. In Advances in Digital Libraries ADL’98, pages
1–9, April 1998.

[14] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Re-
iter. Efficient Byzantine-tolerant erasure-coded storage. In
Proceedings of the 2004 International Conference on De-
pendable Systems and Networking (DSN 2004), June 2004.

[15] M. C. Harrison. Implementation of the substring test by
hashing. Communications of the ACM, 14(12):777 – 779,
December 1971.

[16] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, and
D. A. Patterson. Coding techniques for handling failures in
large disk arrays. Algorithmica, 12:182–208, 1994.

[17] R. M. Karp and M. O. Rabin. Efficient randomized pattern-
matching algorithms. IBM Journal of Research and Devel-
opment, 31(2):249–260, Mar. 1987.

[18] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An architecture for
global-scale persistent storage. In Proceedings of the 9th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),
Cambridge, MA, Nov. 2000. ACM.

[19] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and
M. Isard. A cooperative Internet backup scheme. In Pro-
ceedings of the 2003 USENIX Annual Technical Conference,
pages 29–42, San Antonio, TX, 2003.

[20] W. Litwin, R. Moussa, and T. Schwarz. LH*RS – a highly-
available scalable distributed data structure. ACM Transac-
tions on Database Systems, 30(3):769–811, 2005.

[21] W. Litwin and T. Schwarz. LH*RS: A high-availability scal-
able distributed data structure using Reed Solomon codes.
In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, pages 237–248, Dal-
las, TX, May 2000. ACM.

[22] W. Litwin and T. Schwarz. Algebraic signatures for scal-
able, distributed data structures. In Proceedings of the 20th
International Conference on Data Engineering (ICDE ’04),
pages 412–423, Boston, MA, 2004.

[23] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A.
Spielman. Efficient erasure correcting codes. IEEE Trans-
actions on Information Theory, 47(2):569–584, February
2001.

[24] F. J. MacWilliams and N. J. Sloane. The Theory of Error
Correcting Codes. Elsevier Science B.V., 1983.

[25] P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H. Rosen-
thal, and M. Baker. The LOCKSS peer-to-peer digital
preservation system. ACM Transactions on Computer Sys-
tems, 23(1):2–50, 2005.

[26] E. L. Miller, D. D. E. Long, W. E. Freeman, and B. C. Reed.
Strong security for network-attached storage. In Proceed-
ings of the 2002 Conference on File and Storage Technolo-
gies (FAST), pages 1–13, Monterey, CA, Jan. 2002.

[27] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy:
A read/write peer-to-peer file system. In Proceedings of
the 5th Symposium on Operating Systems Design and Im-
plementation (OSDI), Boston, MA, Dec. 2002.

[28] M. O. Rabin. Fingerprinting by random polynomials. Tech-
nical Report TR-15-81, Center for Research in Computing
Technology, Harvard University, 1981.

[29] M. O. Rabin. Efficient dispersal of information for security,
load balancing, and fault tolerance. Journal of the ACM,
36:335–348, 1989.

[30] E. Riedel, M. Kallahalla, and R. Swaminathan. A framework
for evaluating storage system security. In Proceedings of the
2002 Conference on File and Storage Technologies (FAST),
Monterey, CA, Jan. 2002.

[31] M. Ripeanu, A. Iamnitchi, and I. Foster. Mapping the
Gnutella network. IEEE Internet Computing, 6(1):50–57,
Aug. 2002.

[32] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer stor-
age utility. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP ’01), pages 188–201,
Banff, Canada, Oct. 2001. ACM.

[33] T. Schwarz. Verification of parity data in large scale storage
systems. In Proceedings of the 2004 International Confer-
ence on Parallel and Distributed Processing Techniques and
Applications (PDPTA ’00), Las Vegas, NV, 2004.

[34] T. J. Schwarz, R. W. Bowdidge, and W. A. Burkhard. Low
cost comparison of files. In Proceedings of the 10th In-
ternational Conference on Distributed Computing Systems
(ICDCS ’90), pages 196–201, 1990.

[35] L. Xu and J. Bruck. X-code: MDS array codes with opti-
mal encoding. IEEE Transactions on Information Theory,
45(1):272–276, 1999.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

