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ABSTRACT

File names are one of the earliest computing abstractions, a
string of characters to uniquely identify a file for the system,
and to help users remember the contents when they look for
it later. They are also a rich source of semantic metadata
about files. However, this metadata is unstructured and
opaque to the rest of the system. As a result, metadata
in file names is often error-prone, and hard to search for.
File names can and should be more meaningful and reliable,
while simplifying application design and encouraging users
and applications to provide more metadata for search.

We describe a POSIX compliant prototype file system,
TrueNames, which demonstrates an alternate approach to
naming and metadata, called metadata aware naming. Tru-
eNames separates the task of uniquely identifying a file from
the task of helping the user remember its contents. It cap-
tures metadata in a structured format for later indexing, and
uses it to generate file names which are correct, regenerable,
and disambiguatable by design. TrueNames simplifies appli-
cation design by providing a consistent interface for meta-
data aware naming, incurs a low overhead of approximately
15% under realistic workloads, and can simplify a wide va-
riety of data management tasks for both applications and
users.

Categories and Subject Descriptors

E.5 [Files|: [Organization/structure]; H.3.2 [Information
Storage and Retrieval]: Information Storage—File orga-
nization

General Terms

Design, Human Factors

1. INTRODUCTION

File names have existed since the earliest file systems, and
serve two important functions. First, they serve to uniquely
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identify a file over time. Second, they serve to assist our
memory, describing the contents of a file, and helping us to
find it or recognize it when we look at it later. In order to
help users to find and remember files, they often contain a
bounty of useful metadata about the file.

However current approaches to file names have several
flaws. Names are unstructured semantic metadata which is
opaque to the system and unavailable for indexing. Format-
ting is up to the user, and is error prone and inconsistent,
making it hard to find files later. The name can easily be-
come out of sync with the file contents. Applications cannot
effectively cooperate with each other or users to generate
names. And changing a file name can destroy information
that was previously available.

Consider this file name from the author’s experiments:
createfiles_HDD_truenames_100000files_1lthreads.data
Looked at in one light, this is a long, arbitrary, error prone
string of characters. In another light, it is a rich source of
semantic metadata about the contents of the file that could
be used for search and analysis, and without which the con-
tents of the file will be useless. The challenges are to extract
useful metadata, and make it simple to create and maintain
user-friendly file names, all without creating additional work
for users and applications.

To address these challenges, we propose to disassociate the
two functions of names, separating the task of uniquely nam-
ing a file for applications from that of providing meaningful
names for users. Files can be given user-friendly names au-
tomatically and in a structured fashion, based on metadata
provided by users and applications. These file names have
many advantages over conventional file names. They are
correct, because they are continuously synchronized with the
file’s metadata. They are regenerable, allowing us to com-
press and recreate names at will without loss of information.
They are flexible, allowing files to change names without
breaking application references, and display different names
in different contexts. File names can be disambiguated us-
ing all available metadata, which makes search results easier
to interpret, and reduces accidental data over-writes. The
metadata which we capture is structured, making it read-
ily available for search and data management. We describe
these names as metadata aware names.

Metadata aware file naming can make naming more re-
liable and less error prone. Many applications already of-
fer some form of automatic file naming, and by making
that functionality part of the file system, we can speed ap-
plication development and reduce code duplication. Using
metadata allows different applications to share responsibil-



ity for managing file names, rather than having metadata
and names locked into application silos. Being able to re-
generate file names allows us to port files between file sys-
tems with differing constraints, generate a meaningful file
name in each location, and then reconstruct the original file
name whenever needed. Names can be customized based on
the current directory, the user, or the search context. We
can easily move metadata between file names and directory
names, or store it for later use. And finally, by gently en-
couraging users and applications to share more metadata in
a structured fashion, we can make more metadata available
for indexing, to improve the quality of file system search or
support a non-hierarchical file system.

As a proof of concept, we describe our prototype file sys-
tem, TrueNames, a FUSE-based file system which provides
a durable unique identifier for a file which can be used by
applications, captures rich metadata in a structured format,
and uses it to dynamically generate user-friendly file names
using templates. TrueNames demonstrates the feasibility of
metadata aware naming. It offers extensive new functional-
ity, and incurs very low overheads, less than 15% on real-
istic workloads. Much of the additional cost is incurred by
added kernel crossings, suggesting that an in-kernel imple-
mentation would have even lower performance impact, while
significantly improving file system search and data manage-
ment by increasing the structured metadata available for
indexing.

2. USE CASES

Metadata aware naming can be used as a broadly appli-
cable framework for solving cross-cutting concerns. It can
be used by applications to simplify common tasks, and by
scripts and end-users to better manage files. It can even help
to prevent data loss caused by overwrites, and allow multiple
applications to cooperatively name files. We describe a va-
riety of use cases, and explain how metadata aware naming
can benefit users and applications in each case.

2.1 Managing a photo collection

File names have lagged behind Uls in photography, mak-
ing it challenging to find and manage photos outside an
application. While most applications offer excellent GUI
photo management, many use the default file name from
the camera, usually a per-camera sequence number such as
DSC_12. jpg or IMG_655. jpg. File name collisions are com-
mon, especially for owners of multiple cameras. The lat-
est version of iPhoto [4] uses the default name, and names
derivative files based on size, or an index corresponding to
order of face discovery, such as such as DSC_12_1024. jpg or
DSC_12_facel.jpg. iPhoto names cannot be managed by
the user, and offer little information about their contents.
Higher end applications such as Aperture [1] or Lightroom
[5] allow the user to bulk rename files during import and
export, using metadata such as Exif fields [10].

However, these applications cannot keep file names in sync
if metadata changes, making it difficult to manage photos
in more than one application. For instance, a user might
want to use facial recognition from iPhoto, while touching up
photos in Lightroom. If the user wants to find a retouched
photo of a certain person, they cannot search for it using
metadata, and if they wish to put a person’s name in the
file name, they must name the files manually, then reimport
the new file name into one or both applications’ databases.

TrueNames can significantly improve photo naming, by
taking metadata extracted by the application and automat-
ically constructing file names for photos based on metadata
such as where they were taken, who was in them, and what
size they are. If the metadata changes (such as a recognized
face, or the addition of geo-tagging), TrueNames automat-
ically updates the file name to reflect the correct informa-
tion. File name collisions can be reduced, since photos from
two cameras will have different metadata which can be used
to generate useful names. In addition, TrueNames allows
multiple applications that operate on the same files, such as
iPhoto and Lightroom, to share responsibility for generating
a meaningful name. Both applications can export metadata
which can be used for naming and search, and TrueNames
can manage the formatting and creation of file names, merg-
ing metadata from both applications into a single meaning-
ful description of the file, something which is currently very
difficult.

2.2 Managing experimental data

One common problem scientists face is managing experi-
mental results. A scientist might run a series of experiments,
varying some parameters and holding others constant, out-
putting the results to a file, then decide based on the re-
sults to vary other parameters. This is commonly managed
by creating file names programmatically. However, this ap-
proach has drawbacks. For instance, if the user wants to
search the results by parameter, they will need to use string
matching or a regular expression. These both rely on consis-
tent formatting, such as using the same field separator and
the same field order. A metadata field which contains the
same character as the chosen field separator (such as an un-
derscore in a library name) can throw a regular expression
off. Finally, common queries such as range searches require
complex regular expressions to perform.

Another common problem occurs when rerunning exper-
iments while setting additional parameters. The user must
remember to change the file name to reflect the new param-
eters, and older file names will not have the new parameters,
even if they were applicable. If the user forgets to change the
code which generates file names, they may overwrite existing
results, wasting hours or days of compute time.

TrueNames simplifies creating file names and searching
for metadata. Rather than programmatically generating file
names, experiments can simply add metadata for all the pa-
rameters. File names can be generated using a simple tem-
plate, and then the user can expand the template as new
parameters become relevant, resulting in both old and new
files using the new template. Collision detection can prevent
overwriting by disambiguating files on the fly. The metadata
fields are structured and easy to index and search, regard-
less of what characters occur in the field, or the order fields
occur in the file name. File names are an accurate reflection
of their contents. The authors used TrueNames to manage
experimental results for this work, and found it to be ex-
tremely helpful and simple to use, allowing them to easily
manage multiple experiments and parameters, generate ac-
curate and meaningful file names without code changes, and
then search their results later.

2.3 Recreating file names

File name portability is a known problem in computing.
For instance, some file systems support longer names and



paths than others. When moving files from one system to
another, file names can be truncated, losing important in-
formation, and making it difficult to find a file, even if it
is brought back later. TrueNames can help with this, by
allowing a file name to be regenerated based on the meta-
data. For instance, files being moved to more restrictive file
systems can use a different name template with fewer fields,
creating an appropriately sized name without truncating the
file name at an arbitrary point, and preserving the informa-
tion the user finds most important. If the file is retrieved
later, the original file name can be recreated exactly. Since
structured metadata was stored and used to generate the
original name, it can also be used to help create meaningful
directory names, in essence pivoting metadata between file
names and directory names.

2.4 Search and semantic file systems

Metadata aware naming provides a convenient way to or-
ganize a file hierarchy based on the context, and to name files
according to the facets that need to be emphasized in a par-
ticular context. This is of particular importance in semantic
and non-hierarchical file systems, such as SFS [15], LISFS
[19], Cador [11] and Inversion [18]. Rather than having a
single path to a file, these systems offer multiple virtual hi-
erarchies based on metadata, where each directory is a query
result. They can be backed by conventional file systems [15],
or a file system-like interface can be backed by a database
which contains BLOBs and associated data [11, 18, 19].

During search, metadata aware naming can give names to
each file based on its context and the query. For instance, in
a photo marketplace based on a BLOB storage backend, the
same photo can be named on the owner’s personal computer
using places, faces and so on, whereas it should be shown
in the shared marketplace area with metadata of interest to
potential buyers (e.g., provider, price, and subject).

Even in hierarchical file systems, search often strips direc-
tory context, giving you a list of files which may all have
the same name. This becomes even more problematic in a
semantic file system, where there are no directories for con-
text. For instance, if we name photos using who, when, and
where, and then query for “photos of Mary in Hawaii on
July 7, 2011”, then we may have ten files named Mary_7-
7-2011_Hawaii. jpg. This is an area where disambiguation
can shine. If some or all the fields in the template are al-
ready fixed by the query, more metadata can be added to
the file name, allowing users to distinguish between results
at query time.

3. ARCHITECTURE

Having file names which can change outside the control of
users and user applications poses a number of unique and in-
teresting challenges. One must choose a storage mechanism
for the metadata used for naming. There must be a way
to define the structure of names, and what metadata they
will use. Applications require a durable way to reference
files, in order to maintain internal databases and repeatedly
reference files. There must be a way to prevent acciden-
tal data loss through file name collisions. We discuss these
challenges, and the modifications our prototype makes to
support metadata-aware naming throughout the file system
and applications. The architecture of our prototype is shown
in Figure 1.

3.1 Storing metadata

The goal of our prototype was to store rich metadata for
file names in a way that was portable, did not significantly
change the semantics of the file system, and was easy to un-
derstand and manage. To that end, we selected the extended
attribute interface for managing metadata. Extended at-
tributes provide a simple key-value interface, and are asso-
ciated with the inode (either by a reference to a metadata
block or resource fork, or in the case of small metadata on
ext4, directly stored in the inode), which means that files
with hard links, which contain the same data, can also share
metadata and names. (Soft links continue to offer the ability
to have a mix of automatic and manual names for a single
file.) Many applications already use extended attributes,
they require no additional libraries, and are supported by
most modern file systems, improving portability of our ideas.
Many other solutions are possible, and we discuss some of
them in the future work section.

3.2 Managing names

TrueNames assumes that file names have schemas, a set
of rich metadata which is broadly applicable to many dif-
ferent files. However, not all files of the same extension are
assumed to have the same schema. For instance, an PDF
file may be a graph of experimental results, or an e-book.
A text file might be a configuration file, or a letter to a
relative. These will have different schemas that are appro-
priate. Likewise, two files with differing extensions, such as
.jpg and .gif files, may have a schema that is appropri-
ate for both. Thus, we allow a file to reference a template,
which is a string containing each of the metadata fields of the
schema. A template has a name, and defines the structure of
a file name that is appropriate for that file, as shown in Ex-
ample 1. Templates can contain file extensions which serve
as the default extension. However, if the user supplies a file
extension, it will override the template extension, allowing
different types of files to share templates. For instance, .jpg
and .gif files can share a photo template.

Example 1 Template file

music {$artist}-{$album}-{$song}.mp3

photo {$seq}_{$date}_{$camera}_{$location}.jpg
paper {$author}_{$conference}${year}_${tagsl}.pdf
exp {$wkload}_{$files}files_{$threads}threads.data

Templates are associated with a file using an extended
metadata field called user.naming.type, which references
the name of a template. This field is not mandatory, making
it possible to mix manually and automatically named files
throughout the file system. If a user or application wishes
to rename a file, they can change user.naming.type to the
name of a different template, adding additional metadata as
needed. If a user wishes to manually manage a name, they
can remove the current template from the file’s metadata,
or not choose a template during file creation.

As metadata is added or updated by users and applica-
tions, the file name is updated to reflect the current state of
the file’s metadata. This entails storing the extended meta-
data, looking up the template, re-calculating the file name,
and then renaming the file. It may also entail handling file
name collisions caused by the rename.
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Figure 1: Architecture of TrueNames

If not all of the metadata referenced is available, True-
Names makes a best effort to update the file name, popu-
lating all of the known fields, and marking metadata that
is missing with a default value. In our photo example, that
might result in a file name of DSC1967_7-21-13_NikonD50_
{$location}??. jpg for a photo that has not yet been geo-
tagged.

In our prototype, templates are stored on a global basis,
and loaded on file system startup. However, a file system
might wish to allow individual users or directories to have
associated templates, and for files to have different names for
different users (another possibility created by disassociating
system names from user-friendly names). We plan to explore
personalized naming in future work.

3.3 Programming with changing file names

One complication created by automatically named files is
that the file name can change between accesses or modifi-
cations. For instance, when metadata is being added to the
file, each new metadata item which is used by the template
will trigger a rename. In these cases, the user or application
needs a durable way to reference the file they are updating.
The key to metadata aware naming is the ability to disasso-
ciate the name the user sees from a unique identifier which
serves as a durable reference for programs and the system.
In file systems which are willing to deviate from the POSIX
specification, file creation could return a durable reference
such as a GUID or object ID directly. However, our proto-
type demonstrates a fully POSIX compliant solution which
requires minimal application changes.

As a proof of concept, we use the inode to guarantee
uniqueness of references. In the next version of TrueNames,
we will add the inode’s generation number, similarly to how
NFS handles stale file handles [21], to guarantee that the
inode has not been freed and reused. We allow files to be
referenced either by file name or directly by inode number,
as if the inode number were a file name.

To reference a file in a directory by its inode number
rather than by name, it can be opened using a reference to
<dirname>/.inode/<inodenumber>, as shown in Example 2.
This allows programs and scripts to create an automatically
named file, call fstat on the file handle to acquire a durable
reference, and then add metadata, all without needing to
know the file’s name.

Example 2 Reference by inode

$ curl http://indyband.org/1.mp3 > template=music
$1s -i

1317 {$artist}?7-{$album}??-{$song}??nozwzZ8.mp3

$ setfattr -n user.artist -v"Indy Band" .inode/1317
$ setfattr -n user.song -v"So Obscure" .inode/1317
$ setfattr -n user.tracknum -v"1" .inode/1317

$ 1s

Indy Band-{$album}??-So Obscure.mp3

Under a typical file system such as ext4, it is not fast for
an application to access a file by its inode number. Access-
ing a file by its inode number requires searching the system
for a file which has a matching inode number and then re-
solving it to a name, which can be very expensive. While
we already reduce the cost by reducing the search space to
a single directory, this still requires an linear scan over the
directory inode. To get acceptable performance, we further
reduced this cost by adding an inode cache map to True-
Names, which allows us to look up a file name in constant
time given an inode. This is similar to the name cache used
by the Linux VF'S, although the lookups occur from inode to
name, rather than vice versa. The inode map is populated
from the directory inode on first access, and then caches all
inodes in that directory up to some threshold (ten thousand
files in our experiments.) We use a mark and sweep policy,
and evict up to half the entries from the cache when full.

By encouraging applications to use a static reference, users
can modify user-friendly file names at will, and files can
have context dependent names, without breaking existing
application references. Static references work for all files,
not just automatically named ones, so even manually named
files can benefit from this feature.

3.4 File creation with automatic names

In order to create a file in most file systems, we need two
pieces of information. First, we must signal what directory
we are creating a file in. Second, we must make sure that
the file name we are creating is unique, to prevent overwrit-
ing an existing file. Automatic naming adds two additional
problems. We need to signal what template we would like to
use. And since no known file system allows you to add meta-
data before creating a named file, we cannot use metadata
to generate the initial file name.



Our goal for the prototype was to maintain existing se-
mantics as much as possible, and require minimal rewrite of
existing code, which ruled out adding or modifying system
calls. We therefore overrode the semantics of the existing
system calls, open(), creat(), and mknod(), such that if a
file is created with a name which ends in template=X, where
X matches the name of a known template, the name is man-
aged by the file system, and a new file is generated with an
automatically generated unique file name. The initial file
name is composed of the template contents, followed by a
unique alphanumeric suffix, and finally, any file extension,
as shown in Example 2. We use atomic file creation with
0_EXCL internally, to prevent race conditions, as well ran-
dom back-off retries if we receive EEXIST during initial file
creation. Once the file is created, metadata can be added
to populate the file name. Since metadata must be added
one field at a time, there is a possibility of a temporary
name collision during metadata addition, which we attempt
to detect and handle.

Alternatively, the application can create a file name using
any name it wishes (including one given by the user), and
then set the template and metadata fields after file creation.
The original file name can also be stored in metadata, and
then reapplied later, or used for resolving collisions.

3.5 Handling collisions

One problem that can arise with automatic naming is that
two files in the same directory may be different in content
and metadata, but share all the fields that are currently
referenced in the template. During rename, we check to see if
the new metadata results in two files with the same name. If
so, we check to see if any metadata differs. If disambiguating
metadata is available, we add the first available metadata to
the file name which will disambiguate the files, along with
its extended metadata key. If not, then and only then, do we
overwrite the existing file. In the future, we plan to explore
more user-friendly strategies for disambiguation.

3.6 Application level support

A file system which requires extensive changes to appli-
cations is unlikely to see adoption. We built TrueNames to
show how a standard POSIX compliant file system could ex-
pose new naming functionality, but newer file system types
such as object stores and non-hierarchical file systems can
easily add new APIs for bulk metadata management and
nameless file creation, which would ease implementation of
metadata aware naming.

Existing applications which don’t wish to take advantage
of the added functionality can run on TrueNames without
any modifications, and see very little change in performance.
In order to take advantage of the new functionality, appli-
cations need to create or reference a template, and begin
exporting metadata for each new file. Optionally, they can
begin referencing files using an inode reference. We describe
the changes to semantics in our prototype, and how they
affect applications.

open/creat/mknod As noted, if these calls are invoked
using a directory path followed by template=X, they
create an automatically named file using the template,
a unique suffix, and an extension, and set
user.naming.type. Otherwise, they will create a file
in the normal fashion.

setxattr/removexattr In addition to setting and remov-
ing extended attributes, these calls now trigger a re-
calculation of the file name. If the attribute set or
removed is one present in the file template, then the
file will be renamed. These can also be used to change
the template or freeze the current name, by setting or
removing user.naming.type.

rename This operation can be used in a variety of ways.

e If the target path contains a different directory,
but the same file name, the file is moved to the
new directory using its current file name.

e If the target path contains a different file name
which is the name of an existing template, we
update the file to use the new template.

e If the target path contains a different file name
which is not the name of an existing template, we
assume the user wishes to manually control the
file name. We apply the new file name, and re-
move user .naming. type from the file’s metadata.

e In all cases, if a new inode is created during re-
name (for instance, if the file is migrated between
file systems to a file system which supports ex-
tended attributes), all the extended metadata is
copied to the new inode.

Hard links Under our prototype, a hard link shares an in-
ode, and therefore all extended metadata, with the
path it links to. Therefore, files which are hard links
to an automatically named file will share a name with
its target. A hard link to a dynamically named file in
in the same directory is not feasible, since it has the
same name as the target, and will fail with EEXIST.
Otherwise, hard links function as expected. This is a
limitation of our prototype. In future work, we plan to
investigate other methods for automatically managing
both hard and soft links.

Soft links Soft links work as before, and can target either
a file name, or an inode path, depending on the de-
sired behavior. Soft links can be used to supply multi-
ple names in the same directory, such as an automatic
name and a manual name. Due to restrictions on ex-
tended attributes, soft links cannot be automatically
named in our prototype.

Every file in our prototype now has at least two names:
its human readable name, either auto-generated or assigned
by a human, and its inode number preceded by its direc-
tory path. It may have additional names via hard and soft
links. Human readable names and inode references are in-
terchangeable in all file system calls. A reference by inode
can be opened, linked, have metadata set or gotten, and so
on. However, .inode/ itself is not a real directory on disk,
and cannot be opened or iterated over.

If multiple applications manage the same files, then there
is the possibility of both applications attempting to manage
the template and metadata. Adding additional metadata
to file names and templates can only benefit naming and
search, but applications may wish to prompt the user before
changing the template or removing fields.



4. EXPERIMENTAL DESIGN

We have demonstrated how new functionality can be added
to the file system to make it more searchable, to make file
names more correct and structured, and how this function-
ality can easily integrate into existing file systems. However,
a file system’s functionality must also be balanced against
its performance. We describe how we evaluated the perfor-
mance of TrueNames. In order to effectively benchmark such
a file system, we need to answer questions on how it affects
basic file system operations, such as file creation, deletion,
and renaming. We also need to describe the effect on ex-
tended metadata operations. In order to evaluate our file
system, we compared it against two other file systems, one
comparable Python FUSE file system, as well as a raw ext4
file system in order to characterize the overhead of FUSE
and Python versus the overhead of our file system.

e xmp is the example file system which ships with fuse-
python. We added support for extended attributes,
using the same library, py-xattr, used by TrueNames.
Otherwise, it is a vanilla FUSE file system.

e As a point of reference, we also include file system
performance on a raw ext4 file system.

We ran both TrueNames and xmp in single threaded mode,
since xmp does not support multiple threads by default, and
we wanted to modify it as little as possible. TrueNames
will support multiple threads in the future. We disabled the
inode cache, and set the entry_timeout to 0 in order to
prevent stale file name entries.

We ran two batches of experiments, one using an SSD,
and one using a hard disk drive. Our SSD experiments were
run on a 100 GB Intel 330 Series SSD, in an 8 core Intel
Xeon CPU E3-1230 V2 @ 3.30GHz with 16 GB of RAM.
Our HDD experiments were run on a 7200 RPM 500 GB
Seagate Constellation drive, in an 8 core Intel Xeon CPU
E5620 @ 2.40GHz and 24 GB of RAM. In both cases, we
ran on Fedora with a 3.9.10-200.fc18.x86_64 kernel, and an
ext4 file system as our backing store.

S. RESULTS AND ANALYSIS

TrueNames is a proof of concept user space prototype, but
even so, it has very low overhead, demonstrating that auto-
matic naming can be added to production file systems with
minimal performance implications. We tested TrueNames
under a variety of micro and macro benchmarks, in order to
analyze its performance under extreme conditions as well as
realistic workloads. TrueNames is noticeably slower under
our micro benchmarks, as expected, but the performance
penalty can be measured in fractions of a millisecond, and
TrueNames exhibits no scaling issues under high load. Un-
der normal file system loads, such as our macro benchmarks,
TrueNames performs with only a 15% overhead. In addition,
TrueNames shows no impact on operations other than file
creation and extended metadata operations, which are rare
in most workloads. In aggregate, these numbers show that
metadata aware naming is suitable for many file systems,
large and small alike, adding useful new functionality at lit-
tle performance cost.

5.1 Microbenchmarks

There are a number of benchmarks designed to exercise
metadata. However, these are generally aimed towards file

system metadata, such as performing high-speed updates
to modification times. Tools such as Filebench [2], while
quite flexible, do not offer the ability to modify extended
attributes out of the box. By contrast, we needed to evalu-
ate our system’s impact on extended metadata performance.
In order to do this, we wrote a benchmark designed to add,
update, and delete extended attributes continuously. In ef-
fect, if the file is of an automatically named type, this results
in TrueNames continuously renaming the file.

In order to focus as much as possible on the metadata
speed, we pre-created a file set of size n. We then iterated
over the file set until all n files had been touched, setting
a single extended attribute on each file, calculating the la-
tency of each operation and collecting statistics. Ext4 stores
small metadata attributes in the inode, so files with a very
large number of extended attributes may show lower per-
formance than our benchmarks. One potential optimization
is to ensure that metadata attributes used in the name are
kept in the inode, since they are likely to be small, and not
numerous.

Once the add benchmark completed, we ran similar bench-
marks to update an attribute, and finally, to delete an at-
tribute. This allowed us to exercise the new code paths
continuously, highlighting any performance differences from
our baseline file systems.

We ran this benchmark for both automatically and man-
ually named files, in order to quantify the overhead incurred
both with and without using the new features. We ran the
metadata add, update and delete benchmarks for file sets
from 10,000 to 1,000,000 files, which is comparable to mod-
ifying every file on a modern laptop at once. We then re-
peated each test forty times in order to smooth noise and
calculate a standard deviation.

Microbenchmarks are the most intensive tests, so it is un-
surprising that they show the largest difference between the
file systems. Examining the difference between automati-
cally named files and manually named files, we can see that
automatic naming incurs a 100% penalty over metadata op-
erations which do not affect the name, across add (Figure
2), update (Figure 3), and delete (Figure 4), and for both
HDDs and SSDs. However, even at a 100% penalty, the ad-
ditional cost can be measured in fractions of a millisecond.
Looking at the difference between the baseline fuse system
xmp, and TrueNames without name templates, we can see
that there is approximately a 30% overhead to using Tru-
eNames without automatic naming. This is primarily due
to checking every time if the file has a template, which re-
quires retrieving extended metadata, and therefore both an
additional kernel crossing and potentially a disk access. In
total, TrueNames adds four extra kernel crossings per one
file creation. The additional kernel crossings are a perfor-
mance issue specific to FUSE, and would not occur in an
in-kernel file system.

Even at this high operation rate, and for a million files,
we can see from the latencies that the disk cache is rarely
saturated. This performance will occur in a small fraction of
operations, usually during file creation, and the additional
latency will be masked under most normal workloads, as
we discuss in the next section. TrueNames shows a fixed
overhead without scaling bottlenecks up to at least a million
files, making it suitable for fairly large workloads.

5.2 Macrobenchmarks
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Figure 2: Latency and standard deviation per add extended metadata operation, for 40 runs of the add benchmark.
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Figure 3: Latency and standard deviation per update extended metadata operation, for 40 runs of the update benchmark.

While micro benchmarks can be useful for setting an up-
per bound on performance, they are often an unrealistic as-
sessment of how a file system will perform in practice. In the
real world, file systems are experiencing a variety of opera-
tions from many different sources. In order to simulate the
performance in a realistic environment, we chose a standard
benchmark, Filebench [2]. This benchmark does not exer-
cise the extended metadata functionality, and is therefore
comparable to the statically named files experiments from
section 5.1. We ran two different benchmark suites, the
fileserver suite, which is designed to simulate the behav-
ior of a typical file server, by performing a series of creates,
deletes, appends, reads, writes and attribute operations on
a directory tree. Mean directory size is 20 files, and the
mean file size is 128kB. The workload generated is some-
what similar to SPECsfs [3]. We also ran the createfiles
benchmark, which creates a specified number of files in a di-

rectory tree, with an average directory size of 100 files. File
sizes are chosen according to a gamma distribution with a
mean size of 16kB. We varied each of these from 1 to 32
threads, and from 100,000 to 1,000,000 files. We then re-
peated each test forty times, in order to smooth noise and
generate a standard deviation.

For both the fileserver and createfiles benchmarks, True-
Names has file creation performance that is highly compara-
ble with that of xmp, at about 15% overhead. File creation
performance for the fileserver benchmark can be seen in Fig-
ure 5. File creation performance for createfiles is in Figure
6. Other typical operations, such as writing a file, deleting
a file, or calling stat on a file, had insignificant overhead,
meaning that TrueNames is suitable for all but the most
create-intensive workloads. Most of the fixed overhead of
TrueNames is masked by normal operation latencies.
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Figure 4: Latency and standard deviation per delete extended metadata operation, for 40 runs of the delete benchmark.

6. RELATED WORK

Automatically naming files is an under-explored area. The

most similar areas of research are those of application-generated

names, web search snippets, and non-hierarchical file sys-
tems, each of which we discuss.

6.1 Application-generated names

As discussed in Section 2, many applications such as iTunes
[8], iPhoto [4], and Mendeley [6] currently generate file names,
either for their own use or that of the user. However, none of
them offers a generalized framework for file naming, and do
not reflect outside changes to metadata. By contrast, True-
Names offers automatic naming as a service which any appli-
cation can use, simplifying application development, keeping
names synchronized with metadata regardless of source, and
encouraging developers to export structured metadata.

6.2 Naming on the web

File naming is analogous to disambiguating search results
on the web. Web search, like file system search, has many
files with unique resource identifiers, and when returning
results the search engine must help the user choose between
them. Much of the web is text, and the common approach
is to reveal a snippet from the page containing the search
terms. Newer search types, such as video, rely on a title and
key frame. However, in file systems, these approaches are
not feasible. Many files are in opaque data formats, and no
text snippet or key frame is available. Thus, we rely on file
type-specific metadata to help the user identify their files.

6.3 Non-hierarchical and semantic file systems

The problem of automatically naming directories based
on metadata has been heavily explored. In particular, non-
hierarchical file systems [7, 15, 16, 18, 19, 25] present di-
rectory names based on the metadata of files, allowing the
user to navigate and select files using their metadata. For
instance, the original Semantic File System (SFS) [15] treats
all directory names as queries, and automatically generating
subdirectories based on lists of attributes and values. The
Linking File System [7] generates subdirectories based on

links. Similarly, The Logic File System (LISFS) [19] allows
some attributes to subsume others. If the results to a query
contain one or more subsumed attributes, only the higher
level attribute will be displayed as a directory name, and
only attributes which distinguish between the query results
are shown. This is similar to our disambiguation method.
However, we rely on the template for a name, and add meta-
data only when required by a name collision.

None of these focus on file names, instead focusing on
naming directories as a way to create queries over docu-

ments. Our approach is designed to complement non-hierarchical

systems, providing a generic mechanism for files to be easily
recognized regardless of context, and allowing non-hierarchical
systems to disambiguate file names at query time.

The most similar work to TrueNames is that of Jones et al.
[17], who proposed a non-hierarchical HPC file system with
automatically generated file names, chosen by examining the
distribution of metadata fields. By contrast, our work uses
a more robust and less complex scheme which puts the user
and application in control of which metadata is used, and
allows them to select attributes which are most appropriate
for the file’s semantic type, rather than relying on statistical
techniques.

6.4 Other file systems

Our work on collision detection also has implications for
systems with very large directories, making it similar to sys-
tems such as Giga+ [20]. One of the challenges for scalable
directories is being able to create a large number of unique
file names quickly, and in future work, we will examine ways
to make TrueNames scale to large distributed directories.

Object stores [9, 13, 14, 12, 24] allow a file to be addressed
directly by an object identifier, rather than as a series of log-
ical blocks, much as TrueNames allows files to be referenced
directly. Services such as OSMS [22] for OpenStack Swift
provide metadata storage and search. Since object IDs are
fixed identifiers for data objects, stores such as these can use
metadata aware naming for user friendly names even more
easily than block based storage, and offer better facilities for
bulk metadata management.
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7. FUTURE WORK

TrueNames was designed with non-hierarchical file sys-
tems in mind. In the future, we intend to extend Tru-
eNames to a non-hierarchical context, where metadata is
used to find files and display them. In a search context,
TrueNames can help disambiguate search results, provide
additional metadata, and potentially expand or collapse file
names dynamically, based on a list of useful fields provided
by the user. We are particularly interested in the potentials
of object storage. We note that some minor modifications
to the POSIX specification, allowing a user or application
to simultaneously create a file and add metadata, and get a
file name and file handle back as the return value, would be
significantly reduce the possibility of collisions and improve
performance. Bulk metadata addition would also improve
performance and stability.

We are interested in doing user studies with TrueNames
to confirm its usefulness in real world situations. In the
future, we plan to make it more robust, adding support

for multi-threading and other performance and stability en-
hancements, as well as porting it to additional platforms.
We will add support for templates on a per-user basis. This
allows users and applications to define more personalized
templates, as well as providing a higher degree of privacy
around metadata fields. Templates will be stored and ac-
cessed based on the uid of the calling application, and user
templates will override global templates of the same name.
We will also investigate ways of providing more flexibility
for naming hard-linked files, such as associating templates
with directories, and setting a default template for an entire
directory, such as an images folder.

Finally, we intend to explore the implications of using
TrueNames in distributed file systems such as Lustre [9]
and Ceph [24], where file names and extended metadata are
stored on multiple servers, adding new challenges around
scalability and metadata management. Large scale systems
for science can benefit greatly from better metadata and file
name management.
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8. CONCLUSIONS

We have created a new method of file naming, metadata
aware file naming. Our proof of concept prototype, True-
Names, adds a low 15% overhead under a variety of work-
loads, and scales up to a million or more files, demonstrating
the feasibility of this approach. Metadata aware file naming
provides a easy to use and efficient set of abstractions for
managing file names and metadata. It eases file manage-
ment by automating the process of file naming, and giving
files context-aware and automatically updated file names. It
also gently encourages users and applications to supply more
structured metadata to improve the quality of search. Using
metadata aware file naming can not only benefit users and
application developers in the short term, it can ease the mi-
gration path to non-hierarchical file systems. By separating
unique system identifiers from human readable file names,
we enable file systems and users to work together to manage
files and names more effectively.

Metadata aware file naming is broadly applicable, as we
have shown by describing a variety of existing use cases. It
can simplify application development, reduce data loss, and
make it easier for users and applications to find and manage
files. We have found our prototype, TrueNames, to be an
extremely useful tool during the writing of this work, and
will be porting it to OS X in the near future in order to take
advantage of it on more of our machines.
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