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ABSTRACT

While file system metadata is well characterized by a variety
of workload studies, scientific metadata is much less well
understood. We characterize scientific metadata, in order to
better understand the implications for index design. Based
on our findings, existing solutions for either file system or
scientific search will not suffice for indexing a large scientific
file system.We describe the problems with existing solutions,
and suggest column stores as an alternative approach.

Categories and Subject Descriptors

E.5 [Files]: [Sorting/searching]; H.3.2 [Information Stor-
age and Retrieval]: Information Storage—File organiza-
tion

General Terms

Design, Measurement,Performance
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1. INTRODUCTION

In this paper, we examine the problem of searching scien-
tific data on HPC systems. While there are many workload
studies for file system metadata [14, 9, 8, 20, 13, 28], they
have focused on POSIX metadata. Search systems based on
them [19, 17, 27, 21] attempt to extrapolate performance for
other use cases. By contrast, we examine scientific metadata
directly, in order to better understand the design space of
scientific metadata and content indexing systems. Having
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examined scientific data, we consider existing indexing so-
lutions for both file system search and scientific search, and
conclude that they are not well suited for HPC search.

Consider scientists working together on a shared HPC
computing and storage system. Scientists may want to search
files by size or age, but are more interested in searching
metadata about content [25]. An oceanographer might want
files containing observations at a certain salinity, and a bi-
ologist might need files about a species or watershed area.
Each of these searches is a metadata search, but rather than
relying on system generated metadata, it relies on metadata
that is domain specific, and may be embedded in content or
stored in an extended attribute.

We find that in contrast to POSIX metadata, scientific
metadata is heterogenous, with different metadata for differ-
ent disciplines. It is sparse, with many missing values even
within files from a single discipline. It is high-dimensional,
and those dimensions are a mix of numeric, textual, and cat-
egorical data. It can also be non-atomic, with many values
for a single field. We also find that it has a number of fea-
tures which an indexing strategy should take advantage of,
such as compressibility.

Search for scientific metadata poses a number of unique
problems. Scientific metadata is large, and can easily out-
strip the size of the data it describes. In many cases file
content and metadata are indistinguishable. For instance,
in astronomy a dataset may contain raw data such as pixel
brightness, and metadata such as a catalog identifier. What
matters is whether the data will be queried. In this work,
we focus on search for data in fields, a single dimension of
metadata such as temperature or author, as opposed to free
text with a document, since free-text search at scale is a well
explored problem.

File system search, especially at scale, poses additional
problems. Results to a file system query are in the form of a
list of matching files. This is different from many database
indexing problems, where results are records, and require
eventually performing a join to retrieve every field. Finally,
HPC file systems are often operating near full capacity, and
cannot use a large fraction of storage to store indexes, or
CPU for brute force search.

A search system for scientific metadata must balance each
of these constraints. It must make it possible to query a large



Discipline Native format Record count Subsampled? Sample count Total size Fields
Dryad Biology XML 31K No 31K 400MB 44
WISE Astronomy CSvV 564M Yes 10K 1TB 285
ARGO' Oceanography NetCDF 2B Yes 634,880 330GB 108
ORNL Climatology CSV 1478 No 1478 154KB 14

Table 1: Data sets. ! Full size is extrapolated based on recent file sizes and duration of data collection. Actual size has

not been published.

body of sparse, high-dimensional data without consuming a
large fraction of CPU, I/O bandwidth, or storage. It should
be able to add new files to indexes efficiently. Finally, it
must efficiently handle a mix of data types. We examine a
variety of indexes, and conclude that column stores are the
best match for these requirements.

2. EXPERIMENTAL DESIGN

In this section, we define some terminology, and describe
the index types we examine, as well as the data sets which
we analyzed.

2.1 Terminology

Since different index structures organize data differently,
it can be hard to find a common terminology to discuss
them. In addition, metadata can refer to different things
when used in a scientific context, rather than a file system
context. We will discuss fields, a single dimension of meta-
data such as temperature or author. Metadata refers to data
in fields, both extended metadata and metadata embedded
in file contents. We refer to a single data object, typically a
file and its metadata, as an item. And we use the term data
element to refer to data in a single field of a single item. A
field of an item may have multiple data elements, as we will
discuss later.

2.2 Index Types

In this paper we consider a number of index types for
file system search and scientific indexing in the light of our
findings about scientific metadata.

Relational databases store items in row-order on disk, and
employ additional indexes for fast search on specific fields.
Answering a query requires retrieving the entirety of every
row that matches. They support complex transactions and
query models.

Column stores are a more recent database design where
data is laid out on disk by column. They support higher in-
sert rates than row stores, and can efficiently answer queries
with a few terms, because only the columns present in the
query need to be loaded. However, they do not offer good
support for transactions and joins, and perform poorly when
an entire row needs to be recomposed.

Spatial trees are designed for indexing multi-dimensional
numeric data, such as geographical information or points in
a numeric space. They are good for answering range and
proximity queries on spatial data, and can be used for clus-
tering.

Inverted indexes are designed for textual data, but can be
used for any sort of point query. In an inverted index, each
keyword or value has an index, containing a list of point-
ers to matching documents. In order to implement inverted
indexes for structured data, each field must have a list of
keywords and associated indexes. Inverted indexes are excel-

lent for sparse data. Since the structure is simple, inverted
indexes can also be implemented on top of other database
structures. For instance, a relational database might have a
table containing keywords as a primary key, and a column
containing a list of documents.

FastBit [29] is designed explicitly for scientific databases.
FastBit is a bitmap index optimized for high dimensional
scientific data, which performs extremely well on numeric
data, and is very compact. It performs well on point and
range queries.

2.3 Data Sets

In order to get a representative sample of scientific meta-
data, we chose files from Dryad [1], the Wide-field Infrared
Survey Explorer (WISE) All-Sky Release [5], Argo [6], and
carbon-14 observations from Oakridge National Laborato-
ries [16]. Dryad was further divided into data using The
Open Archives Initiative (OAI) Protocol for Metadata Har-
vesting [4], and the Metadata Encoding & Transmission
Standard (METS) [3]. We chose these data sets because
they are readily available, and cover a wide range of science
one might find in a large computing installation. Our goal
is to characterize what could be expected in a system where
one or more of these data types is resident. While some sci-
entific computing installations may handle only a single kind
of data, the largest installations support a wide range of sci-
entific research, and will have indexes which must support
multiple types of data.

While our choices were made on the basis of breadth, we
also find that they each have very different metadata charac-
teristics, offering a broad perspective on index requirements.
We summarize their characteristics in Table 1. Where we
subsampled, we assume that the data is uniform.

To analyze the data, we decomposed each data set into a
columnar format by generating sorted lists from each field.
Where data sets were natively in a non-tabular format, such
as XML or NetCDF, we generated a list of all available fields,
and then grouped elements into sorted lists based on tag or
array name, respectively. For row analyses, we used the top
level item and the array position, respectively, to create a
row ID.

3. ANALYSIS AND RESULTS

To characterize the data, we examine the sparsity of fields,
how often values are missing from a given field, since some
indexes cannot handle sparse data, or must store it as a
null value. We analyze the atomicity of fields, i.e. whether
a field can be present multiple times in a single item, to
consider the need for indexes which handle multiple field
values. We then examine the entropy of fields,which affects
query selectivity and index compression. Finally, we look at
the overall distribution of data types for fields, both in terms
of storage and semantic data types, to determine necessary



index types. Each of these tests guides choices when building
a scientific data index or indexing system. We summarize
our findings in Table 3.

3.1 Sparsity

We determine the total number of fields possible for any
item, and then calculate what number of those fields were ac-
tually present in each of the individual items. Many indexing
systems assume a fixed schema, where all fields are present
for all items of the same type. In contrast, we find that
even within a single discipline elements tend to be sparse,
as shown in Figure 1. Sparse data can’t be represented in
some indexes, and can impact index size.

Sparsity is challenging for spatial tree based indexing schemes,

which cannot place data with missing values in the tree, and
must use estimation to fill in missing values, creating fake
data that must then be stored [26]. A single table row-based
index will also have space implications. Even if a table is
built for each data type, it will still need to store nulls for
missing values [12]. Although bitmap indexes are capable of
storing data using masks, such that an element is only stored
when data is present for a field, FastBit does not currently
have mask support [7]. Inverted indexes and column stores
only store data when data is present for that field, and will
have space savings for sparse data.
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Figure 1: Sparsity for all data sets. For a randomly
chosen element from X% of columns, there is a Y%
chance it will be null. We find that even within
one discipline, fields are sparse. Only a few fields
are present in all items, and these fields tend to
be unique identifiers for the system’s use. A poor
choice of index will waste space storing nulls, or be
unable to represent the data at all.

3.2 Atomicity

Atomicity describes how often a field can be present for
an data item (i.e., a file). An atomic value is one where only
zero or one elements can be present in a field. For instance,
tabular data is strictly atomic, since it can only support one
value per column in a row. Non-atomic data may represent
an list of many elements in a field, such as a list of au-
thors, or a single range element, such as a geographic area.

Non-atomic data requires an index design that can represent
multiple values or ranges, and match them to queries. We
determine the distribution of non-atomic values in our data
sets.
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Figure 2: Field value counts for both OAI and

METS data, truncated on both axes to show detail,
since one item in our data has over eight hundred
species associated with it. Only 55% of Dryad fields
are atomic, i.e., have a single entry. Less than 1%
of fields have more than fifteen entries, but can go
much higher. Indexes which cannot handle multiple
values for a field for a single entry will be unable to
store this data, and a poor choice of index design
can result in large amounts of duplicated data.

While most of the data sets we examined are strictly
atomic, the biology data have many fields with multiple el-
ements per field for a single item, as shown in Figure 2,
and one of the numerical fields in the ORNL data mixes
ranges and point values. Any system which supports a va-
riety of scientific metadata must handle non-atomic data.
Both list entries and range entries will cause problems for
spatial trees, which expect point values. At best, a spatial
tree will require an additional data point for each value, lead-
ing to duplicated data and consistency problems. Inverted
indexes cannot represent range values at all. With careful
schema design an RDBMS can support list and range values.
Column stores and bitmap indexes will also need schema de-
sign to handle range values, but can support high cardinality
list values in a single column given a simple schema, and are
a better choice.

3.3 Entropy

Entropy serves two purposes. First, it allows us to con-
sider the selectiveness of queries. Fields with low entropy
do a poor job of reducing the results size, whereas high en-
tropy fields can be very selective. Secondly, it allows us to
characterize compressibility. Low entropy data is easy to
compress, and is less expensive to store. Entropy is agnostic
to data type, which allows us to do direct comparisons of
string and numeric data.

We chose to focus the entropy of whole values, to study
query selectiveness. Whole value entropy does not entirely



Column stores Row stores

Spatial trees Inverted Indexes HDF5 FastBit

High dimensional data  Yes Yes

Sparse data Yes Stores nulls
Multiple values Yes More schema design
Non-numeric data Yes Yes

Range queries Yes Yes

Specialized indexes Yes Yes

High compression Yes No

No Yes Yes Yes
No Yes Yes Stores nulls
No List, not range Yes Yes
No Yes Yes No
Yes No Yes Yes
No No No No
No Yes No Yes

Table 2: Comparing index types

capture compressibility, but serves as an upper bound, more
compression is often possible for fields which can be seg-
mented or bucketed, such as free text and numerical data.
We examine block-based column and row entropy, such as
a database might use during compression, to compare their
effectiveness. We discounted null values, since these are not
relevant to selectivity.

We examined the entropy within each data set in two
ways, using the bit-wise Shannon entropy

H(z) ==Y pla:)logs p(x:)

i=1

where p(z;) is the probability of value z; occurring. For
columns, we sorted the values for each field (corresponding
to a column), divided it into 4K blocks and calculated each
block’s entropy. For row entropy, we took all fields present
in an item (excluding nulls), and took enough rows to fill a
4KB block, then calculated entropy.

This allows us to consider the effects of column organiza-
tion versus row organization for compression. Field entropy
also characterizes the selectiveness of a query on that field.
Fields with very low entropy are very non-specific. In the
worst case, an entropy of zero, where every value is the same,
that field does not allow us to eliminate any possible results.
By contrast, very high entropy fields, such as a unique iden-
tifier, quickly narrow the search space. In between are fields
which are moderately selective.

As Figure 3 shows, row entropy is very low variance. This
is intuitive, since taking entropy over all fields will aver-
age the entropy of those fields, leading to lower inter-block
variance. However, mixing different types increases total
entropy, meaning row data will be harder to compress. Col-
umn stores, inverted indexes, and bitmap indexes can take
advantage of the structure of low entropy data in order to
compress it. Some spatial trees can take advantage of data
entropy to balance trees efficiently, but do not compress the
data itself, and row stores cannot take full advantage of low
entropy columns, since they must average entropy over all
columns.

3.4 Data Types

We examine the data types of the fields, based on the data
set documentation. Knowing the distribution of field types
is useful for index choices. Different index designs are better
for text versus numeric data, and there are efficient special-
ized indexes for data which is geospatial or time based. To
examine type distributions, we categorize fields as numeric
or string data. We then further examine them to determine
if they are geospatial, a set of flags encoded as a string or
number, etc. In Table 3.4, we show the distributions of raw
data types and semantic types.

— Oceanic (C)
— WISE (C)
— OAI-DC (C)
—— Mets (C)
— Argo (C)
- - Oceanic (R)
- = WISE (R)
- = OAI-DC (R)
- - Mets (R)
- = Argo (R)

% of Row or Column With Given Entropy
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Figure 3: CDF of entropy for all fields in each data
set. Dashed lines are row entropy, and solid lines
are field entropy. Fields consistently have lower en-
tropy than rows, indicating they will compress bet-
ter, allowing more indexes to be stored in the same
amount of memory or disk. However, field entropy
varies significantly, suggesting that some fields are
much more useful to query (and therefore index)
than others.

Indexes which cannot handle string data, such as bitmap
indexes and spatial trees, will not suffice for indexing scien-
tific data. On the other hand, spatial indexes can be very
useful as part of an indexing system, and bitmap indexes can
be very efficient for flag sets and numeric data. The ideal
system will take advantage of the semantics and structure
of each field to search efficiently over heterogeneous data.

4. RELATED WORK

Here we describe related work in the areas of file system
indexing, indexing for sparse and semi-structured data, and
metadata studies.

4.1 File System Indexing

Spyglass [19] and Smartstore [17], were the first to suggest
using spatial indexes for metadata. While these performed
well on their test data, they focused strictly on POSIX
metadata. Loris [27] and Pantheon [21] were both index-
ing systems tested for system metadata only. Pantheon
used B-trees, which are row-based, and will face challenges
with sparse data. Loris used log-structured merge-trees [22].
BeF'S [15] was designed to handle both system metadata and



Dryad WISE Argo ORNL Totals
(46 fields) (285 fields) (108 fields) (14 fields) 453 fields
String 100% 4% 62% 29% 28%
Storage type
Numeric 0% 96% 38% 1% 72%
Date 2% 4% % % 5%
. Spatial 2% 9% 2% 21% 7%
Semantic type
Flagsets 0% 19% 14% 0% 15%
Native types 96% 68% 7% 72% 73%

Table 3: Data types in scientific data for all data sets. We examine storage types, and semantic types that
can have specialized indexes. String support is a must, and having native index support for time and space

can significantly speed up queries.

extended metadata. In BeF'S, all metadata was stored in a
B+-tree, using row-major order. This technique was effec-
tive at desktop scales, but it suffers from problems with
sparse, heterogeneous data.

4.2 Scientific Indexing

Systems such as FastBit [29] and FastQuery [11] are de-
signed specifically for a certain type of scientific data. They
have evaluated against scientific data, but only focused on
numeric data. As previously mentioned, scientific data draws
from a wide mix of types, not only numeric data. In addi-
tion, FastBit and FastQuery used a mix of synthetic and real
data sets, but do not provide a close analysis of the contents
of scientific files that would allow others to use similar data
for testing, a gap which we propose to fill.

4.3 Metadata studies

There have been a number of previous metadata stud-
ies. However, they have focused exclusively on file system
metadata and file types, rather than rich scientific meta-
data. For instance, Douceur’s large-scale study of file-system
contents [14], and Agrawal’s five-year study of file-system
metadata [9], also did detailed statistical analysis of dis-
tributions. Both focused on desktops. On a larger scale,
we note Leung’s large scale network file system study [20],
which tracked behavior and file system metadata for cor-
porate file servers. Perhaps the closest to our research are
Dayal’s study of HPC at rest [13] and Wang’s study of HPC
workloads [28]. However, they focused on file system meta-
data, not rich metadata.

4.4 Other indexing

Indexing shares many challenges with databases as well
as file systems. Column stores such as C-store [24], HBase
[2], or Cassandra [18], are one popular approach to dealing
with sparse data. These have some advantages for scientific
data, since they are well organized for tasks such as comput-
ing maximums, minimums, and averages. WideTable [12]
was specifically designed to meet the challenges of extremely
sparse high-dimensional indexes.

Patil et al. [23] also explored the question of appropriate
architectures for searchable metadata in file systems. They
suggested using BigTable [10] as the underlying storage for
a file system. BigTable has good support for sparse indexes,
and is highly scalable.

S. CONCLUSIONS

In this paper, we have examined scientific metadata, and
demonstrated that it is large, sparse, heterogenous, high en-
tropy, and high dimensional. Based on our findings, existing
approaches to file system indexing, such as spatial trees and
row major databases, will perform poorly for indexing sci-
entific metadata. We conclude that column stores are an
excellent fit for scientific data, and can answer file system
search queries in a very efficient fashion.
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